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THE FRACTIONAL LOCAL METRIC DIMENSION OF

GRAPHS

IMRAN JAVAID*, HIRA BENISH, AND MUHAMMAD MURTAZA

Abstract. The fractional versions of graph-theoretic invariants multi-
ply the range of applications in scheduling, assignment and operational
research problems. For this interesting aspect of fractional graph theory,
we introduce the fractional version of local metric dimension of graphs.
The local resolving neighborhood L(xy) of an edge xy of a graph G is
the set of those vertices in G which resolve the vertices x and y. A func-
tion f : V (G) → [0, 1] is a local resolving function of G if f(L(xy)) ≥ 1
for all edges xy in G. The minimum value of f(V (G)) among all local
resolving functions f of G is the fractional local metric dimension of G.
We study the properties and bounds of fractional local metric dimen-
sion of graphs and give some characterization results. We determine
the fractional local metric dimension of strong and Cartesian product of
graphs.

1. Introduction and Terminology

Resolving sets and the metric dimension of a graph were introduced by
Slater [18] and Harary and Melter [12] independently. Currie et al. [7] initi-
ated the concept of fractional metric dimension and defined it as the optimal
solution of the Linear Programming relaxation of the integer programming
problem of the metric dimension of graphs. The fractional metric dimension
problem was further studied by Arumugam and Mathew [1] in 2012. The
authors provided a sufficient condition for a connected graph G whose frac-

tional metric dimension is |V (G)|
2 . The fractional metric dimension of graphs

and graph products has also been studied in [1, 9, 10, 11, 14, 19].
Okamoto et al. [16] initiated the study of distinguishing adjacent vertices

in a graph G rather than all the vertices of G by distance. This motivated
the study of local resolving sets and local metric dimension in graphs. In
this paper, we introduce the fractional version of the local metric dimen-
sion of a graph. We study the local fractional metric dimension of some
graphs and establish some bounds on the fractional local metric dimension
of graphs. We also determine the fractional local metric dimension of strong
and Cartesian products of graphs.
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Let G = (V (G), E(G)) be a finite, simple and connected graph. The edge
between two vertices u and v is denoted by uv. If two vertices u and v are
joined by an edge then they are called adjacent vertices, denoted by u ∼ v.
NG(u) = {v ∈ V (G) : vu ∈ E(G)} and NG[u] = N(u) ∪ {u} are called the
open neighborhoods and the closed neighborhoods of a vertex u, respectively.
For a subset U of V (G), NG(U) = {v ∈ V (G) : uv ∈ E(G);u ∈ U} is
the open neighborhood of U in G. The distance between any two vertices
u and v of G is the length of a shortest u − v path in G is denoted by
d(u, v). Two distinct vertices u, v are adjacent twins if N [u] = N [v] and
non-adjacent twins if N(u) = N(v). Adjacent twins are called true twins
and non-adjacent twins are called false twins. For two distinct vertices u and
v in G, R(u, v) = {x ∈ V (G) : d(x, u) ̸= d(x, v)}. A vertex set W ⊆ V (G)
is called a resolving set of G if W ∩R(u, v) ̸= ∅ for any two distinct vertices
u, v ∈ V (G). The minimum cardinality of a resolving set of G is called the
metric dimension of G. The function f : V (G) → [0, 1] is called a resolving
function of G if f(R(u, v)) ≥ 1 for any two distinct vertices u and v in
G. The minimum value of f(V (G)) among all resolving functions f of G is
called the fractional metric dimension of G, denoted by dimf (G).

A vertex set W ⊂ V (G) is called a local resolving set of G if W ∩R(u, v) ̸=
∅ for any two adjacent vertices u, v ∈ V (G). The minimum cardinality of a
local resolving set is called the local metric dimension of G and it is denoted
by ldim(G). A local resolving set of order ldim(G) is called a local metric
basis of G. For uv ∈ E(G), we define the local resolving neighborhood as
L(uv) = {x ∈ V (G); d(u, x) ̸= d(v, x)}. L(uv) = V (G), for all uv ∈ E(G),
if and only if ldim(G) = 1. In [16], it was shown that ldim(G) = 1 if and
only if G is a bipartite graph. Hence, L(uv) = V (G) for all uv ∈ E(G) if
and only if G is a bipartite graph. Now, we define the fractional local metric
dimension of a graph as follows;

Definition 1.1. A function f : V → [0, 1] is a local resolving function LRF
of G if f(L(uv)) ≥ 1 for all uv ∈ E(G), where

f(L(uv)) =
∑

x∈L(uv)

f(x).

The weight of local resolving function f is defined as

|f | =
∑

v∈V (G)

f(v).

The minimum weight of a local resolving function of G is called the fractional
local metric dimension of G and is denoted by ldimf (G).

The strong product of two graphs G and H, denoted by G⊠H, is a graph
with the vertex set V (G⊠H) = {(u, v) : u ∈ V (G) and v ∈ V (H)} and two
vertices (u1, v1) and (u2, v2) in G⊠H are adjacent if and only if

• u1u2 ∈ E(G) and v1 = v2 or
• u1 = u2 and v1v2 ∈ E(H) or
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• u1u2 ∈ E(G) and v1v2 ∈ E(H).

For a vertex u ∈ V (G), the set of vertices {(u, v) : v ∈ V (H)} is called
an H-layer and is denoted by Hu. Similarly, for a vertex v ∈ V (H), the
set of vertices {(u, v) : u ∈ V (G)} is called a G−layer and is denoted by
Gv. Let dG⊠H((u1, v1), (u2, v2)) denote the distance between (u1, v1) and
(u2, v2). For (u1, v1)(u2, v2) ∈ E(G ⊠H), the local resolving neighborhood
of edge (u1, v1)(u2, v2) is denoted by LG⊠H((u1, v1)(u2, v2)) and LG(u1u2)
denotes the local resolving neighborhood of u1u2 ∈ E(G). The following
result gives the relationship between the distance of vertices in G⊠H and
the distance of vertices in graphs G or H.

Remark: [13] Let G and H be two connected graphs. Then

dG⊠H((u1, v1), (u2, v2)) = max{dG(u1, u2), dH(v1, v2)}.

This paper is organized as follows: in Section 2, we characterize the graphs

G with the fractional local metric dimension |V (G)|
2 and give bounds on the

fractional local metric dimension of graphs. We study the fractional local
metric dimension of some families of graphs and also discuss the difference
between the fractional metric dimension and the fractional local metric di-
mension of some families of graphs. In Section 3, we study the fractional
local metric dimension of strong and Cartesian products of graphs. We
establish bounds on the fractional local metric dimension of these graph
products.

2. Characterization Results and Bounds on ldimf (G)

In a connected graph G, since every resolving function is also a local
resolving function, it follows that

ldimf (G) ≤ dimf (G)

Since, the characteristic function of a minimal local resolving set is an LRF
of G, it follows that

1 ≤ ldimf (G) ≤ ldim(G) ≤ n− 1.

Thus, if a graph G has ldim(G) = 1, then ldimf (G) = 1. We have the
following result:

Observation 2.1. Let G be a graph of order n ≥ 2, Since ldimf (G) = 1 if
and only if L(uv) = V (G) for all uv ∈ E(G), it follows that ldimf (G) = 1
if and only if G is bipartite.

Although there is a striking difference between the fractional metric di-
mension and the fractional local metric dimension of graphs, the same results
hold for the local metric dimension of a graph when the graph has true twin
vertices. Let G be a graph and uv ∈ E(G), then d(u, x) = d(v, x) for all
x ∈ V (G)−{u, v} if and only if u and v are true twins. We have the following
result about the local resolving neighborhood of true twin vertices:
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Observation 2.2. If u and v are two adjacent vertices of a graph G, then
L(uv) = {u, v} if and only if u and v are true twins.

Given a graph H and a family of graphs I = {Iv}v∈V (H), indexed by
V (H), their generalized lexicographic product, denoted by H[I], is defined
as the graph with the vertex set

V (H[I]) = {(v, w) : v ∈ V (H) and w ∈ V (Iv)},

and the edge set

E(H[I]) = {(v1, w1)(v2, w2) : v1v2 ∈ E(H), or v1 = v2 and w1w2 ∈ E(Iv1)}.

Theorem 2.3. Let G be a connected graph of order n ≥ 2. Then the
following statements are equivalent.

(i) ldimf (G) = n
2 .

(ii) Each vertex in G has a true twin.
(iii) There exist a graph H and a family of graphs I = {Iv}v∈V (H), where

Iv is a non-trivial complete graph, such that G is isomorphic to H[I].

Proof. (i) ⇒ (ii) Suppose (i) holds. If there exists a vertex u in G such that
u does not have a true twin, then the function f : V (G) → [0, 1],

f(x) =

{
0, if x = u,
1
2 , if x ̸= u,

is a local resolving function of G by Lemma 2.2, which implies that

ldimf (G) ≤ n− 1

2
,

a contradiction.
(ii) ⇒ (iii) Suppose (ii) holds. For x, y ∈ V (G), define x ≡ y if and

only if x = y or x, y are true twins. It is clear that ≡ is an equivalence
relation. Let O1, O2 . . . , Om be the equivalence classes. Then the induced
subgraph G[Oi], is either a null graph or a complete graph. Let H be the
graph with the vertex set {O1, . . . , Om}, where two distinct vertices Oi and
Oj are adjacent if there exist x ∈ Oi and y ∈ Oj such that x and y are
adjacent in G. It is routine to verify that G is isomorphic to H[I], where
I = {IOi : i = 1, . . . ,m}.

(iii) ⇒ (i) Suppose (iii) holds. For v ∈ V (H), let

V (Iv) = {w1
v, . . . , w

s(v)
v }.

where |Iv| = s(v). Then s(v) ≥ 2, and (v, wi
v) and (v, wj

v) are true twins in
H[I], where 1 ≤ i < j ≤ s(v). Let h be a local resolving function of H[I]
with |h| = ldimf (H[I]). By Observation 2.2, we get

h((v, wi
v)) + h((v, wj

v)) ≥ 1 for 1 ≤ i < j ≤ s(v),
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which implies that
∑s(v)

k=1 h(v, w
k
v ) ≥

s(v)
2 , and so

ldimf (G) = ldimf (H[I])
= |h|

=
∑

v∈V (H)

s(v)∑
k=1

h((v, wk
v ))

≥
∑

v∈V (H)

s(v)

2

=
|V (H[I])|

2

=
n

2
.

□

Let G = G1+G2 which is the graph obtained from G1 and G2 by joining
every vertex of G1 with every vertex of G2. If each vertex in Gi has a true
twin for i = 1, 2 then each vertex in G1 + G2 has a true twin. Hence, we
have the following result.

Corollary 2.4. Let Θ denotes the collection of all connected graphs G with

ldimf (G) = |V (G)|
2 . If G1, G2 ∈ Θ, then G1 +G2 ∈ Θ.

The next result is a generalization of Theorem 2.3. The clique of a graph
G is a complete subgraph in G.

Theorem 2.5. Let G be a connected graph of order n and W1,W2, . . . ,Wk

be independent cliques in G with |Wi| ≥ 3 for all i, (1 ≤ i ≤ k). Then

ldimf (G) =

k∑
i=1

|V (Wi)|
2

if and only if for all uv ∈ E(G)\E(Wi), L(xy) ⊆ L(uv) for some xy ∈ E(Wi)
for some i, (1 ≤ i ≤ k).

Proof. Let G be a graph with

ldimf (G) =

k∑
i=1

|V (Wi)|
2

,

then there is a local resolving function f such that f(L(uv)) ≥ 1 for all
uv ∈ E(G) \ E(Wi), for all 1 ≤ i ≤ k. This is possible only when L(xy) ⊆
L(uv) for some xy ∈ E(Wi), for some i and f assigns 0 to the vertices of
V (G) \ V (Wi) for all i.

Conversely, suppose that for all uv ∈ E(G) \ E(Wi), L(xy) ⊆ L(uv) for
some xy ∈ E(Wi), for some i, (1 ≤ i ≤ k). Let f : V (G) → [0, 1] be the
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function defined as:

f(v) =

{
1/2 if v ∈ V (Wi), 1 ≤ i ≤ k,
0 otherwise.

It is clear that f(L(uv)) ≥ 1 for all uv ∈ E(G), since L(xy) ⊆ L(uv). Hence
f is a local resolving function of G and

ldimf (G) ≤
k∑

i=1

|V (Wi)|
2

.

To show that
k∑

i=1

|V (Wi)|
2

≤ ldimf (G),

suppose that f is local resolving function of Wi and not a local resolving
function of G. Then there exist uv ∈ E(G) such that f(L(uv)) < 1. This
leads to a contradiction to our supposition that L(xy) ⊆ L(uv). Hence,

ldimf (G) =
k∑

i=1

|V (Wi)|
2

.

□

A lollipop graph Lm,n is a graph obtained by joining a complete graph
Km to a pendent vertex of Pn with an edge.

Corollary 2.6. Let Lm,n be a lollipop graph with m ≥ 3 and n ≥ 2. Then
ldimf (Lm,n) =

m
2 .

Proof. Since for all uv ∈ E(Pn), L(xy) ⊆ L(uv) for some xy ∈ E(Km), by
Theorem 2.5 and Theorem 2.3, ldimf (Lm,n) =

m
2 . □

Observation 2.7. Let l(G) = min{|L(uv)| : uv ∈ E(G)}. Then f :
V (G) → [0, 1] defined by f(v) = 1

l(G) for all v ∈ V (G) is trivially a local

resolving function of G. Hence ldimf (G) ≤ |V (G)|
l(G) . Since {u, v} ⊆ L(u, v)

for all uv ∈ E(G), it follows that l(G) ≥ 2. Hence ldimf (G) ≤ n
2 for all

graphs G of order n.

Lemma 2.8. Let G be a graph and U be a subset of V (G) with cardinality
|V (G)| − ldim(G) + 1, there exists an edge xy ∈ E(G) such that L(xy) ⊆ U.

Proof. Suppose there exists a subset U with cardinality |V (G)|−ldim(G)+1
such that L(xy) ⊈ U, for all xy ∈ E(G). Then L(xy) ∩ {V (G)\U} ̸= ∅. So
V (G)\U is a local resolving set of G. Therefore, ldim(G)− 1 = |V (G)\U | <
ldim(G), a contradiction. □

Theorem 2.9. Let G be a graph. Then l(G) = |V (G)| − 1 if and only if G
is isomorphic to an odd cycle.
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Proof. It is easy to verify that l(G) = |V (G)| − 1 when G is an odd cycle.
Conversely, let G be a graph of order n ≥ 4 and l(G) = |V (G)| − 1. We
further suppose that G is not a bipartite graph, since l(G) = n for a bipartite
graph of order n. Thus G contains an odd cycle. Let Cp : x1, x2, ..., xp be
an induced odd cycle, where p ≤ n is odd. Let ∆(G) be the maximum
degree of G. We claim that ∆(G) = 2. Suppose to the contrary that ∆ ≥ 3,
then odd cycle Cp must be a proper subgraph of G. Since G is connected,
therefore there exists a vertex y ∈ V (G) \ V (Cp) such that y is adjacent to
any vertex, say xp of Cp. Since Cp is an odd cycle, therefore d(xp, x p−1

2
) =

d(xp, x p+1
2
). Thus xp, y /∈ L(x p−1

2
x p+1

2
). Hence |L(x p−1

2
x p+1

2
)| ≤ n− 2 which

is a contradiction. Hence ∆(G) = 2 and G is isomorphic to an odd cycle. □

Using Lemma 2.8, we have the following result:

Theorem 2.10. Let G be a graph of order n. Then

ldimf (G) ≥ n

n− ldim(G) + 1
.

Proof. Write s = n − ldim(G) + 1. Suppose f is a local resolving function
of G with |f | = ldimf (G). Let τ = {T : T ⊂ V (G), |T | = n− ldim(G) + 1}
and |τ | =

(|V (G)|
s

)
. For each U ∈ τ , f(U) ≥ 1 by Lemma 2.8. Hence,∑

U∈τ
f(U) ≥

(
n

s

)
.

Since ∑
U∈τ

f(U) =

(
n− 1

s− 1

)
|f |,

so we accomplish our result. □

Let G be the complete k-partite graph Ka1,a2,...,ak , for k > 2, of order

n =
k∑

i=1

ai.

Let V (G) be partitioned into k-partite sets V1, V2, ..., Vk, where |Vi| = ai for
1 ≤ i ≤ k. Okamoto et al. proved that ldim(Ka1,a2,...,ak) = k − 1 [16].

Lemma 2.11. Let G be the complete k-partite graph Ka1,a2,...,ak , for k > 2,

of order n =
k∑

i=1
ai. Then ldimf (Ka1,a2,...,ak) = k − 1.

Proof. Firstly, we show that ldimf (G) ≤ k − 1. It is clear that all xy ∈
E(Ka1,a2,...,ak) if and only if x ∈ Vi and y ∈ Vj , i ̸= j and i, j ∈ {1, 2, ..., k}.
Note that for all xy ∈ E(Ka1,a2,...,ak), L(xy) = Vi ∪ Vj . One of the possible
choices of local resolving function f of G is that f is defined as: f assigns 1
to only one vertex of Vi∪Vj and 0 to all other vertices of Vi∪Vj . This implies
f(L(xy)) ≥ 1 for all xy ∈ E(G) and |f | = k − 1. Thus ldimf (G) ≤ k − 1.
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To prove k − 1 ≤ ldimf (G), we suppose to the contrary that k − 1 >
ldminf (G). Suppose that f is a local resolving function which obtains a
minimum weight over all the local resolving functions of G, and this weight
is not k− 1. This is only possible when f assigns 0 to all vertices of Vr ∪Vs,
for some r, s ∈ {1, 2, ..., k}. This implies f(L(xy)) < 1 for xy ∈ E(G) where
x ∈ Vr and y ∈ Vs, which is a contradiction. Hence ldimf (G) = k − 1. □

In the following result, we give the fractional local metric dimension of a
vertex-transitive graph G in terms of the parameter l(G).

Theorem 2.12. Let G be a vertex-transitive graph. Then ldimf (G) =
|V (G)|
l(G) .

Proof. Let l(G) = p, then there exists an edge uv ∈ E(G) such that

|L(uv)| = p. This implies that ldimf (G) ≥ |V (G)|
p . By Observation 2.7,

we have the required result.
□

Observation 2.13. Let G be a graph and v ∈ V (G) be the cut-vertex of G,
then ldimf (G)− 1 ≤ ldimf (G− v).

The fan graph F1,n of order n + 1 is defined as the join graph K1 + Pn.
Let V (K1) = {u} and V (Pn) = {u1, u2, ..., un}.

Lemma 2.14. Let F1,n be a fan graph with n ≥ 3, then

ldimf (F1,n) =

{
2, if n = 3,
n
3 , if n ≥ 4.

Proof. Since l(F1,3) = 2, therefore ldimf (F1,3) ≤ 2 by Proposition 2.7. Now,
we show that 2 ≤ ldimf (F1,3). Since l(F1,3) = 2 and |L(xy)| ≠ 4 for any
xy ∈ E(F1,3). Thus a function f : V (F1,3) → [0, 1] is a local resolving
function for F1,3 if it assign 1/2 to each vertex of F1,3. Otherwise there
exists an edge xy ∈ E(F1,3) such that L(xy) < 1. Hence ldimf (F1,3) = 2.

Let F1,n be a fan graph with n ≥ 4. Note that {u} = V (K1) does not
locally resolve any xy ∈ E(F1,n) for x, y ̸= u. Let f : V (F1,n) → [0, 1] be a
local resolving function defined as:

f(v) =

{
1/3, if v ̸= u,
0, if v = u.

f(L(xy)) ≥ 1 for all xy ∈ E(F1,n). Thus |f | = n
3 . Hence ldimf (F1,n) ≤ n

3 .
Now we show that n

3 ≤ ldimf (F1,n). Note that l(F1,n) = 3 for n ≥ 4. f
is a local resolving function as defined above. If f assigns 0 to any vertex
from V (Pn), then there exists an edge xy ∈ E(F1,n) such that f(L(xy)) < 1.
Hence ldimf (F1,n) =

n
3 for n ≥ 4. □
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3. The Fractional Local Metric Dimension of Strong and
Cartesian Product of Graphs

In this section, we study the fractional local metric dimension of strong
and Cartesian product of graphs.

Lemma 3.1. Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2,
respectively. Then

LG⊠H((ui, vj)(uk, vl))

⊆


V (G)× LH(vjvl), i = k,

LG(uiuk)× V (H), j = l,

{V (G)× LH(vjvl)} ∪ {LG(uiuk)× V (H)} otherwise.

Proof. Let (ui, vj)(uk, vl) ∈ E(G ⊠ H). If i = k, then vjvl ∈ E(H). Let
(ui, b) ∈ LG⊠H((ui, vj)(ui, vl)), then

dG⊠H((ui, b), (ui, vj)) ̸= dG⊠H((ui, b), (ui, vl)).

By Remark 1.2, we have dH(b, vj) ̸= dH(b, vl), therefore b ∈ LH(vjvl).
Thus (ui, b) ∈ {V (G) × LH(vjvl)}. Analogously, if j = l, then uiuk ∈
E(G). Let (a, vj) ∈ LG⊠H((ui, vj)(uk, vj)), then dG⊠H((a, vj), (ui, vj)) ̸=
dG⊠H((a, vj), (uk, vl)). By Remark 1.2, we have dG(a, ui) ̸= dG(a, uk), there-
fore a ∈ LG(uiuk). Thus (a, vj) ∈ {LG(uiuk) × V (H)}. Finally, if uiuk ∈
E(G) and vjvl ∈ E(H), then two vertices (ui, vj) and (uk, vl) are locally re-
solved by either (a, vj) or (ui, b) or both. Let (a, vj) ∈ LG⊠H((ui, vj)(uk, vl)),
we have

dG⊠H((ui, vj), (a, vj)) = dG(ui, a)

̸= dG(uk, a)

= max{dG(uk, a), 1}
= dG⊠H((a, vj), (uk, vl)).

Thus, (a, vj) ∈ {LG(uiuk) × V (H)}. Similar arguments hold for (ui, b) ∈
LG⊠H((ui, vj)(uk, vl)). Hence,

(a, vj), (ui, b) ∈ {V (G)× LH(vjvl)} ∪ {LG(uiuk)× V (H)}

and we have the desired result. □

Now, we discuss some results involving the diameter or the radius of
G. For any two vertices x and y in a connected graph G, the collection
of all vertices which lie on an x − y path of the shortest length is known
as the interval I[x, y] between x and y. Given a non-negative integer k,
we say that G is adjacency k−resolved if for every two adjacent vertices
x, y ∈ V (G), there exists w ∈ V (G) such that dG(y, w) ≥ k and x ∈ I[y, w],
or dG(x,w) ≥ k and y ∈ I[x,w]. For example, path graphs and cyclic graphs
of order n ≥ 2 are adjacency ⌈n2 ⌉−resolved.
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Lemma 3.2. Let G be a non-trivial graph of diameter diam(G) < k and
let H be an adjacency k−resolved graph of order n2 and let (ui, vj)(ur, vl) ∈
E(G⊠H). Then

LG⊠H((ui, vj)(ur, vl)) ⊆ {LG(uiur)× V (H)}.

Proof. Let LG⊠H((ui, vj)(ur, vl)) be the local resolving neighborhood of

(ui, vj)(ur, vl) ∈ E(G⊠H).

We differentiate the following two cases.
Case 1 : If j = l, then uiur ∈ E(G). Let (u, vj) ∈ LG⊠H((ui, vj)(ur, vj))

then dG.⊠H((ui, vj), (u, vj)) ̸= dG⊠H((ur, vj), (u, vj)). By Remark 1.2, we
have dG(ui, u) ̸= dG(ur, u), thus u ∈ LG(uiur).

Case 2 : If vjvl ∈ E(H). Since H is adjacency k−resolved, there exists
v ∈ V (H) such that (dH(v, vl) ≥ k and vj ∈ I[v, vl]) or (dH(v, vj) ≥ k
and vl ∈ I[v, vj ]). Say dH(v, vl) ≥ k and vj ∈ I[v, vl]. In such a case, as
diam(G) < k, for every u ∈ LG(uiur) we have

dG⊠H((ui, vj), (u, v)) = max{dG(ui, u), dH(vj , v)}
< dH(v, vl)

= maxdG(u, ur), dH(v, vl)

= dG⊠H((ur, vl), (u, v)).

Hence, LG⊠H((ui, vj)(ur, vl)) ⊆ {LG(uiuk)× V (H)}. □

Theorem 3.3. Let G be a non-trivial graph of diameter diam(G) < k and
let H be an adjacency k−resolved graph of order n2. Then

ldimf (G⊠H) ≤ n2 · ldimf (G)

Proof. Let (x, y) ∈ E(G ⊠ H). Let g : V (G) → [0, 1] be a local resolving
function of G with |g| = ldimf (G). We define a function h : V (G ⊠H) →
[0, 1],

(x, y) 7→
{

g(x), if (x, y) ∈ Gy,
0, otherwise.

Note that h is a local resolving function of G⊠H. Since G has n2 copies in
G⊠H, therefore |h| ≤ n2.ldimf (G). Hence, ldimf (G⊠H) ≤ n2 · ldimf (G).

□

Theorem 3.4. Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2,
respectively. Then

2 ≤ ldimf (G⊠H) ≤ n1 · ldimf (H) + n2 · ldimf (G)− 2ldimf (G).ldimf (H).

Proof. Since P2 ⊠ P2 = K4 and ldimf (P2 ⊠ P2) = 2. So, the lower bound
follows. Let (u, v) ∈ V (G ⊠H). Let g1 : V (G) → [0, 1] be a local resolving
function of G with |g1| = ldimf (G) and g2 : V (H) → [0, 1] be a local
resolving function of H with |g2| = ldimf (H). We define a function h :
V (G ⊠ H) → [0, 1], with h(u, v) = g1(u) + g2(v). Note that h is a local
resolving function of G⊠H. Since G has n2 and H has n1 copies in G⊠H,
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therefore |h| = n1 · ldimf (H) + n2 · ldimf (G). Hence, ldimf (G ⊠ H) ≤
n1 · ldimf (H) + n2 · ldimf (G)− 2ldimf (G) · ldimf (H). □

For the sharpness of upper bound in Theorem 3.4, let G = Kn and H =
Km. Since Kn ⊠Km

∼= Knm, therefore

ldimf (Kn ⊠Km)

=
nm

2
=n · ldimf (Km) +m · ldimf (Kn)− 2ldimf (Kn) · ldimf (Km).

Now, we discuss general bounds for the fractional local metric dimension
of Cartesian product of graphs. The Cartesian product of two graphs G and
H, denoted by G□H, is a graph with the vertex set V (G□H) = {(u, v) :
u ∈ V (G) and v ∈ V (H)} and two vertices (u1, v1) and (u2, v2) in G□H are
adjacent if and only if

• u1u2 ∈ E(G) and v1 = v2 in H or
• u1 = u2 in G and v1v2 ∈ E(H).

Remark: [13] Let G and H be two connected graphs. Then

dG□H((u1, v1), (u2, v2)) = dG(u1, u2) + dH(v1, v2).

Lemma 3.6. Let G and H be two graphs, then

LG□H((ui, vj)(uk, vl)) =


⋃

v∈LH(vjvl)

⋃
u∈V (G)

{uv}, if i = k,⋃
u∈LG(uiuk)

⋃
v∈V (H)

{uv}, if j = l.

Proof. For (ui, vj)(uk, vl) ∈ E(G□H) if i = k, then vjvl ∈ E(H). Let
(ui, v) ∈ LG□H((ui, vj)(ui, vl)), then

dG□H((ui, v), (ui, vj)) ̸= dG□H((ui, v), (ui, vl)).

By Remark 3.5, we have dH(v, vj) ̸= dH(v, vl), therefore v ∈ LH(vjvl). Thus

(ui, v) ∈
⋃

v∈LH(vjvl)

⋃
u∈V (G)

{uv}.

Now let

(ui, v) ∈
⋃

v∈LH(vjvl)

⋃
u∈V (G)

{uv},

then dH(v, vj) ̸= dH(v, vl). By Remark 3.5, we have dG□H((ui, v), (ui, vj)) ̸=
dG□H((ui, v), (ui, vl)). Thus (ui, v) ∈ LG□H((ui, vj)(ui, vl)). Similar argu-
ments hold for j = l. Hence, we have the desired result. □

Theorem 3.7. Let G and H be two graphs. Then

ldimf (G□H) ≥ ldimf (G).
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Proof. Let f be a local resolving function of G□H with |f | = ldimf (G□H).
We define a function fG : V (G) → [0, 1] such that

fG(u) = min

1,
∑

v∈V (H)

f(u, v)

 .

For u1u2 ∈ E(G), we show that fG(LG(u1u2)) ≥ 1. If there exists an
x ∈ LG(u1u2) with fG(x) = 1, then fG(LG(u1u2)) ≥ 1. Now, let for any
u ∈ V (G), fG(u) =

∑
v∈V (H)

f(u, v). Then

fG(LG(u1u2)) =
∑

u∈LG(u1u2)

∑
v∈V (H)

f(u, v)

By Lemma 3.6, the above is equal

f(L((u1, v0)(u2, v0)) ≥ 1.

Thus fG is a local resolving function of G. Since

|fG| ≤
∑

u∈V (G)

∑
v∈V (H)

f(u, v) = |f |,

hence ldimf (G□H) ≥ ldimf (G). □

Since grid graph Pn□Pt is a bipartite graph and by Observation 2.1, we
deduce ldimf (Pn□Pt) = 1.

Lemma 3.8. Let G be a graph of order n, then ldimf (K2□G) ≤ ldimf (G).

Proof. Let V (K2) = {x, y}, V (G) = {u1, u2, ..., un} and H = K2□G. Then
V (H) = {(x, ui), (y, ui) : i = 1, 2, . . . , n}. Let f be a local resolving function
of G with |f | = ldimf (G). Now we define g : V (H) → [0, 1] by

g((x, ui)) = g((y, ui)) =
f(ui)

2
, i = 1, 2, . . . , n.

We claim that g is a local resolving function for H. Let uv ∈ E(H), if
u = (x, ui) and v = (x, uj), then {{x} × LG(uiuj)} ⊆ LH(uv) and hence
g(LH(uv)) ≥ f(LG(uiuj)) ≥ 1. If u = (x, ui) and v = (y, ui), then LH(uv) =
V (H) and hence g(LH(uv)) ≥ 1. Thus, g is a local resolving function of H
with |g| = |f |. Hence, ldimf (H) ≤ |f | = ldimf (G). □

Remark: When G is a bipartite graph and an odd cyclic graph, the bound
given in Lemma 3.8 is sharp. If G is bipartite graph, then ldimf (K2□G) =
1 = ldimf (G). If n is an odd integer with n ≥ 3, then ldimf (K2□Cn) =

n
n−1 .

Let G and H be graphs with V (H) = n, Arumugam et al. proved that the
fractional metric dimension of G□H ≥ n

2 if dimf (H) = n
2 [2]. Similar result

holds for the fractional local metric dimension with an alternative proof as
follows:

Theorem 3.10. Let G and H be two connected graphs with order m, n
respectively and ldimf (H) = n

2 . Then ldimf (G□H) ≥ n
2 .
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Proof. Since ldimf (H) = n
2 , by Theorem 2.3, every vertex of H has a true

twin. Let v has a true twin w in H then LH(vw) = {v, w}. By Lemma 3.6, it
follows that LG□H((u, v)(u,w)) = {(x, v) : x ∈ V (G)}∪{(x,w) : x ∈ V (G)}.

Now, let f be a local resolving function of G□H. Then

f(LG□H((u, v)(u,w))) ≥ 1

for all (u, v)(u,w) ∈ E(G□H). Hence∑
x∈V (G)

f((x, v)) +
∑

x∈V (G)

f((x,w)) ≥ 1

for all vw ∈ E(H). Adding these n inequalities, we get∑
x∈V (H)

∑
x∈V (G)

f((x, v)) +
∑

x∈V (G)

f((x,w)) ≥ n.

This implies 2|f | ≥ n. Hence ldimf (G□H) ≥ n
2 . □

Corollary 3.11. Let G and H be two connected graphs with order m, n
respectively and ldimf (G) = m

2 and ldimf (H) = n
2 . Then ldimf (G□H) ≥

max{ldimf (G), ldimf (H)}.

The bound given in Theorem 3.10 is sharp for H = Kn as follows:

Theorem 3.12. Let G be any graph with |V (G)| < n, for all n ≥ 3. Then
ldimf (G□Kn) =

n
2 .

Proof. Let |V (G)| = m with m < n. Let V (G) = {u1, u2, ..., um} and
V (Kn) = {v1, v2, ..., vn}. Since by Theorem 2.3, ldimf (Kn) = n

2 , then by
Theorem 3.10, ldimf (G□Kn) ≥ n

2 . We claim that

|LG□Kn((ui, vr)(uj , vs))| ≥ 2m

for all (ui, vr)(uj , vs) ∈ E(G□Kn). For (ui, vr)(uj , vs) ∈ E(G□Kn), we have
two cases. If i = j, then r ̸= s and by Lemma 3.6, we have

LG□Kn((ui, vr)(ui, vs)) = {(ut, vr) : 1 ≤ t ≤ m} ∪ {(ut, vs) : 1 ≤ t ≤ m}.

So |LG□Kn((ui, vr)(ui, vs))| = 2m. If r = s, then i ̸= j and by Lemma 3.6, we
have {(ui, vt) : 1 ≤ t ≤ n} ∪ {(uj , vt) : 1 ≤ t ≤ n} ⊆ LG□Kn((ui, vr)(uj , vr)).
So |LG□Kn((ui, vr)(uj , vr))| ≥ 2n > 2m.

Now the function f : V (G□Kn) → [0, 1] defined by f((u, v)) = 1
2m for

all (u, v) ∈ V (G□Kn) is a local resolving function of G□Kn with |f | =
|V (G□Kn)|

2m = n
2 and ldimf (G□Kn) ≤ n

2 . Hence, ldimf (G□Kn) =
n
2 .

□

From Corollary 3.11, we have the following result.

Theorem 3.13. For 2 ≤ k ≤ n, n ≥ 3, ldimf (Kk□Kn) =
n
2 .

Proof. The result follows from Theorem 3.12, when k < n. Consider the
case when k = n. Since by Theorem 2.3, ldimf (Kn) =

n
2 , then by Theorem
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3.10, ldimf (Kk□Kn) ≥ n
2 . Let V (Kk) = {u1, u2, ..., uk} and V (Kn) =

{v1, v2, ..., vn}. We claim that |LKk□Kn((ui, vr)(uj , vs))| ≥ 2n for all

(ui, vr)(uj , vs) ∈ E(Kk□Kn).

For (ui, vr)(uj , vs) ∈ E(G□Kn), we have similar cases as in the proof of
Theorem 3.12 and we have |LKk□Kn((ui, vr)(uj , vs))| ≥ 2n.

Now the function f : V (Kk□Kn) → [0, 1] defined by f((u, v)) = 1
2n for

all (u, v) ∈ V (Kk□Kn) is a local resolving function of kk□Kn with |f | = n
2

and ldimf (Kk□Kn) ≤ n
2 . Hence, ldimf (Kk□Kn) =

n
2 . □

4. Summary and Conclusion

In this paper, the concept of fractional local metric dimension of graphs

has been introduced. Graphs with ldimf (G) = |V (G)|
2 have been character-

ized. The fractional local metric dimension of some families of graphs have
been studied. Differences between the fractional metric dimension and the
fractional local metric dimension of graphs have also been investigated. The
fractional local metric dimension of strong and Cartesian product of graphs
have been studied and established some bounds on their fractional local met-
ric dimension. However, it remains to determine the fractional local metric
dimension of several other graph products.
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