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A SUBSPACE BASED SUBSPACE INCLUSION GRAPH ON
VECTOR SPACE

MOHAMMAD ASHRAF, MOHIT KUMAR, AND GHULAM MOHAMMAD

ABSTRACT. Let W be a fixed k-dimensional subspace of an n-dimensi-
onal vector space V such that n — k > 1. In this paper, we introduce
a graph structure, called the subspace based subspace inclusion graph
IW(V), where the vertex set V(J1' (V)) is the collection of all subspaces U
of V such that U+W # Vand U ¢ W, i.e., VIV (V) = {UCV|U+W #
V,U ¢ W} and any two distinct vertices Uy and Uy of ) (V) are adjacent
if and only if either U1 +W C U2+W or U2 +W C U; +W. The diameter,
girth, clique number, and chromatic number of Jw (V) are studied. It is
shown that two subspace based subspace inclusion graphs W1 (V) and
Jw2 (V) are isomorphic if and only if Wy and Ws are isomorphic. Further,
some properties of IV (V) are obtained when the base field is finite.

1. INTRODUCTION

Throughout this paper, V denotes a finite dimensional vector space over
a field F and for any subspace W of V, V(IW(V)) = {UCV | U+W £V,
U Z W} Let § = (V(9),&(9)) be a graph, where V(§) is the set of vertices
and €(9) is the set of edges of §. We say that G is connected if there exists
a path between any two distinct vertices of §. For vertices a and b of G,
d(a,b) denotes the length of a shortest path from a to b. In particular,
d(a,a) = 0 and d(a,b) = oo if there is no such path. The diameter of G is
denoted by diam(§G) = sup{d(a,b) | a,b € V(G)}. A cycle in a graph G is
a path that begins and ends at the same vertex. A cycle of length n is
denoted by C,,. The girth of G, denoted by gr(9), is the length of a shortest
cycle in G (gr(9) = oo if § contains no cycle). A complete graph G is a
graph where all distinct vertices are adjacent. The complete graph with
IV(G)| = n is denoted by K,,. A graph G is said to be complete k-bipartite
if there is a partition U¥_,V; = V(G), such that u — v € &(§) if and only if
u and v are in different parts of partition. If |V;| = n;, then G is denoted
by Xuina,...n, and in particular G is called complete bipartite if k£ = 2. A
graph H = (V(H), E(H)) is said to be a subgraph of G if V(H) C V(9)
and E(H) C &(9). Moreover, H is said to be induced subgraph of G if
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V(H) CV(G) and E(H) = {u—v € E(9) | u,v € V(H)} and is denoted by
G[V(FH)]. Also G is called a null graph if £(9) = @. For a graph G, a complete
subgraph of G is called a clique. The clique number, w(§), is the greatest
integer n > 1 such that X,, C G, and w(9) = o0 if K, C G for all n > 1.
The chromatic number x(§) of a graph G is the minimum number of colours
needed to colour all the vertices of § such that every two adjacent vertices
get different colours. A graph G is perfect if x(H) = w(H) for every induced
subgraph H of G. Graph-theoretic terms are presented as they appear in R.
Diestel [10].

Beside its combinatorial motivation, graph theory can also identify various
algebraic structures. The main task of studying graphs associated with
algebraic structures is to characterize algebraic structures with a graph and
vice versa. To date, there has been a lot of research, see [1, 2, 3|, on simple
graph structures for commutative rings. Recently, some algebraic graphs
associated with vector spaces were studied (see [4, 5, 6, 7, 8]). Das [6]
defined the subspace inclusion graph J,(V) on a vector space V, where the
set of vertices is a collection of all nontrivial subspaces of V and any two
distinct vertices Wy and Wy are adjacent if and only if either W; C Ws or
Wy C Wh.

Motivated by the above study, we introduce the notion of a subspace
based subspace inclusion graph for a vector space V and denote it by JTVLV(V).
The graph 7V(V) is a simple (undirected) graph with vertex set V(3V(V))
and any two distinct vertices U; and Uy of J¥(V) are adjacent if and only if
either U + W C Uy + W or Us + W C Uy + W. Further we investigate some
basic properties of IWV(V).

2. FUNDAMENTAL PROPERTIES OF JV(V)

In this section, we study the fundamental properties of J%V(V). We show
that JV(V) is connected and diam(J)¥(V)) < 3.

Definition 2.1. Let W be a subspace of a vector space V. Then the subspace
based subspace inclusion graph I¥(V) is a simple (undirected) graph with
vertex set V(IW(V)) and any two distinct vertices Uy and U of IV (V) are
adjacent if and only if either Uy + W C Us + W or Us + W C Uy + W.

We have the following theorems:

Theorem 2.2. Let W be a k-dimensional subspace of an n-dimensional
vector space 'V over a field F. Then the following statements hold:
(i) If k = 0, then IV (V) = 7, (V).
(ii) If W1, Wy are two distinct vertices of 3V (V) such that
dim(W; +W) = dim(Wq + W), then W, is not adjacent to Wa, i.e.,
Wi ¢ Wy in IV(V).
(iil) If n — k = 2, then 3Y(V) is an edgeless graph.
(iv) If n — k = 1, then IV (V) is an empty graph.
(v) If n —k > 4, then V(V) is triangulated.
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(vi) IW(V) is never complete.
Proof.

(i) Obvious.

(ii) Let W1, Wy € V(IW(V)) be two distinct subspaces of V and dim (W1 +
W) = dim(Wao+W) = k. If W1 ~ Wy, then either W1 +W C Wo+W
or Wy +W C Wy +W. Since dim(W; + W) = dim(We + W) = k, we
have W; + W = Wy + W, which is a contradiction.

(iii) Suppose that dim(V) — dim(W) = 2 and let Wi, Wy € V(IW(V)).
Then d1m(W1 -+ W) = d1m(W2 + W) =k + 1 and by (11), 1 =~ Wy
in IW(V).

(iv) Follows trivially.

(v) Let Wy € V(I¥(V)). We have the following cases:

Case 1: dim(W + W;) = k + 1. There exist two subspaces Wy, W3
of V such that dim(W + W) = k + 2, dim(W + W3) = k + 3 and
WH+W; CW+Wy CW+Ws.
Case 2: dim(W + W;) = k + 2. There exist two subspaces Wy, W3
of V such that dim(W + W) = k + 1, dim(W + W3) = k + 3 and
WH+Wy CWH+W; CW+Ws.
Case 3: dim(W 4+ W) = k + 3. There exist two subspaces Wa, W3
of V such that dim(W + W) = k£ + 1,dim(W + W3) = k + 2 and
W4+Wy CW+ W3 CW+ Wy,

Thus in all the cases we can form a triangle with the vertices
Wi, Wa, Ws.

(vi) Since dim(V) — dim(W) > 2, there exist two linearly independent
vectors u,v € V' \'W such that Span{u} ~ Span{v} in I¥(V).

]

Theorem 2.3. Let W be a subspace of a vector space V such that dim('V) —
dim(W) > 3. Then I¥(V) is connected and diam(T)¥(V)) < 3.

Proof. Let dim(W) = k and Wy, Wy € V(IV(V)). If Wy + W C Wy + W or
Wy +W C Wi + W, then Wi ~ W5 and d(Wl,Wg) = 1. If Wy = W5, then
we have the following cases:

Case 1: dim(W; + W) = dim(Wy + W) = k + 1.
Subcase 1: W1 + W = Wsy + W. There exist w € V\ (W; + W) and
(W1 + W) C (Span{w} + W1 + Wy + W) D (W1 + W) such that Wy ~
(W1 + Wq + Span{w}) ~ Wy is a path in 3¥(V) and d(W;, Wy) = 2.
Subcase 2: Wi+W # Wy+W. Then (W14+W) C (W1+Wo+W) D (Wa+
W) and Wy ~ (W1 + Wa) ~ Wy is a path in I¥(V) and d(Wy, Wy) = 2.
Case 2: dim(Wy; + W) =k + 1 and dim(Wy + W) > k + 1.

Let u € Wy + W\ W; + W and < u > +W = Ws. Since dim(W; +
W3+W) :k‘+2, W1+W3+W7§Vand W3+WCW2+W, we have
Wi ~ Wi + W3 ~ W3 ~W5. Hence d(Wl,Wg) <3.

Case 3: dim(Wy; +W) > k + 1 and dim(Wy +W) > k + 1.
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Subcase 1: Wi +Wa +W #V or (W1 + W) + (W2 + W) # W. Then
Wi~ Wy + Wy ~ Wy or Wy ~ (Wl—I—W)ﬂ(Wg—I-W) ~ Wa.
Subcase 2: W1 +Wa +W =7V and (W1 + W) N (Wa + W) = W. Let
v € Wa \ W. Since dim(W; + W) > k + 1, dim(Wy + W) > k + 1
and Wi + W+ W +W =V, (W, + W) N (Wa + W) =W, we have
dim(W; +W) <n —1, dim(Wy + W) <n—1, and Wy + (v) + W #V,
Wi ~ Wy + (’U> ~ <U> ~ Ws.
Hence J¥(V) is connected and d(Wy, Wy) < 3.
U

Theorem 2.4. If W is a subspace of a vector space V such that dim(V) —
dim(W) > 3, then diam(3)¥(V)) = 3.

Proof. Let W be a k dimensional subspace of V and {w,ws,...,wx} be a
basis of W. This linearly independent subset can be extended to a basis for
V. Let {w1,wo,...,wg,...,w,} be a basis for V and W; = Span{wy11},
Wy = Span{wgio, Wiy3, ..., w,}. Clearly, Wi, Wy € V(IW(V)), Wy = Wo
and d(Wy, W) # 1. If d(W1, Ws) = 2, then there exists W3 € V(IV(V)) \
{W1, W3} such that Wy ~ W3 ~ Wy is a path in an(\?). Since W1 ~ Wj,
either W1+W C W3+W or W1—|—W D) W3—|—W IfW1+W D) W3+W,
then W3 Wy as (W1 + W) N (Wy + W) = W. Thus Wy + W C W3 + W.
Again since W3 ~ W5, either Wo + W C W3 +W or Wy + W D W3 + W. If
Wy +W D W3 + W, then W3 ~ Wy as (W1 + W) N (Wa + W) = W. Thus
Wy +W C W3+ W. Therefore we find that W3 4+W is a subspace of V which
contains Wi + W as well as Wy + W ie., W3 + W = V. a contradiction.
Thus d(W;,W3) > 3 and by Theorem 2.3, we get d(W;, Wy) < 3. Thus
diam(7V(V)) = 3. O

The following lemmas are essential to prove our next theorem.

Lemma 2.5. If W is a subspace of a vector space V such that dim(V) —
dim(W) = 3, then 3¥(V) does not contain any cycle of odd length.

Proof. Suppose that Wy ~ Wy ~ - .- ~ W, ~ Wy is a cycle of odd length in
IW(V). Since dim(V) — dim(W) = 3, the dimension of each W; + W is either
dim(W)41 or dim(W)+2 since any two distinct vertices Wy, Wo € V(TV(V))
such that Wi +W = Wy + W are not adjacent in J¥(V). Without loss of
generality we may assume that dim(W; + W) = dim(W) + 1 and we get
dim(Wg +W) = dim(W) + 1 and W; = Wy, which is a contradiction. Hence
IW(V) does not contain any cycle of odd length. O

Lemma 2.6. Let N be a clique in 3)¥(V). Then {U+W | U € N} is a chain
of subspaces of V.

Proof. The proof is trivial. O

Theorem 2.7. Let W be a subspace of a finite dimensional vector space
V. Then dim(V) — (dim(W) + 1) = m if and only if w(JW(V)) = m, where
m = dim(V) — (dim(W) + 1).
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Proof. Let W be a k-dimensional subspace of n-dimensional vector space V
and {vi,v9,..., 0%}, {v1,v2,..., Vg, Vks1,...,Un—1} be the bases of W and
V, respectively. Let W; = (v1,v9,...,v;) for j =k+1,k+2,...,n. Clearly,
N ={Wii1, Wiyia,...,W,_1}isaclique. If possible, let NU{W'} be a clique
where W' € V(¥ (V)) \ N. Thus by Lemma 2.6, there exists i € {k + 1,k +
2,...,n — 2} such that W; C W +W C W;41. Since the inclusion is proper
and V is finite dimensional, we have dim(W;) < dim(W' 4+ W) < dim(W;1),
e, i < dim(W + W) < i+ 1, a contradiction. Thus N is a clique of size
n— (k+1). If possible, let N’ = {Uy, Us, ..., U,_x} be a clique of size n — k
and U1+W C Us+ W C -+ C Uy, +W. Again as 'V is finite dimensional and
each inclusion is proper, we have dim(W) < dim(U; + W) < dim(Uy +W) <
oo < dim(Uy,— g +W). Since dim(U; +W) are distinct integers between k + 1
and n — 1, we have n — k integers in [k + 1,n — 1], a contradiction. Thus,
w@V) =n— (k+1).

Conversely, suppose that w(J¥(V)) = m. Let dim(V) — (dim(W) + 1) =
p # m. Then by the directed part, w(J¥(V)) = p and hence p = m. This
completes the proof. O

Theorem 2.8. If'W is a k-dimensional subspace of an n-dimensional vector
space V, then x(IW(V)) =n — k — 1.

Proof. By Theorem 2.7, w(JW(V)) = n — k — 1, and therefore x(3¥(V)) >
n — k — 1. To show the equality, we demonstrate a (n — k — 1) colouring
of IW(V). For any U € V(I (V)), if dim(U + W) = k + j, then color U
with the jth color. This coloring is proper since by Lemma 2.6, any two
Uy, Uy € V(IW(V)) such that dim(Us + W) = dim(U; + W) = k+j are never
adjacent and hence the theorem follows. ([

Theorem 2.9. If'W is a k-dimensional subspace of an n-dimensional vector
space V, then IV (V) contains a graph §' such that §' = 3, _(V/W).

Proof. We know that proper subspaces of V containing W are in one-to-
one correspondence with the nontrivial subspaces of V/W, i.e., 2 = {U C
VIW<U<V}+—B={WUCVW]| (0 <UW < V/W} Clearly,
2A C V(IV(V)) and B = V(I,,(V/W)). Now if we define ' on A by IV (V)[2],
then IV (V)[2] = J,,_1(V/W) and hence the theorem follows. O

Theorem 2.10. If'W is a k-dimensional subspace of an n-dimensional vec-
tor space V such that n — k > 3, then 3V (V) is not planar.

Proof. We know that by Theorem 2.9, W (V) contains a graph §’ such that
G = 7, 1(V/W), by Theorem 5.2 of [7], 7¥(V) contains a graph which is
not planar, and by Kuratowski’s theorem, J¥(V) is not planar. O

Theorem 2.11. Let Wi and W be two subspaces of a finite dimensional
vector space V. Then 3,(W1) ~ J,,(W2) if and only if dim(W;) = dim(Ws).

Proof. Suppose that W; and Ws are two k-dimensional subspaces of an
n-dimensional vector space V and let {uy,us,...,ur}, {v1,ve,..., v} be
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the bases for W1, W, respectively and 2 = {uy,ug, ..., ug, Ukt1,--.,Un},
B ={v1,...,Vk, Vkt1,---,0n} be the extended bases for V. Define a map f :
A — B by f(u;) = v; fori =1,2,...,n. Clearly, the map g : V(J,(W1)) —
V(J,,(W3)) defined by g(U) = f(U) for U € V(J,,(W1)) is bijective and adja-
cency preserving and hence I, (W;) ~ 7,,(Wa).

Conversely, assume that J,,(W1) ~ J,,(Ws) and dim(W;) = ky, dim(W3) =
ko. Then by Theorem 2.7, w(I¥1(V)) and w(IWV2(V)) are n — k; — 1 and
n—kyo—1, respectively. Since J,,(W7) ~ J,,(W5), we have n—k1—1 = n—ko—1
and hence k1 = ks. O

3. WHEN THE BASE FIELD F IS FINITE

In this section, we study some basic properties of 7V (W) if the base field
F is finite, i.e., |F| = ¢ and ¢ = p" for some prime p.

Theorem 3.1. Let W be a k-dimensional subspace of an n-dimensional
vector space V over a finite field F with q elements. Then the set containing
those subspaces W of V such that U+W =7V i.e., {UCV | U+W =V} has
(Zf;é n, + 1) elements, where

L@ =D =) (@ =" — )" ¢ (¢" — ")
T (qn—k-i-r _ 1)(qn—k+7’ _ q) . (qn—k+r _ qn—k—i-r—l) :

Proof. Since dim(W) = k < n for any subspace W e {UCV |U+W =V}
of V has dimension at least n — k, i.e., f W e {UCV|U+W =V}, then
dim(W') = n—k+r and dim(W N'W) = r where 0 < r < k—1. To find such
subspaces W, we choose r linearly independent vectors from W and n — k
linearly independent vectors from V\'W, and generate W’ with these n—k-+r
linearly independent vectors. Since the number of ways we can choose r
linearly independent vectors from W is (¢¥ — 1)(¢* — q) - (¢* — ¢"71), the
number of ways we can choose n — k linearly independent vectors from V\'W

is (¢" — ") (¢" —¢"*1) -+ (¢" — ¢"'). The number of bases of an (n — k+7)-
dimensional subspace is (¢" """ — 1)(¢" " — q) - (¢" R — gnRATL,
the number of subspaces W with dim(W') = n—k+r and dim(WNW’') = r
is

(" =D(d"—q) ("~ (" = ")(g" = ") --- (¢" = ¢" ")

Ny = (qn—k+T — 1)(q7Z—]€+7“ _ q) e (qn—k+7" _ qn—k;_H»_l)

If » = k, then V is the only subspace which satisfies the given condition.
Since 0 <r <k -1,

k—1
{UCSV [ U+W=V} =D n +1.
r=0

0

Theorem 3.2. Let W be a k-dimensional subspace of an n-dimensional
vector space V over a finite field F of order q. Then IW(V) is a graph of
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k-1
order §(n,q) — (S(k,q) + >, —gn, + 1), where

N C el [ ) R C ek 0 C 0L C el S R C A
T (qn—k—H" _ 1)(qn—k+r _ C_[) . (qn—k—i-r _ qn—k—i-r—l)

and G(n, q) is the Galois number. In particular, when W = (0), the order of
IV(V) is G(n, q) — 2.

Proof. By the definition of the graph I¥(V), V(I¥(V)) = {U c V} \ {W C
W} u{UCV|U+W=7V}). Since the number of r-dimensional subspaces
of a n-dimensional vector space over a finite field of order g is the binomial
coefficient (see [7])

[n] _ (qn - 1)(qn—1 - 1) a (qn—k+1 - 1)
e (¢F =)t =1)---(¢g—-1)

the total number of subspaces of V is given by

n

Z[mq =5(n,q) — 2.

r=0
Similarly, the total number of subspaces of W is given by

k

Z[ﬂq = 9(k7Q) — 2.

r=0
By Theorem 3.1, {U CV | U+ W =V} has Zf;é n, + 1 elements, where

L@ =D =) (¢ =a(g" = )" = ¢") - (¢" —q" ")
T (qn—k—i-r _ 1)(qn—k+r _ q) . (qn—k—f—r _ qn—k—l—r—l) :

Since {W ¢ W}N{U CV|U+W =V} = @, the order of I¥(V) is
S(n,q) — (5(k,q) + Zf;é n, + 1), where

(@~ 1" —a) - (¢" —a )"~ )" — ") (¢" —¢" ")
<qn—k+7‘ _ 1)(qn—k+7‘ _ Q) .. (qn—k-H’ _ qn—k-‘rr—l)

ny =

and G(n,q) is the Galois number. Trivially, when W = (0), the order of
9w (V) is G(n, q) — 2.
(]

Theorem 3.3. Let W be a k-dimensional subspace of a n-dimensional vector
space of V over a finite field F of order ¢ and W € V(IV(V)) such that
dim(U + W) = 1. Then

deg(U) =

Qo+ 1)+ 0 (D pi 1),

I—k—1 k-1 n—i-1 k—1
= i=0 s=1 i=0

<
—_
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where
@ -1 -q) (")
’ (¢t = 1)(¢"+ —q)
y (qk+r . qk)(qk-i—r . qk+1) . (qk—I—r o qk+r—1)
(T —q?)- (¢t — gt
and

_ (@ =D —q) (" —aT)
Pi= T (ki ) (R )

(¢ = (a0 = g (g — g o)
(ql-i-s—k—‘ri _ q2) . (ql-‘rs—k-i-i _ ql-i-s—k—‘ri—l) :

Proof. First we find the subspaces of V which properly contains W as a
subspace and properly contained in U + W. We know that there is a one-
to-one correspondence between the (k + r)-dimensional subspaces of U +W
containing W and the r-dimensional subspaces of (U + W)/W, ie., A =
{AIW<A<U+W}E+—B={B]|(0) <B<(U+W)/W }. It may
be noted that the number of r-dimensional subspaces of (I — k)-dimensional
vector space (U+W) /W over a finite field of order ¢ is the binomial coefficient

K], A O A ) R C A )
no (@ =Dt =1)-(¢g-1)
Corresponding to each r-dimensional subspace in 9B, there is a (k + 7)-

dimensional subspace in 2 and therefore the number of (k + r)-dimensional
subspaces in 2 is given by

], = @ " =D 1) (f T )

r 1q (qr_l)(qr—l_l)...(q_]_)

Let W € 2 be a (k + r)-dimensional subspace of U + W. If W; € V(IW(V))
such that W; + W = W/, then W; C W’. Therefore by Theorem 3.1, the
number of W; € V(I¥(V)) such that W; + W = W’ is given by Zf:_ol n;,
where

@ -D(@" - (" —d)
' (" =1+ — q)
(qk—i-r _ qk)(qk—i—r _ qk—i-l) . (qk—i-r _ qk—i-r—l)
(@ =g*) - (g =gt
Therefore, we have [."*], — (k + r)-dimensional subspaces, where r = 1,
2,...,1 —k — 1. Thus the number of subspaces W € V(I¥(V)) such that
UW+WCU+Wis Zi_:]i_l[i_k]q(Zf:_ol n;+1). Now we find the subspaces of
V which properly contains U+ W as a subspace and is properly contained in
V. There is a a one-to-one correspondence between the (I + s)-dimensional
subspace of V containing U+W and the s-dimensional subspace of V/(U+W),
e, C={A' |U+W < A <V} +—D ={B| (U+W) < B <V/(U+W) }.

X
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Note that the number of s-dimensional subspaces of the (n —[)-dimensional
vector space V/(U+W) over a finite field of order ¢ is the binomial coefficient

[nfl] _ (qn—l B 1)(qn—l—1 - 1) t (qn—l—s—i-l B 1)
* (=D =1 (g—1)

Corresponding to each s-dimensional subspace in ©, there is a (I + s)-
dimensional subspace in €. Therefore the number of (I + s)-dimensional
subspaces in € is given by

1), = (@' =" 1) (g )
2 (@ =D =1 (¢-1)

Let W' € € be a (I 4 s)-dimensional subspaces of V. If W; € V(3% (V)) such
that W; + W = W', then W; C W'. Therefore by Theorem 3.1, the number
of W; € V(3¥(V)) such that W; + W = W' is given by S5 p; + 1, where

-0 -9 (-
pi = (qHﬂ4k+i4,1)Oﬂ+sfk+i4,q)

<ql+s _ qk)(ql+s _ qk+1) L <ql+s _ ql+sfl)
(ql+s—k+i _ q2) . (ql-‘rs—k—i-i _ ql—i—s—k—‘ri—l) '

Therefore we have [27!], — (I + s)-dimensional subspaces, where s = 1,

2,...,m — 1 — 1. Thus the number of subspaces U € V(I¥(V)) such that
U+W W4+ Wis S22, (00 pi + 1). Hence

S

I—k—1 k—1 n—l—1 k—1
deg(W) = > [T¥1(Q mi+1)+ [ pi + 1)
r=1 i=0 s=1 i=0

O

Theorem 3.4. Let W be a k-dimensional subspace of an n-dimensional vec-
tor space 'V over a finite field with q elements. Then the following statements

hold.

(i) If q is odd, then 3 (V) is Eulerian.

(ii) If q is even, then I¥(V) is Eulerian if and only if n — k even.
Proof. (i) It can be easily seen that from [11, Proposition 7.1, p. 25]: G(n+
1,q9) =2G(n,q)+ (¢" —1)G(n—1, ¢) with G(0,¢) = 1 and G(1,q) = 2. Thus
if ¢ is odd, then all Galois numbers are even. Let W € V(3% (V)) such that
dim(W; +W) = ¢. Thus by Theorem 3.3, deg(U) in IV (V) is

k—1 k-1
(Gt = k) =2)(D_ i+ 1) + (G(n —L.q) =2))(D_pi+1),
i=0 i=0

an even number. Thus the degree of each vertex of JV(V) is even and hence
IV(V) is Eulerien.

(79) If g is even, then by [11, Proposition 7.1, p. 25], G(2m,q) is odd and
G(2m + 1,q) is even for m € N U {0}. Now, if U € V(I¥(V)) such that
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dim(U 4+ Wy) = £, then deg(U) is (G(£ — k,q) — 2)(XF =y ni + D)+((G(n —
l,q) = 2))(Xig pi+ 1),
If n — k is even, then G(n — ¢, q) and G(¢ — k, q) are both either even or
odd and hence the degree of U is even.
If n — k is odd, then we have the following cases.
Case 1: n is even, k is odd, and /£ is even.
Then G(n—¥¢,q) is odd and G({ — k, q) is even, and the degree of U is
odd.
Case 2: n is even, k is odd, and ¢ is odd.
Then G(n — 2, q) is even and G(¢ — k, q) is odd and the degree of U is
odd.
Case 8: n is odd, k is even and / is even.
Then G(n —/,q) is even and G(¢ — k, q) is odd and the degree of U is
odd.
Case 4: n is odd, k is even and ¢ is odd.
Then G(n —/,q) is odd and G(¢ — k, q) is even and the degree of U is
odd.
Thus in all the cases degree of U is odd and hence 7% (V) is not Eulerian. [

4. CONCLUSION

In this paper, we have introduced a subspace based subspace inclusion
graph on the vector space J)¥(V) of a finite dimensional vector space V and
investigated various interrelationships between 7V (V) (as a graph) and V (as
a vector space). The diameter, girth, clique number, and chromatic number
of 7W(V) have been studied. It is shown that two subspace based subspace
inclusion graphs 3V1(V) and J%V2(V) are isomorphic if and only if Wy and Ws
are isomorphic. Further, some properties of 7V (V) have also been obtained
when the base field is finite. As an area of further research, one can look

into the structure of the automorphism group of J¥(V) in case of a finite
field.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referee for his/her valuable
comments and suggestions, which have helped us improve the previous ver-
sion of the paper.

REFERENCES

1. D. F. Anderson and A. Badawi, On the zero-divisor graph of a commutative ring,
Comm. Algebra, 36(8) (2008), 3073-3092.

2. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42(1)
(2014), 108-121.

, On the dot product graph of a commutative ring, Comm. Algebra, 43(1)
(2015), 43-50.

4. A. Das, Nonzero component graph of a finite demensional vector space, Comm. Alge-
bra, 44(9) (2016), 3918-3926.

3.




10.
11.
12.

A SUBSPACE BASED SUBSPACE INCLUSION GRAPH ON VECTOR SPACE 83

, Non-zero component union graph of a finite demensional vector space, Linear
Multinear Algebra, 65(6) (2017), 1276-1287.
, Subspace inclusion graph of a vector space, Comm. Algebra, 44 (2016), 4724—

4731.

, On subspace inclusion graph of a vector space, Linear Multinear Algebra,
66(3) (2018), 554-564.

, On non-zero component graph of vector spaces over finite fields, J. Algebra
Appl., 16(1) (2017), 1750007.

. G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw Hill, Edition

New Delhi, 2006.

R. Diestel, Graph Theory, Springer—Verlag, New York, 1997.

V. Kac and P. Cheung, Quantum calculus, Springer Universitext, 2001.

D. W. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle
River, 2001.

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002
INDIA
E-mail address: mashraf80@hotmail.com

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002
INDIA
E-mail address: mohitkumaramul23@gmail.com

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002
INDIA
E-mail address: mohdghulam202@gmail.com



