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SUM AND PRODUCT OF DIFFERENT SETS

MEI-CHU CHANG

ABSTRACT. Let A and B be two finite sets of numbers. The sum set
and the product set of A, B are A + B := {a + b : a ∈ A, b ∈ B}, and
AB := {ab : a ∈ A, b ∈ B}. We prove that A + B is as large as possible
when AA is not too big. Similarly, AB is large when A + A is not too big.
The methods rely on the λp constant of A, bound on the number of fac-
torizations in a generalized progression containing A, and the subspace
theorem.

Let A and B be two finite sets of numbers. The sum set and the product set
of A, B are A + B := {a + b : a ∈ A, b ∈ B}, and AB := {ab : a ∈ A, b ∈ B}.
(We denote by jA the j-fold sumset A + · · · + A.) There has been a lot of
studies of the sizes of the sum and product sets for the case A = B (cf
particularly, [BC], [BKT], [C1]-[C5], [E], [ER], [ES], [F], [N1], [N2], [NT], [S]),
since Erdös and Szemerédi [ES] made their well-known conjecture that for
|A| sufficiently large,

|A + A| + |AA| > cε|A|2−ε for all ε > 0.

The conjecture is still open. The best result to date is due to J. Solymosi [S]
and states roughly that

|A + A| + |AA| > |A| 14
11−ε.

The method uses the Szemerédi-Trotter Theorem in incidence geometry. A
similar approach is used in [ER] to show that, if |A + A| < K|A|, then
|AA| > |A|2−ǫ. We point out that the geometric approach does not distin-
guish between sets of integers and sets of real numbers. On the other hand,
it does not provide nontrivial lower bounds on |A + B| + |AB|, if the set
B is much smaller that A. It is also not enough for showing that |AB| >

(|A||B|)1−ǫ for all A, B such that |A + A| < K|A| and log |A| ∼ log |B|, as
we will prove here (Theorem 3).

In the paper [BKT], a sum-product theorem in prime fields Fp is estab-
lished. The original motivation was to make progress on the so-called
Kakeya problem in dimension 3. It turns out however that those results
have quite significant application to the theory of exponential sums over
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finite fields and lead to no nontrivial improvements in case where classical
methods (such as Stepanov’s approach) do not apply. (See [BGK]). But we
will not discuss further the finite field setting here, which relies on different
techniques.

Returning to the Erdös-Szemerédi conjecture, we also mention the fol-
lowing more general question brought up by Solymosi

Question. Is there an absolute constant c > 0 such that for every n ∈ N, there
are finite sets A, B and C, with |A| = |B| = |C| = n, |A + B| < n2−c, and
|AC| < n2−c?

This question motivated the results established in this note.
It became increasingly clear that techniques such as the Szemerédi-Trot-

ter Theorem are unable to settle the conjecture or the above question and
other ideas are required. In earlier works, the author has brought several
different approaches into play. They will be further exploited in this paper.

First, in [C2] a connection is made with the factorization theory in alge-
braic number fields. It was shown in [C2] that if A is a finite set of complex
numbers and |A + A| < K|A|, then not only |AA| > |A|2−ε but more gen-

erally |A(j)| > |A|j−ε, where A(j) = A · · · A is the j-fold product set. This is
a contribution to the generalized Erdös-Szemerédi conjecture

|jA| + |A(j)| > cε|A|j−ε for all j ≥ 2 and ε > 0.

The main result of [C2] actually consists in a bound on the number of fac-
torizations in generalized arithmetic progressions, using the corresponding
theory in algebraic number fields and a transference argument.

Secondly, there is the paper [BC] involved in the proof of Theorem 1
below. In [BC], which builds further on [C1], concepts and methods from
harmonic analysis are brought into play. Roughly speaking, assuming A
a finite set of integers and |AA| < |A|1+ε, it is shown that for any fixed
exponent p > 2, the so-called Lambda-p constant λp(A) of A is bounded

by |A|δp(ε), where δp(ε) → 0 as ε → 0. From this, it is shown that

(0) |jA| + |A(j)| > |A|b(j)

where b(j) → ∞ for j → ∞. This is another contribution to the generalized
conjecture. Coming back to the problem of finding the lower bound on
|A + B| + |AB| brought up earlier, notice that the following is true.

Let A, B ⊂ Z be finite and |A|r < |B| ≤ |A|. Then |A + B|+ |AB| > |A|1+δ(r).

Indeed, assume the contrary. Then the Plünnecke-Ruzsa inequality and
(0) imply there exist A′, A′′ ⊂ A such that

|A|rb(j)
< |B|b(j)

< |jB| + |B(j)| < |A′ + jB| + |A′′B(j)| < |A|1+jδ

for all j ∈ N. Hence δ >
rb(j)−1

j and taking j > j(r) gives the conclu-

sion. This illustrates the power of the method. So far no full analogue of
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the [BC] result is known for sets of real numbers, as we rely essentially on
prime factorization. Theorem 2 below provides the first contribution in this
setting, under the stronger assumption A ⊂ R, |AA| < K|A|. The main in-
gredient in its proof is the subspace theorem, in its general and powerful
form obtained in [ESS]. Roughly speaking, if |AA| < K|A|, then A is con-
tained in a multiplicative group Γ generated by K elements (by Freiman’s
Lemma). The [ESS] result implies then that there are only few additive re-
lations among its elements, which is exactly what we need. Although the
relation between the sum-product problems and the subspace theorem is
indeed quite obvious, it was not pointed out earlier and this may be the
main merit of this note.

Next we state our main results.

Theorem 1. Let A ⊂ Z be a finite set such that

(1) |AA| < |A|1+ǫ.

Then for any B ⊂ Z, and any j ∈ N, we have

|jA + B| ≥ |A|j |B|
(

|A| + |B|
)−δj(ǫ)

,

where for fixed j, δj(ǫ) → 0 as ǫ → 0.

The next result gives a corresponding bound in the real setting, but re-
quires a stronger assumption on the product set.

Theorem 2. Let A ⊂ R be a finite set such that

(2) |AA| < K|A|.
Then for any B ⊂ R, any j ∈ N, and ε > 0, we have

|jA + B| > |A|j |B|1−ǫ,

provided K = oj,ε(log |A|).

Switching addition and multiplication, one may prove the following coun-
terpart of Theorem 2 (by a very different method).

Theorem 3. Let A ⊂ R+ be a finite set such that

(3) |A + A| < K|A|.
Let j ∈ N, and ǫ > 0. Assume K < Kǫ,j,|A|, where Kǫ,j,|A| → ∞ as |A| → ∞ for
ǫ, j fixed. Then for any B ⊂ R+ ,

|A(j)B| > |A|j |B|
(

|A| + |B|
)−ǫ

.

Remark. A more precise statement in Theorem 3 would require making in
[C2] the dependence of certain constants on K explicit. Following the argu-
ment in [C2], the best one may hope for is a condition K < o(log log |A|).

The following result from [BC] will be used in the proof of Theorem 1.
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Proposition A. [BC] Given γ > 0 and p > 2, there is a constant Λ = Λ(γ, p)
such that if A ⊂ Z is a finite set, |A| = N, |AA| < KN, then

λp(A) < KΛNγ.

Recall that by λp(A), we mean the λp-constant of the finite set A ⊂ Z,
defined by

λp(A) = max
∥

∥ ∑
n∈A

cn e2πinx
∥

∥

Lp(T)
,

where T = R/Z and the max is taken over all sequences {cn}n∈A with

(∑ c2
n)

1
2 ≤ 1.

Remarks.
(i) By taking γ = ǫ1 and K = |A|ǫ in Proposition A, we see that if |AA| <

|A|1+ǫ, then for any ǫ1 > 0, we have

(4) λp(A) < |A|ǫΛ+ǫ1 ,

where Λ = Λ(ǫ1, p).

(ii) To apply Proposition A, we only need the case when cn = 1√
|A|

for all

n, but we do not have a proof simpler than the (rather technical) argument
in [BC].

Proof of Theorem 1. For k ∈ R, we let r(k) be the number of representa-
tives of k in jA + B.

(5) r(k) = |{(a1, . . . , aj, b) ∈ Aj × B : k = a1 + · · · + aj + b}|
Let

(6) F(x) = ∑
a∈A

e2πiax, and G(x) = ∑
b∈B

e2πibx.

Then the following properties hold. (Here q′ = q
q−1 .)

(7) |jA + B| ≥ |A|2j|B|2
∑ r(k)2

(8) ∑ r(k)2 =
∫ 1

0
|F(x)jG(x)|2

(9)
∫

|F|2j |G|2 ≤
(

∫

|F|2jq
)

1
q
(

∫

|G|2q′
)

1
q′

(10)
(

∫

|F|2jq
)

1
q

< |A|j+2j(ǫΛ+ǫ1)

(11)
(

∫

|G|2q′
)

1
q′ ≤ |B|1+ 1

q
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In fact, inequality (7) follows from the Cauchy inequality:

|A|j|B| = |Aj × B| = ∑
k∈jA+B

r(k) ≤ |jA + B| 1
2
(

∑ r(k)2
)

1
2 .

Equality (8) holds because

FjG = ∑ e2πi(a1+···+aj+b)x = ∑ r(k)e2πikx,

and Parseval’s equality. Inequality (9) is Hölder’s inequality. Inequality

(10) follows from the definition of λ2jq(A) (with cn = 1√
|A|

, for all n ∈ A),

and inequality (4). Inequality (11) follows from the following easy estimate.

(12)
(

∫

|G|2q′
)

≤
∥

∥G
∥

∥

2(q′−1)

∞

∫

|G|2 ≤ |B|2(q′−1)+1

Putting (8)-(11) together, we have

(13) ∑ r(k)2 ≤ |A|j+2j(ǫΛ+ǫ1)|B|1+ 1
q .

Therefore, (7) and (13) give

|jA + B| ≥ |A|2j|B|2

|A|j+2j(ǫΛ+ǫ1)|B|1+ 1
q

> |A|j|B|
(

|A| + |B|
)−2j(ǫΛ+ǫ1)− 1

q .

Let

δj(ǫ) = 2j(ǫΛ + ǫ1) +
1

q
.

Here j is fixed. Recall that Λ = Λ(ǫ1, 2jq), and thus, for all ǫ1 > 0, q > 0,

there is an ǫ0 such that δj(ǫ) < 3jǫ1 + 1
q for all ǫ < ǫ0. Hence, by taking ǫ1

small and q large, we may clearly make δj(ǫ) → 0. �

Notation. d ≪h f means d ≤ c(h) f , where c(h) is a function of h.

Next, we pass to Theorem 2. We recall that f : R → R is an almost

periodic function, if for any ε > 0, there exists ℓ = ℓ(ε) > 0 such that every
interval [t0, t0 + ℓ] contains τ for which | f (t) − f (t + τ)| < ε. Equivalently,
f can be uniformly approximated by a finite combination of exponential
functions. To prove Theorem 2, instead of periodic functions, we need to
consider almost periodic functions, which will appear simply as a finite

combination of exponential functions. The integral
∫ 1

0 needs to be replaced
by the mean

∫ ′
f = lim

T→∞

1

T

∫ T

0
f ,

where f is an almost periodic function on R.
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The Lp norm and Lambda-p constant are defined accordingly. If A ⊂ R

is a finite set, we have in particular

(14)
∫ ′

| ∑
a∈A

caeiax|2 = ‖ ∑
a∈A

caeiax‖2
2 = ∑

a∈A

|ca|2.

Also Hölder’s inequality applies. ( We apply with fixed T and then letting
T → ∞.) We need the following proposition to prove Theorem 2.

Proposition B. Let A ⊂ R, and |AA| < K|A|. Then

(15) λ2h(A) ≪h 1 +
ecK

|A| 1
2h

.

Here c = c(h).

Proof of Theorem 2.
Let

F(x) = ∑
a∈A

eiax, and G(x) = ∑
b∈B

eibx.

Obviously, (7) still holds. By (14), we may write (8) replacing
∫ 1

0 by
∫ ′

and apply Hölder’s inequality to get (9). Instead of (10), we have, by (15)
applied with h = jq

(

∫ ′
|F|2jq

)
1
q ≪jq |A|j

(

1 +
ec0K

|A|
1

2jq

)2j

≪jq |A|j
(

1 +
ec1K

|A|1/q

)

,

where c0, c1 depend on jq. Clearly, (11) and (12) remain valid.
In conclusion, it follows that

|jA + B| ≥ |A|2j|B|2

|A|j |B|1+ 1
q

(

1 +
ec1K

|A|
1
q

)−1

(16)

≥ |A|j|B|1−
1
q

(

1 +
ec1K

|A|
1
q

)−1

.

Returning to the statement in Theorem 2, take q = [ 1
ǫ ] so that c1 =

c1(j, ǫ).The last factor in (16) may then be dropped provided K <
ǫ

2c1
log |A|.

�

The proof of Proposition B is based on the subspace theorem, which
gives a bound on the number of solutions of a linear equation in a mul-
tiplicative group. Let

(17)
m

∑
i=1

cixi = 1, ci ∈ C
∗

be a linear equation over C. A solution (x1, · · · , xm) is called nondegenerate

if ∑
k
j=1 cij

xij
6= 0, for all k.
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Theorem (Subspace Theorem, [ESS]). Let Γ < 〈(C∗)m, ·〉 be a subgroup of
(C∗)m of rank s. Then

|{nondegenerate solutions of (17) in Γ}| < e(s+1)(6m)3m
.

Remark. Let Γ < 〈C∗, ·〉 be a subgroup of rank r, with γ1, . . . , γr as a set
of generators. Then Γ′ = Γ × Γ × · · · × Γ < (C∗)m is generated by the rm
elements (1, · · · , γi, · · · , 1) with γi at the j-th coordinate and 1 elsewhere
(i = 1, · · · , r, and j = 1, · · · , m). The right hand side of the inequality in the

Subspace Theorem becomes e(rm+1)(6m)3m
.

Lemma. Let Γ < 〈C∗, ·〉 be a subgroup of rank r, with −1 ∈ Γ. Let A ⊂ Γ with
|A| = N. Let σ1(m) and σ0(m) be the numbers of solutions in A of

x1 + · · · + xm = 1

and

x1 + · · · + xm = 0

respectively. Then for h ≥ 1,

1. σ1(2h + 1), σ0(2h) ≪h Nh−1erc + Nh,
2. σ1(2h), σ0(2h − 1) ≪h Nh−1erc.

Remark. In the lemma above, c = c(h) (which will be of the form hCh) may
refer to different constants depending on h.

Proof of Lemma. By induction.
The number of nondegenerate solutions of x1 + x2 + x3 = 1 is bounded

by e189(3r+1), according to the Subspace Theorem. The number of degener-

ate solutions is clearly bounded by 3
(

σ1(2) + σ0(2)
)

≪ e126(2r+1) + N, con-
tributed from the solutions of equations of types x1 + x2 = 1 and x1 + x2 =

0. Therefore, σ1(3) ≪ e189(3r+1) + e126(2r+1) + N ≪ e189(3r+1) + N. By assum-
ing that one of the unknowns of x1 + x2 + x3 = 0 is nonzero and reducing

the equation to x1 + x2 = 1, we see that σ0(3) ≪ Nσ1(2) ≪ Ne126(2r+1).

For the general case, we let µ1(2h + 1) = µ0(2h) = Nh−1erch + Nh and

µ1(2h) = µ0(2h − 1) = Nh−1erc′h . Now

σ1(m) ≤ e(mr+1)(6m)3m
+

m−1

∑
i=1

(

m

i

)

σ1(i)σ0(m − i)

≪me(mr+1)(6m)3m
+

m−1

∑
i=1

(

m

i

)

µ1(i)µ0(m − i)

≪mµ0(m − 1) = µ1(m)

and

σ0(m) ≤ mNσ1(m − 1) ≪m Nµ1(m − 1) ≤ µ0(m). �

In order to apply the lemma, we need the following theorem. (See [Fr],
[R], [Bi].)
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Freiman-Ruzsa Lemma. Let 〈G, ·〉 be a torsion-free abelian group and A ⊂ G
with |AA| < K|A|. Then

(18) A ⊂ {g
j1
1 · · · g

jd
d : ji = 1, · · · , ℓi, and gi ∈ G},

where d ≤ K, and ∏ ℓi < c(K)|A|.

We may assume A ⊂ 〈R∗, ·〉. Hence, assumption (2) implies that (18)
holds with gi ∈ R∗.

Let Γ ⊂ 〈C∗, ·〉 be the subgroup generated by {−1, g1, . . . , gd}. Then

r = rk(Γ) ≤ d + 1 ≤ K + 1.

Corollary 1. Let A ⊂ R, |A| = N, and |AA| < K|A|. Then for h ≥ 2

|{ solutions of
2h

∑
i=1

xi = 0 in A}| ≪h Nh−1ecK + Nh,

|{ solutions of
2h−1

∑
i=1

xi = 0 in A}| ≪h Nh−1ecK.

Here c = c(h).

Proof of Proposition B. Let rh(k) be the number of representatives of k
in hA.

rh(k) = |{(a1, · · · , ah) ∈ Ah k = a1 + · · · + ah}|
To bound λ2h(A), we see that
∫ ′

|∑ eiax|2h =
∫ ′

|∑ ei(a1+···+ah)x|2

=
∫ ′

| ∑
k∈hA

rh(k)eikx|2

= ∑
k∈hA

rh(k)2

= |{(a1, · · · , a2h) ∈ A2h a1 + · · · ah = ah+1 + · · · + a2h}|
≪h Nh−1ecK + Nh.

The third equality is (14) and the last inequality follows from the corollary
above.

Hence
‖∑ eiax‖2h ≪h N

1
2− 1

2h ec K
2h + N

1
2 . �

We will use the following proposition to prove Theorem 3.

Proposition C. [C2] Let A ⊂ C be a finite set such that

|A + A| < K|A|
for some constant K. For n ∈ C, let

πℓ(n) = |{(a1, · · · , aℓ) ∈ Aℓ : n = a1 · · · aℓ}|.
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Then

πℓ(n) < |A|
Cℓ(K)

log log |A| .

Here Cℓ(K) is a constant depending on K and ℓ only.

Proof of Theorem 3. We will consider the sets log A, and log B in order
to replace multiplication by addition. Also, as in Theorem 2, we will use
∫ ′

f instead of
∫

f . Returning to the argument in Theorem 1, we replace
(5)-(8) and (10) by the following.

(5’) π(k) = |{(a1, · · · , aj, b) ∈ Aj × B : k = a1 · · · ajb}|

(6’) F(x) = ∑
a∈A

ei(log a)x, and G(x) = ∑
b∈B

ei(log b)x]|A(j)B| >
|A|2j|B|2
∑ π(k)2

(8’) ∑
k

π(k)2 =
∫ ′

|F(x)j G(x)|2dx.

(

∫ ′
|F(x)|2jq

)
1
q

=
(

∑
n∈R

πjq(n)2
)

1
q

(10’)

<

(

|A|jq |A|
2Cjq(K)

log log |A|
)

1
q

≤ |A|j |A|
cjq(K)

q log log |A| ,(19)

where in (19) we used Proposition C with l = jq and ∑n πjq(n) = |A|jq.
We obtain that

(20) |A(j)B| > |A|j |B|1−
1
q |A|

−cjq(K)

log log |A| .

Take q = [ 3
ǫ ]. The last factor in (20) will be at least |A|− ǫ

2 , provided K
satisfies cj[ 3

ǫ ](K) <
ǫ
2 log log |A|. �
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