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PARTITIONING THE 5× 5 ARRAY INTO RESTRICTIONS

OF CIRCLES

ROBERT J. MACG. DAWSON

Abstract. We show that there is a unique way to partition a 5×5 array
of lattice points into restrictions of five circles. This result is extended
to the 6×5 array, and used to show the optimality of a six-circle solution
for the 6 × 6 array.

1. Introduction

In the notes of the late Ross Honsberger, the following problem was found,
labeled as “Eddie’s problem” [3]:

Given a 5× 5 array of lattice points, draw a set of circles that collectively
pass through each of the lattice points exactly once.

(Here, and throughout, by “circle” we will mean proper circles, not straight
lines.)

This problem appeared in Crux Mathematicorum as problem CC226. One
reader [2] gave a solution in the form of a set of concentric circles (Fig. 1d)
including circles with as many radii as necessary to cover the array. Clearly,
such a solution exists for any set of points; and for an n × n square grid
array (which we will refer to as Gn,n) it requires at most

(1.1)

(
dn/2e

2

)
circles. In fact, for even n ≥ 8 and odd n ≥ 11 there are nontrivial coinci-
dences in radii, and the number of circles required is correspondingly fewer.

As stated, this problem is somewhat obvious; and it seems unlikely that
it was what Honsberger actually had in mind. The note may well have been
intended merely as an aide-mémoire for a more challenging problem. The
following possible reconstruction was suggested in an editorial comment [5]:

(1) Given a 5× 5 array of lattice points, show that you can draw a set of
5 circles that collectively pass through each of the lattice points exactly once.
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Figure 1. A simple family of solutions, nonoptimal for the
5× 5 grid

(2) Show that this cannot be done with four circles, even if two circles are
allowed to pass through the same point.

A solution to part (1) is shown in Fig. 2. On the left, the circles are
shown as curves; on the right, the same circles are shown as discrete sets,
partitioning G5,5.

Figure 2. The unique partitioning of G5,5 into restrictions
of circles

Theorem 1.1. The partitioning of G5,5 shown in Fig. 2 is unique up to
symmetry.

(The proof is given in section 2.)

While the configuration of Fig. 2 is asymmetric, inspection shows that
it can be extended to a symmetric partition of a 6 × 5 array, as shown in
Fig. 3.

Corollary 1.2. The partitioning of G6,5 shown in Fig. 3 is unique up to
symmetry.

Fig. 1e shows that a 6× 6 grid can be partitioned into restrictions of six
circles. However, it is easily seen that the circles of Fig. 3 do not cover a
further rank of six points above or below the grid shown. We thus have

Corollary 1.3. The array G6,6 can be partitioned into restrictions of six
circles but not with five.
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Figure 3. The unique partitioning of G6,5 into restrictions
of circles

If we consider sets of circles as shown in Figs. 1–3 to be “partitionings”,
then a set of circles that contains a specified set in its union, and may cover
a point more than once, is a “covering.” It follows from Theorem 1.1 that
there is no partitioning of G5,5 into restrictions of four circles; but in fact
more is true.

Theorem 1.4. The array G5,5 cannot be covered with four circles.

(The proof is given in section 3.)

We may ask how many circles are needed to partition larger grids. For
odd n > 5, we can replace the inner 5×5 grid of the concentric-circle solution
of Fig. 1 with the configuration of Fig. 2, reducing the number of circles by
one. (Thus, for instance, G7,7 can be partitioned into restrictions of nine
circles, rather than ten.)

An upper bound on the number of circles required to cover all points of
Gn,n is S(2n2), where S(k) is the number of positive integers not exceeding
k that can be expressed as the sum of two squares. Landau [4] gave an
estimate for this:

Theorem 1.5 (Landau).

lim
k→∞

S(k)

√
ln k

k
= λ ,

where λ = 0.76422 . . . is the Landau–Ramanujan constant.

Thus, for large n, the number of circles needed to cover all points of Gn,n

is approximately
√

2λn2/
√

lnn, a significant improvement on (1.1).

2. Proof of Theorem 1.1

Proposition 2.1. The two configurations A5 and B5 shown in Fig. 4 are,
up to symmetry, the only ways in which a circle can intersect G5,5 in exactly
five points.

Proof. We note that each of A5 and B5 has a single mirror symmetry, and
hence can be embedded in G5,5 in exactly four ways. To show that there are
no other five-point circles, we use MAPLE to search noncollinear triples for
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B
5

Figure 4. The two five-point circles

those that can be extended in exactly two ways to yield concyclic quadruples.
We use the geometry and combinat packages, and create a list Allpoints

that contains the 25 points of the grid [P00,P01,P02,...,P44] where Pij repre-
sents the point (i, j).

Triplets := select(j → not AreCollinear(j[1], j[2], j[3]),

choose(Allpoints, 3)):

numelems(select(i → evalb(numelems(select(j →
AreConcyclic(i[1], i[2], i[3], j),Allpoints)) = 5),Triplets));

The first command creates a list of all noncollinear triplets on the grid.
In the second command we count the triplets that can be extended using a
fourth point of the grid to a concyclic quadruple in exactly five ways. We
check for five values of j, not two, because whenever j duplicates one of the
elements of the triplet the resulting degenerate quadruple will be trivially
concyclic. It returns the value 80 (

(
5
3

)
× 4 × 2) and we conclude that the

two types of circle described above are the only five-point circles on a G5,5

grid. �

Proposition 2.2. Up to symmetry, the two configurations C8 and D8 shown
in Fig. 5 are the only ways in which a circle can intersect G5,5 in exactly eight
points; and the two configurations C6 and D6 are the only ways in which a
circle can intersect G5,5 in exactly six points. No circle can intersect G5,5

in exactly seven points.

C
8

C
6

D
8

D
6

Figure 5. The two eight-point circles and their six-point restrictions

Proof. A circle of six or more points on G5,5 must have two points on one file
and two on one rank. These define the center of the circle as the intersection
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of perpendicular bisectors x = a and y = b where 2a and 2b are integers in
the range [1, . . . , 7]. Without loss of generality let

(2.1) 0 < a ≤ b ≤ 2 .

Suppose that (a − p/2, b + q/2) and (a + p/2, b + q/2) generate x = a as a
perpendicular bisector; then (2.1) implies that p+ q ≤ 8, so

(2.2) p2 + q2 ≤ 64 .

Suppose that the point (a+ r/2, b+ s/2) is on a different orbit of the sym-
metry group of the circle restricted to Z× Z (that is, {|p|, |q|} 6= {|r|, |s|}).
Then we have a nontrivial solution to

(2.3) r2 + s2 = p2 + q2 .

The only solutions to (2.2) and (2.3) are {(7, 1), (5, 5)} and {(5, 0), (3, 4)};
but these give the five-point circles above. We conclude that any circle or
partial circle with six or more points within the G5,5 grid must have a single
orbit. Six of the eight points (a ± p/2, b ± q/2), (a ± q/2, b ± p/2) must lie
in G5,5 and be distinct; thus (without loss of generality) 0 < p < q ≤ 4, and
p and q must have the same parity. The only solutions are p = 2, q = 4 and
p = 1, q = 3.

The former gives a circle C8 (see Fig. 5) with a gridpoint center and radius√
5, while the latter gives a circle D8 with radius

√
10/2, whose center has

half-integer coordinates. Either of these can be placed entirely on G5,5 or
with two points missing to yield six-point circles C6 and D6. C8 is unique,
the other three are unique up to symmetry. �

Inspection shows that only the following pairs of “large circles” can coexist
on a 5× 5 grid: A5 with itself, D8 or D6; B5 with itself, C6, or D8; D6 with
D8; and C6 with C8. All of these are unique up to symmetry except for
{A5, D8} which has two forms; and none allow a third large circle.

(a) ATwo 5 (b) BTwo 5 (c) A D5 6and (d) B C5 6and

Figure 6. Disjoint pairs of circles with five or six points

Proposition 2.3. No five-circle partition of G5,5 uses A5 or B5.

Proof. Placing a five-point circle on G5,5 leaves 20 points to cover with four
circles, only one of which can have more than four points — hence an eight-
point circle and three four-point circles. Using Maple, we create a list Used
of points already used. For instance, in Fig. 7a, we get
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(a) B D5 8and (b) A D5 8and (I) (c) A D5 8and (II)

Figure 7. Disjoint pairs of circles with five and eight points

(a) C C6 8and (b) D D6 8and

Figure 8. Disjoint pairs of circles with six and eight points

Used := [P02, P10, P12, P13, P14, P21, P24, P31, P34, P40,

P42, P43, P44]

The list Free is its complement, omitting one point (here P41) that we
wish to test.

Free := [P00, P01, P03, P04, P11, P20, P22, P23, P30, P32,

P33]

We create a list FreeTriplets of all triplets from Free:

FreeTriplets := select(j → not AreCollinear(j[1],j[2],j[3]),

choose(Free, 3)):

We select from those the subset that are concyclic with the chosen point:

Cyc := select(i → AreConcyclic(i[1],i[2],i[3],P41),

FreeTriplets)

and we choose from Cyc those points (if any) that yield a circle that does
not intersect Used:

CanAddThis := select(i→evalb(numelems(select(j→AreConcyclic

(i[1],i[2],i[3],j), Used)) = 0), Cyc)

For Used as shown, and P41 as the test point (Fig. 9), the search algorithm
returns an empty list: that is, no four-point circle passes through P41 and
avoids B5 and D8. We conclude that the configuration of Fig. 7a cannot be
part of a five-circle partition of G5,5.
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Figure 9. Trying to extend the configuration of Fig. 7a

Now let Used be the union of the A5 and the D8 shown in Fig. 7b, with
test point P31 (Fig. 10a). The algorithm returns a single four-point circle
(Fig. 10b). We move those points from Free to Used, and use P04 as our
test point; no four-point circle passes through that point and avoids the
already-assigned points. Thus, the configuration of Fig. 7b cannot be part
of a five-circle partition of G5,5.

a                               b

Figure 10. Extending the configuration of Fig. 7b

Finally, we try the arrangement of Fig. 7c. With P40 as test point
(Fig. 11a), we get the unique four-point circle shown in Fig. 11b. As before,
we move those points to Used and use P10 as test point; this time we get no
four-point circle, and we conclude that there are no partitions of G5,5 into
restrictions of five circles, one of which is A5 or B5. �

a                               b

Figure 11. Extending the configuration of Fig. 7c

Any five-circle partition, then, extends one of the configurations of Fig. 8;
and, as well as the eight-point circle and six-point circle, must contain two
four-point circles and a three-point circle.

Proposition 2.4. There is no five-circle partition of G5,5 using C8 and C6.
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Proof. As above, we search for four-point circles through a chosen point that
do not overlap existing circles. We find that for the {C8, C6} configuration,
oriented as shown in Fig. 8a, no four-point circle can be placed through P02

(see Fig. 12a). This does not rule out the original configuration, but shows
that P02 must be on the three-point circle.

a b c

Figure 12. Extending the configuration of Fig. 8a

We now test P00 (Fig. 12b), and find that if it is on a four-point circle,
the other points are P04, P21, and P23, as shown in Fig. 12c. This, however,
leaves the third rank to be covered by two circles; and this is impossible,
as a circle can only meet a line twice. It follows that that P00, too, is on a
three-point circle; and the same argument holds, by symmetry, for P04.

But P00, P02, and P04 are collinear, and cannot all lie on one circle; we
conclude that there is no five-circle tiling of G5,5 using C8 and C6. �

It follows that a five-circle partition of G5,5 must include a D8 and a D6,
positioned (without loss of generality) as shown in Fig. 8b; we are now ready
to complete the proof of Theorem 1. We find that there are no four-point
circles disjoint from D8 and D6 passing through P00; P00 must therefore be
on the three-point circle.

Every four-point circle through P30 that does not intersect D6 or D8 also
contains P20. Thus, if P20 were on the three-point circle, it would have to
be with P00 and P30; but these are collinear, a contradiction. We conclude
that P20 must be on a four-point circle; there are only two possibilities.
Case 1 : P20, P10, P42 and P43 are on a circle (Fig. 13a).

There are only two four-point circles among the remaining six points
(Fig. 13b,c). Either one leaves two points collinear with P00, and these
do not lie on a three-point circle.

a b c

Figure 13. Configurations with D8 and D6
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Case 2 : P20,P13,P30, and P43 are on a circle (Fig. 14a).
There are only two four-point circles among the remaining six points;

both include P10 and P40. If the other two points on the circle are P12

and P42, (Fig. 14b,) then the remaining two points (P01 and P04) are
collinear with P00, so there is no three-point circle. We are left, as our
only remaining option, with the configuration of Fig. 14c—which is that
of Fig. 2.

a b c

Figure 14. More configurations with D8 and D6

3. Proof of Theorem 2

Four circles, each covering fewer than eight points, cannot cover more
than 24 points; thus, to cover G5,5, an eight-point circle would be required.
There can be no three- or four-point circle in the covering, because that and
the eight-point circle would leave at least 13 points to be covered by two
more circles; and any further eight-point circle covers only six points in the
complement of the first.

But no eight-point circle covers P00, P04, P22, P40, or P44, and no five-
or six-point circle can cover more than two of these five points. We must
therefore have three five- or six-point circles. Any two six-point circles have
at least one point in common, so a set of circles of cardinalities 8, 6, 6, and
5 has a union of less than 25 points. We thus rule out any five-point circle.

Moreover, C6 is the only large circle that covers P22; so one circle of this
type is required. It must intersect the eight-point circle in two points (Fig. 15
a, b, c, d) or not at all (Fig. 15 e). If the C6 intersects the eight-point circle,
they only cover twelve points between them, and the remaining thirteen
points cannot be covered by two six-point circles. If they do not intersect,
then between them they leave a set of five collinear points uncovered, which
cannot be covered by the two remaining circles.

(a) D6 8and C (b,c,d)   D D6 8and intersecting (e) D D6 8and

Figure 15. Ways in which D6 can meet an eight-point circle



PARTITIONING THE 5× 5 ARRAY INTO RESTRICTIONS OF CIRCLES 21

4. Conclusions and open questions

We have shown that G5,5 can be partitioned uniquely into restrictions
of five circles, and that this is optimal even for coverings. That partition
extends to a five-circle partition of G6,5, also necessarily unique.

Question. The obvious six-circle partition of G6,6 is optimal. Is it unique?

Question. Theorem 1.5 (Landau) shows that, for large n, Gn,n can be parti-

tioned into restrictions of approximately
√

2λn2/lnn concentric circles. Can
this be improved?
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