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A CLASSIFICATION OF ISOMORPHISM-INVARIANT

RANDOM DIGRAPHS

SELIM BAHADIR AND ELVAN CEYHAN

Abstract. We classify isomorphism-invariant random digraphs
(IIRDs) according to where randomness lies, namely, on arcs, vertices,
vertices and arcs together as arc random digraphs (ARD), vertex random
digraphs (VRD), vertex-arc random digraphs (VARD) as an extension
of the classification of isomorphism-invariant random graphs (IIRGs)
[1], and introduce randomness in direction (together with arcs, vertices,
etc.) also which in turn yield direction random digraphs (DRDs) and its
variants, respectively. We demonstrate that for the number of vertices
n ≥ 4, ARDs and VRDs are mutually exclusive and are both proper
subsets of VARDs, and also demonstrate the existence of VARDs which
are neither ARDs nor VRDs, and the existence of IIRDs that are not
VARDs (e.g., random nearest neighbor digraphs(RNNDs)). We demon-
strate that to obtain a DRD as an IIRD, one has to start with an
IIRG and insert directions randomly. Depending on the type of IIRG,
we obtain direction-edge random digraphs (DERDs), direction-vertex
random digraphs (DVRDs), and direction-vertex-edge random digraphs
(DVERDs), and demonstrate that DERDs and DVRDs have an over-
lap but are mutually exclusive for n ≥ 4, and both are proper subsets
of DVERDs which is a proper subset of DRDs and also the comple-
ment of DRDs in IIRDs is nonempty (e.g., RNNDs). We also study
the relation of DRDs with VARDs, VRDs, and ARDs and show that
for n ≥ 4, the intersection of DERDs and VARDs is ARDs; we provide
some results and open problems and conjectures. For example, the rela-
tion of DVRDs and DVERDs with the VARDs (hence with ARDs and
VRDs) are still open problems for n ≥ 4. We also show positive depen-
dence between the arcs of a VARD whose tails are same which implies
the asymptotic distribution of the arc density of VRDs and ARDs has
nonnegative variance.
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1. Introduction

A directed graph (or digraph) D consists of a nonempty finite set V (D)
of elements called vertices and a finite set A(D) of ordered pairs of distinct
vertices called arcs (or directed edges). We will often denote D as D =
(V,A).

For an arc (u, v), the vertex u is called the tail and the vertex v is called
the head. The head and tail of an arc are called the end-vertices. The
above definition of a digraph implies that we allow a digraph to have arcs
with the same end-vertices (for example, both (u, v) and (v, u) may be in
A). In this paper we only consider simple digraphs. That is, we do not
allow parallel (i.e., multiple) arcs, i.e., pairs of arcs with the same tail and
the same head, or loops (i.e., arcs whose heads and tails coincide). When
parallel arcs and loops are admissible, we speak of directed pseudographs;
directed pseudographs without loops are directed multigraphs. For more
information about graphs and digraphs see, e.g., [7].

For a positive integer n, let [n] := {1, 2, . . . , n}, Dn denote the set of
all digraphs with vertex set [n], and 2Dn denote the set of all subsets of
Dn. A random digraph is a probability space (Dn, 2Dn , P ), and we write
D = (Dn, P ) where P is a probability measure. We call a random digraph
as degenerate if all the probability mass is on one digraph. We can also
think of D as the outcome of an experiment of picking a digraph from Dn
with distribution P . For every D ∈ Dn, we write P ({D}) as P (D) for
convenience in notation. Also, for a measure space (Ω,F , µ), let Fn and µn

denote the usual product σ-algebra and product measure, respectively. For
the set of real numbers, we consider the Borel σ-algebra, and throughout
this paper we suppress the σ-algebra notation as long as there is no necessity
nor ambiguity.

Example 1.1 (Uniform Random Digraph Model). For positive integers n
and m with n ≥ 2 and 0 < m < n(n − 1), D(n,m) is the random digraph
such that

P (D) =

{
1

(n(n−1)
m )

, if |A(D)| = m

0, otherwise

for every D ∈ Dn. In other words, D(n,m) picks a digraph uniformly
at random among the ones with vertex set [n] and having exactly m arcs.

Note that there are
(
n(n−1)
m

)
such digraphs, and m is not chosen to be 0 or

n(n− 1) to obtain a nondegenerate random digraph. D(n,m) is the digraph
counterpart of the Erdős–Rényi random graph G(n,m) ([10]). For some
asymptotic properties of uniform random digraphs, see [18] and [13].

A digraph D1 is isomorphic to a digraph D2 (or D1 and D2 are isomor-
phic) if there is a bijection f : V (D1)→ V (D2) such that (u, v) ∈ A(D1) if
and only if (f(u), f(v)) ∈ A(D2).
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Definition 1.2 (Isomorphism Invariance). Let D = (Dn, P ) be a random di-
graph. We say that D is isomorphism-invariant if P (D1) = P (D2) whenever
D1 and D2 are isomorphic digraphs in Dn. The random digraphs which are
isomorphism-invariant are called isomorphism-invariant random digraphs
(IIRDs).

Throughout the article, we only consider nondegenerate IIRDs. Our work
is inspired by the isomorphism-invariant random graph (IIRG) classifica-
tion of [1], where the authors consider randomness in the defining units of
graphs, namely, vertices and edges, and exploit the symmetry in the binary
relation defining the edges between vertices. They consider edge-random
graphs (ERGs), vertex-random graphs (VRGs), and vertex-edge random
graphs (VERGs) and demonstrate ERGs and VRGs are mutually exclusive
for n ≥ 4 (excluding degenerate graphs), and they are both proper subsets
of VERGs for n ≥ 6. However, the study of IIRDs is not only a straightfor-
ward extension of IIRGs, because the binary relation is not symmetric for
digraphs and there is an additional defining unit, the direction of the arcs.
First, as digraph counterparts of IIRGs, we introduce arc random digraphs
(ARDs), vertex random digraphs (VARDs), and vertex-arc random digraphs
(VARDs), and study the inclusion/exclusion relations between them. We
demonstrate that, for n ≥ 4, ARDs and VRDs are mutually exclusive and
their union is a proper subset of VARDs, i.e., we show that there is no IIRD
that is both ARD and VRD and the existence of VARDs that are neither
ARDs nor VRDs, although any VARD can be arbitrarily closely approxi-
mated by VRDs. Furthermore, we show that the complement of VARDs in
IIRDs is nonempty, and provide random nearest neighbor digraphs (RNNDs)
as an example. See Figure 1 for a Venn diagram representation of VARDs.
Along this line, we point out the similarities and differences between VARDs
and VERGs until we introduce randomness in the direction. Notice that we
reduced the lower bound for the inclusion/exclusion relations for VERGs;
the lower bound was 6 for VERGs ([1]) and it is 4 for VARDs. Similar to the
results of [1], we demonstrate that ARDs and VRDs are mutually exclusive
and they are both proper subsets of VARDs for n ≥ 4, thereby reducing the
lower bound from 6 to 4.

Digraphs have an additional component compared to graphs, namely, the
direction of the arcs, hence one can also attach randomness to the direction
as well. Direction random digraphs (DRDs) are defined by adding ran-
dom directions to pairs of vertices which are joined by an edge in a given
graph. However, we show that DRDs are isomorphism-invariant only if the
graph we start with (which is called the underlying graph) is isomorphism
invariant. And depending on where the randomness lies in the underlying
graph, adding randomness on the direction gives rise to direction-edge ran-
dom digraphs (DERDs), direction-vertex random digraphs (DVRDs), and
direction-vertex-edge random digraphs (DVERDs). For example, in DERDs,
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Isomorphism-Invariant Random Digraphs

ARD VRD

VARD

Figure 1. Venn diagram of vertex-arc random digraphs for
n ≥ 4. Our results in this paper show that ARD ∩VRD = ∅
and all the four regions in the figure are nonempty for n ≥ 4.

the randomness lies in both edges and the directions, i.e., DERDs are ob-
tained from ERGs by randomly adding directions to their edges. Our results
on the inclusion/exclusion relations between DRDs indicate that DERDs
and DVRDs only overlap for n ≤ 3 but otherwise are mutually exclusive,
and both are proper subsets of DVERDs which is a proper subset of DRDs.
These results are illustrated in Figure 2.

We also study the relations between DRDs and VARDs and show that
intersection of DERDs and VARDs yield ARDs for n ≥ 4; for n = 3, any
DERD is a VARD, any DERD is a DVRD, and we conjecture that any
DERD is a VRD as well; for n = 2, any IIRD is a DERD, DVRD and VRD.
See Figure 3 for a Venn diagram representation of VARDs and DERDs. The
relations between DVRDs and VARDs and also relation between DVERDs
and VARDs (i.e., identifying the types of digraphs in their intersection) are
still open problems. DERDs have two probabilities associated with them,
the edge probability pe and direction probability pd. We find the probabil-
ities pe and pd that guarantees that the DERD is also an ARD with arc
probability pa.

We also show the existence of positive dependence for two arcs having
the same tail in a VARD (also for two edges sharing a vertex in a VERG),
which has implications for the arc and edge densities of VARDs and VERGs,
respectively. We show that the arc (edge) density of VARDs (VERGs) is a
U -statistic, and as n→∞, the arc (edge) density of ARDs (ERGs) converges
in law to a constant (i.e., its asymptotic distribution is degenerate), and arc
(edge) density of VRDs (VRGs) converges in law to a normal distribution
provided its asymptotic variance is positive. Positive dependence guarantees
that the asymptotic distribution of arc (edge) density of VRDs (VRGs) is
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Isomorphism-Invariant Random Digraphs

DRD

DVERD

DERD DVRD

Figure 2. Venn diagram of direction random digraphs
(DRDs). The results of the paper imply that all the six
regions in the figure are nonempty. In particular, the region
DERD∩DVRD only consists of DRDs with n ≤ 3 and DRDs
generated by G(n, pe = 1).

Isomorphism-Invariant Random Digraphs

ARD

VRD

DERD VARD

Figure 3. Venn diagram of DERDs and VARDs for n ≥ 4.
The results in this paper indicate that all the five regions
in the figure are nonempty. In addition, the intersection of
the classes DERDs and VARDs is the family of ARDs, i.e.,
DERD ∩VARD = ARD.
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nonnegative, so the asymptotic distribution of arc (edge) density of VRDs
(VRGs) is degenerate if the asymptotic variance is zero or it is the normal
distribution. In particular, arc density of proximity catch digraphs (PCDs),
which are also VRDs, have asymptotically normal distribution whose vari-
ance equals the covariance between having the arc (u, v) and having the arc
(u, v′) (see [4] and references therein for arc density of PCDs). Hence, pos-
itive dependence guarantees that the asymptotic distribution is valid (i.e.,
has positive variance) or degenerate (i.e., has zero variance) and the co-
variance cannot be negative. Similarly, the underlying graphs of PCDs are
VRGs ([5]), and positive dependence guarantees that the variance of the
distribution of its edge density is nonnegative. We also study the RNNDs
and show that they are IIRDs, but do not belong to VARDs or DRDs, which
is serves as an example that complements of VARDs and DRDs in IIRDs is
nonempty.

In Section 3, we introduce the arc random digraphs (ARDs), vertex ran-
dom digraphs (VRDs) and vertex-arc random digraphs (VARDs). In Section
4, for n ≥ 4, we prove that there is no random digraph which is both an ARD
and a VRD, and there exist VARDs which are neither ARDs nor VRDs.
We introduce the direction random digraphs (DRDs), direction-edge ran-
dom digraphs (DERDs), direction-vertex random digraphs (DVRDs), and
direction-vertex-edge random digraphs (DVERDs) in Section 5. We examine
the relations of DERDs with ARDs and VARDs in Section 6. In particular,
we show that ARDs are the only random digraphs which are both DERD
and VARD for n ≥ 4, and any DERD with n ≤ 3 is a VARD. We dis-
cuss positive dependence and its relation to the distribution of arc and edge
densities of VARDs and VERGs, respectively, in Section 7. Discussion and
conclusions are provided in Section 8. A list of abbreviations used in the
article is provided in Table 1.

2. Preliminaries

We first summarize IIRGs introduced by [1]. The reasons to include this
summary are two-fold: (i) The IIRG classification of [1] as ERGs, VRGs,
and VERGs provides a nice foundation for classification of IIRDs as ARDs,
VRDs, and VARDs. (ii) Adding the direction randomness to ERGs, VRGs,
and VERGs give rise to more interesting DRDs, namely, DERDs, DVRDs,
and DVERDs.

A graph G is a finite nonempty set V (G) of elements called vertices to-
gether with a set E(G) of unordered pairs of vertices of G called edges. An
edge {u, v} is denoted by uv for convenience in the text. Let Gn denote the
set of all graphs with V (G) = [n] and 2Gn be the set of all subsets of Gn. A
random graph is a probability space (Gn, 2Gn , P ), and we write G = (Gn, P )
where P is a probability measure. We write P (G) instead of P ({G}) for
convenience in notation.
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IIRD: Isomorphism-Invariant Random Digraph (p. 44)
IIRG: Isomorphism-Invariant Random Graph (p. 49)
ERG: Edge Random Graph (p. 49)
VRG: Vertex Random Graph (p. 49)
VERG: Vertex-Edge Random Graph (p. 50)
ARD: Arc Random Digraph (p. 51)
GARD: Generalized Arc Random Digraph (p. 51)
VRD: Vertex Random Digraph (p. 52)
VARD: Vertex-Arc Random Digraph (p. 53)
DRD: Direction Random Digraph (p. 61)
DERD: Direction-Edge Random Digraph (p. 62)
DVRD: Direction-Vertex Random Digraph (p. 62)
DVERD: Direction-Vertex-Edge Random Digraph (p. 62)
RNND: Random Nearest Neighbor Digraph (p. 58)
Table 1. A list of abbreviations used in the article together
with the page numbers where they are formally defined.

The random graph model was first introduced by [12] and [10]. The model
of Gilbert corresponds to ERG G(n, pe) in [1] in which each edge is inserted,
independent of others, with probability pe between vertices i and j among
a given set of (nonrandom) vertices. The model introduced by Erdős and
Rényi is the uniform random graph G(n,m) which picks a graph with vertex
set [n] uniformly at random among the ones with exactly m edges. However,
in literature, both of these models are usually called the Erdős–Rényi model
as [10] developed the theory.

A graph G1 is isomorphic to a graph G2 (or G1 and G2 are isomorphic)
if there exists a bijection f : V (G1) → V (G2) such that uv ∈ E(G1) if and
only if f(u)f(v) ∈ E(G2). We say that the random graph G = (Gn, P )
is isomorphism-invariant if P (G1) = P (G2) whenever G1 is isomorphic
to G2. The random graphs which are isomorphism-invariant are called
isomorphism-invariant random graphs (IIRGs).

Definition 2.1. An edge random graph (ERG) is a random graph G(n, pe)
= (Gn, P ) where pe ∈ [0, 1] and

P (G) = p|E(G)|
e (1− pe)(

n
2)−|E(G)| for every G ∈ Gn.

Let Ω be a set, x = (x1, . . . , xn) ∈ Ωn and φe : Ω × Ω → {0, 1} be a
symmetric function. Then the (x, φe)-graph, denoted G(x, φe), is defined to
be the graph, G, with vertex set [n] such that for every i, j ∈ [n] with i 6= j
we have ij ∈ E(G) if and only if φe(xi, xj) = 1.

Definition 2.2. Let (Ω,F , µ) be a probability space and φe : Ω×Ω→ {0, 1}
be a symmetric measurable function. The vertex random graph (VRG),
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G(n,Ω, µ, φe), is the random graph (Gn, P ) satisfying

P (G) =

∫
1{G(x,φe)=G}d(µx) for every G ∈ Gn,

where d(µx) is short-hand for the product integrator d(µn(x)) = d(µx1) · · ·
d(µxn).

In words, ERGs are generated as follows: A fixed set of n vertices is
given and edges are inserted randomly and independently with probability
pe between pairs of vertices. On the other hand, for VRGs, n vertices are
randomly generated from µ and edges are inserted deterministically between
pairs of vertices. Notice that in a VRG the randomness lies in the struc-
ture attached to the vertices, and once these random structures have been
assigned to the vertices, all the edges are uniquely determined.

Definition 2.3. Let (Ω,F , µ) be a probability space and φe : Ω×Ω→ [0, 1] be
a symmetric measurable function. The vertex-edge random graph (VERG),
G(n,Ω, µ, φe), is the random graph (Gn, P ) with

P (G) =

∫
Px(G)d(µx), for every G ∈ Gn,

where for given x = (x1, . . . , xn) and G

Px(G) =
∏

ij∈E(G)

φe(xi, xj)×
∏

ij /∈E(G)

(1− φe(xi, xj)).

In words, a VERG is generated as follows: a random sample of size n is
drawn with distribution µ from Ω, say X = (X1, . . . , Xn). Then conditional
on X, independently for each pair of distinct vertices i and j, the edge ij is
inserted with probability φe(Xi, Xj).

Observe that the same notation G(n,Ω, µ, φe) is used for both VRGs and
VERGs. However, this causes no confusion, since φe takes values in {0, 1}
for VRGs and in [0, 1] for VERGs. In other words, VRGs form a special
case of VERGs with φe taking values only in {0, 1}. Therefore, every VRG
is a VERG. In addition, it is easy to see that letting φe be identically equal
to p gives that every ERG is a VERG.

Let G1 = (Gn, P1) and G2 = (Gn, P2) be random graphs. The total
variation distance between G1 and G2 is defined to be

dTV(G1,G2) =
1

2

∑
G∈Gn

|P1(G)− P2(G)|.

Similarly, for any two random digraphs D1 = (Dn, P1) and D2 = (Dn, P2),
the total variation distance between D1 and D2 is defined to be

dTV(D1,D2) =
1

2

∑
D∈Dn

|P1(D)− P2(D)|.
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3. ARDs, VRDs and VARDs

3.1. Arc random digraphs. One of the most commonly studied random
digraphs is the binomial (or Bernoulli) random digraph model, D(n, pa),
in which each of the n(n − 1) possible arcs is included independently with
probability pa. Such random digraphs give rise to arc random digraphs.

Definition 3.1. An arc random digraph (ARD) is a random digraph D(n,
pa) = (Dn, P ) where 0 < pa < 1 and

P (D) = p|A(D)|
a (1− pa)n(n−1)−|A(D)| for every D ∈ Dn.

Notice that ARDs are the digraph counterparts of random graphs G(n, pe),
i.e., of ERGs. That is each arc is inserted, independent of others, with
probability pa from vertex i to j among a given set of (nonrandom) vertices.
For some asymptotic properties of D(n, pa) see [15], [19], and [16].

Definition 3.2. Let pa : [n] × [n] → [0, 1] be a function (that is not nec-
essarily symmetric in its arguments). The generalized arc random digraph
(GARD), D(n, pa), is the random digraph (Dn, P ) with

P (D) =
∏

(i,j)∈A(D)

pa(i, j)×
∏

(i,j)/∈A(D)

(1− pa(i, j)) for every D ∈ Dn.

In other words, in a GARD each arc appears independently of others
and the arc (i, j) occurs with probability pa(i, j). Note that an ARD is
special case of a GARD with a constant pa, i.e., pa(i, j) = pa for all i, j. As
the classical random digraph model D(n, pa) may not fit real life networks,
inhomogeneous models like GARDs are of interest for such scenarios (see,
e.g., [3]).

Clearly, any ARD is isomorphism-invariant. The following proposition
implies that a GARD is isomorphism-invariant if and only if it is an ARD.

Proposition 3.3. Let D be an isomorphism-invariant GARD. Then D =
D(n, pa) for some pa, i.e., pa(i, j) = pa for all i, j and D is an ARD.

Proof. We show that pa(i, j) = pa(k, l) = pa for any two ordered pairs (i, j)
and (k, l). First note that

(3.1) pa(i, j) = P ((i, j) ∈ A(D)) =
∑

D:(i,j)∈A(D)

P (D).

Fix a permutation on [n] which maps i to k and j to l. Observe that this
permutation induces a one-to-one correspondence between the sets {D ∈
Dn : (i, j) ∈ A(D)} and {D′ ∈ Dn : (k, l) ∈ A(D′)} such that matched di-
graphs are isomorphic. As D is isomorphism-invariant, this correspondence
implies

(3.2)
∑

D:(i,j)∈A(D)

P (D) =
∑

D′:(k,l)∈A(D′)

P (D′).

Hence, the result follows by (3.1) and (3.2). �
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3.2. Vertex Random Digraphs. Let Ω be a set, x = (x1, . . . , xn) ∈ Ωn

and φa : Ω × Ω → {0, 1} be a function. Then the (x, φa)-digraph, denoted
D(x, φa), is defined to be the digraph, D, with vertex set [n] such that for
all i, j ∈ [n] with i 6= j we have

(i, j) ∈ A(D) if and only if φa(xi, xj) = 1.

Clearly, every digraph D with V (D) = [n] is an (x, φa)-digraph for some
choice of Ω, x, and φa. More specifically, choose x to be the identity function
on Ω = [n] and define φa(i, j) = 1{(i,j)∈A(D)} where 1{·} is the indicator
function.

Definition 3.4. Let (Ω,F , µ) be a probability space and φa : Ω×Ω→ {0, 1}
be a measurable function. The vertex random digraph (VRD), D(n,Ω, µ, φa),
is the random digraph (Dn, P ) with

P (D) =

∫
1{D(x,φa)=D}d(µx) for every D ∈ Dn.

So, in a VRG, n vertices are drawn i.i.d. from µ and then arcs are inserted
between vertices based on a binary relation in a deterministic fashion. Note
that in a VRD the randomness resides in the structure attached to the
vertices, as in VRGs, and when these random structures are assigned to the
vertices, all the arcs are uniquely determined. That is, VRDs constitute the
digraph counterpart for VRGs.

Example 3.5 (Proximity catch digraphs (PCDs) [6]). Let (Ω,F , µ) be a
probability space. The proximity map N(·) is a function from Ω to F . The
proximity region associated with x ∈ Ω, denoted N(x), is the image of x ∈ Ω
under N(·). The points in N(x) are thought of as being “closer” to x ∈ Ω
than the points in Ω\N(x). For a given x = (x1, x2, . . . , xn) the proximity
catch digraph is the digraph with the vertex set V = [n] and the arc set
A = {(i, j) : xj ∈ N(xi)}. In other words, we insert the arc (i, j) if and only
if xj is in the proximity region of xi. Note that for a given N(·), a random
PCD is a VRD, D(n,Ω, µ, φa), with φa(xi, xj) = 1{xj∈N(xi)}. For instance,

one can take Ω = R, N(x) = (x− r, x+ r) and φa(x, y) = 1{x−r≤y≤x+r} for
some r > 0.

Example 3.6 (Random intersection digraphs [2]). Let n and m be positive

integers, and µ be a distribution on 2[m] × 2[m] (ordered pairs of subsets
of [m]). Given two collections of subsets S1, . . . , Sn and T1, . . . , Tn of the
set [m], define the intersection digraph with vertex set [n] such that the arc
(i, j) is present in the digraph whenever Si ∩ Tj is nonempty for i 6= j.
D(n,m, µ) is the random intersection digraph generated by independent and
identically distributed pairs of random subsets (Si, Ti) under µ, 1 ≤ i ≤ n.

Note that D(n,m, µ) is a VRD with Ω = 2[m]×2[m] and φa((S, T ), (S′, T ′)) =
1{S∩T ′ 6=∅}.

By letting Ω = [0, 1], µ be the uniform distribution over [0, 1], and φa(x, y)
= 1{x≤pa}, we see that every D(2, pa) is a VRD.



A CLASSIFICATION OF ISOMORPHISM-INVARIANT RANDOM DIGRAPHS 53

Recall that in a VRD, D(n,Ω, µ, φa), φa is not required to be symmetric.
However, if φa is a symmetric function, whenever we see the arc (i, j) in
A(D), we see the arc (j, i) as well. In this case, for every D ∈ Dn in which
there exists (i, j) ∈ A(D) with (j, i) /∈ A(D), we have P (D) = 0. On
the other hand, in an ARD, D(n, pa), we have P (D) > 0 for every D ∈ Dn.
Therefore, whenever φa is symmetric and nonconstant µ2-a.s., D(n,Ω, µ, φa)
is not an ARD. For instance, one can take Ω = Rd, µ to be an a.e. continuous
distribution and φa(x, y) = 1{||x−y||d≤r}, where || · ||d is the usual Euclidean

norm in Rd and r is a fixed positive real number. Notice that these random
digraphs are random PCDs in which N(x) is the closed ball with radius r
and center x. If we consider symmetric arcs as one edge only, this type of
random digraph reduces to what are called random geometric graphs. For
more information on random geometric graphs, see [21].

3.3. Vertex-arc random digraphs. We now generalize the random di-
graphs introduced in the previous two subsections by combining the struc-
tures where the randomness lies.

Definition 3.7. Let (Ω,F , µ) be a probability space and φa : Ω × Ω →
[0, 1] be a measurable function. The vertex-arc random digraph (VARD),
D(n,Ω, µ, φa), is the random digraph (Dn, P ) with

P (D) =

∫
Px(D)d(µx), for every D ∈ Dn,

where for given x = (x1, . . . , xn) and D = (V,A)

Px(D) =
∏

(i,j)∈A

φa(xi, xj)×
∏

(i,j)/∈A

(1− φa(xi, xj)).

The construction of a VARD is very similar to that of VERG as VARDs
are the digraph counterpart of VERGs. A random sample of size n is drawn
with distribution µ from Ω, say X = (X1, . . . , Xn), and then conditional on
X, independently for each ordered pair of distinct vertices i and j, the arc
(i, j) is inserted with probability φa(Xi, Xj).

Note that we use the same notation D(n,Ω, µ, φa) for both VRDs and
VARDs. But, since φa only takes values 0 or 1 for VRDs and in [0, 1] for
VARDs, this causes no confusion. Particularly, VRDs form a special case
of VARDs with φa taking values only in {0, 1}. Therefore, every VRD is a
VARD. Moreover, it is easy to verify that letting φa be identically equal to
pa gives that every ARD is a VARD.

Proposition 3.8. Every VARD is isomorphism-invariant.

Proof. Let D(n,Ω, µ, φa) be a VARD and D,D′ ∈ Dn be isomorphic di-
graphs. Then there exists a permutation σ on [n] such that

(i, j) ∈ A(D) ⇔ (σ(i), σ(j)) ∈ A(D′).
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Let σ−1 be the inverse of σ and y = (y1, . . . , yn) such that yi = xσ−1(i) for
all 1 ≤ i ≤ n, i.e., xi = yσ(i) for all 1 ≤ i ≤ n. Then note that

Px(D) =
∏

(i,j)∈A(D)

φa(xi, xj)×
∏

(i,j)/∈A(D)

(1− φa(xi, xj))

=
∏

(i,j)∈A(D)

φa(yσ(i), yσ(j))×
∏

(i,j)/∈A(D)

(1− φa(yσ(i), yσ(j)))

=
∏

(σ(i),σ(j))∈A(D′)

φa(yσ(i), yσ(j))×
∏

(σ(i),σ(j))/∈A(D′)

(1− φa(yσ(i), yσ(j)))

=
∏

(i,j)∈A(D′)

φa(yi, yj)×
∏

(i,j)/∈A(D′)

(1− φa(yi, yj))

= Py(D′).

(3.3)

As y is a permutation of x, Fubini’s theorem and (3.3) imply that

(3.4) P (D) =

∫
Px(D)µ(dx) =

∫
Py(D′)µ(dy).

Furthermore, the change of variables that maps yi to xi in the integrand
above results

(3.5)

∫
Py(D′)µ(dy) =

∫
Px(D′)µ(dx) = P (D′),

since the mapping is a permutation and the Jacobian of a permutation
matrix is ±1. Thus, the results in (3.4) and (3.5) together imply that
P (D) = P (D′), and so the desired result follows. �

As a corollary, we easily see that any VRD is isomorphism-invariant since
every VRD is a VARD, and the same holds for ARDs as well.

4. Inclusion/exclusion relations between ARDs, VRDs and
VARDs

In the previous section, we have shown that every ARD and VRD is a
VARD, and every VARD is isomorphism-invariant. In this section we prove
that, for n ≥ 4, there exists no random digraph which is both ARD and
VRD, and the union of the classes ARDs and VRDs is not the entire class
of VARDs.

The following theorem implies that the families ARDs and VRDs are
disjoint for n ≥ 4.

Theorem 4.1. If an ARD, D(n, pa), with n ≥ 4 is represented as a VARD,
D(n,Ω, µ, φa), then φa(x, y) = pa µ

2-a.s.

Proof. Suppose that an ARD, D(n, pa), with n ≥ 4 is represented as a
VARD, D(n,Ω, µ, φa). For the proof of the theorem, we borrow some tools
from functional analysis which are presented in the proof of Theorem 4.2 in
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[1]. Let h : Ω×Ω→ [0, 1] be a symmetric measurable function and T be the
integral operator with kernel h on the space L2(Ω, µ) of µ-square-integrable
functions on Ω:

(Tg)(x) =

∫
h(x, y)g(y)d(µy).

Since h is bounded and µ is a finite measure, the kernel h is in L2(µ × µ).
Integral operators with such kernels are Hilbert–Schmidt operators and are
thus compact operators. Moreover, as h is symmetric, the integral opera-
tor T is self-adjoint, which implies that L2(Ω, µ) has an orthonormal basis
(ψi)i≥1 of eigenfunctions for T such that Tψi = λiψi for not necessarily
distinct real eigenvalues λi with λi → 0 as i→∞ (see Chapter VI in [23]).
We may assume that λ1 is the largest eigenvalue. Then we have

h(x, y) =
∑
i≥1

λiψi(x)ψi(y) µ2-a.s.

with the sum converging in L2. As ψi’s are orthonormal, it follows that

E(h(X1, X2)h(X2, X3)h(X3, X4)h(X4, X1))

=

∫∫∫∫
h(x1, x2)h(x2, x3)h(x3, x4)h(x4, x1)

× d(µx1)d(µx2)d(µx3)d(µx4)

=
∑
i≥1

λ4i .(4.1)

In the proof of Theorem 4.2 of [1], it was natural to take h(x, y) to be the
edge probability φe(x, y) in VERGs, however, the arc probability φa(x, y) for
VARDs is not symmetric in its arguments, hence a direct extension by taking
h(x, y) = φa(x, y) would cause many difficulties (see Remark 1). Instead, to
tackle the asymmetry issue, we take h(x, y) to be symmetric functions of its
arguments as φa(x, y)φa(y, x) or (1− φa(x, y))1− φa(y, x)) (see below).

Now let E1 be the event that both (1, 2) and (2, 1) are in A(D). As D is
an ARD, D(n, pa), it is easy to see that P (E1) = p2a. On the other hand,
since D is represented as a VARD, D(n,Ω, µ, φa), we have

P (E1) = E(φa(X1, X2)φa(X2, X1)).

Thus, letting h(x, y) = φa(x, y)φa(y, x) gives p2a = E(h(X1, X2)). As

E(h(X1, X2)) =

∫∫
h(x, y)d(µx)d(µy) = 〈T1,1〉 ≤ λ1,

we get p2a ≤ λ1, where 1 is the function with constant value 1.
Let E2 be the event that (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)

are all in A(D). Since D is an ARD, D(n, pa), it is easy to see that

(4.2) P (E2) = p8a.

By the representation of D as a VARD, D(n,Ω, µ, φa), we also have

(4.3) P (E2) = E(h(X1, X2)h(X2, X3)h(X3, X4)h(X4, X1)).
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Now combining the results in (4.1), (4.2), and (4.3) gives

(4.4) p8a =
∑
i≥1

λ4i .

Since p2a ≤ λ1, we have p8a ≤ λ41 and thus, by (4.4) we obtain that λ1 = p2a
and λi = 0 for every i ≥ 2, that is h(x, y) = p2aψ1(x)ψ1(y). But then we
have

p2a

∫
ψ2
1(x)d(µx) = p2a = E(h(X1, X2))

= p2a

∫∫
ψ1(x)ψ1(y)d(µx)d(µy)

= p2a

(∫
ψ1(x)d(µx)

)2

,

which implies that

(4.5)

∫
ψ2
1(x)d(µx) =

(∫
ψ1(x)d(µx)

)2

,

since pa 6= 0. As the equality in equation (4.5) is the equality in the Cauchy–
Schwarz inequality for ψ1 and 1, we see that ψ1 is constant µ-a.s. Since∫
ψ2
1(x)d(µx) = 1, we get ψ1 = 1 µ-a.s. or ψ1 = −1 µ-a.s., and therefore

h(x, y) = p2a µ
2-a.s., that is

(4.6) φa(x, y)φa(y, x) = p2a µ
2-a.s.

Next, let E′1 be the event that neither of the arcs (1, 2) and (2, 1) is in A(D),
and E′2 be the event that none of the arcs (1, 2), (2, 1), (2, 3), (3, 2), (3, 4),
(4, 3),(4, 1),(1, 4) is in A(D). Choosing h(x, y) to be (1 − φa(x, y))(1 −
φa(y, x)) allows us to follow the same arguments above for E1 and E2 re-
placed with E′1 and E′2, respectively, and with 1 − pa taking place of pa.
Therefore, we obtain that

(4.7) (1− φa(x, y))(1− φa(y, x)) = (1− pa)2 µ2-a.s.

Finally, the equations in (4.6) and (4.7) give the desired result. �

Remark. The function h in the proof of Theorem 4.1 is taken to be sym-
metric. Otherwise, if we had taken the kernel h to be φa, the operator T
need not be self-adjoint, the eigenvalues would be complex and the eigen-
functions would not be orthogonal and hence the succeeding arguments in
the proof would not be true. So, h being symmetric is a crucial condition for
the proof. Such an issue does not come up for VERGs, as φe is symmetric,
hence one can take h = φe and obtain φe = pe µ

2-a.s. (as in the proof of
Theorem 4.2. in [1]). However, in our case, φa is not symmetric as we are
dealing with digraphs. Hence we tackle this hurdle by taking h(x, y) to be
φa(x, y)φa(y, x) and (1−φa(x, y))(1−φa(y, x)), respectively, and obtain the
desired result. �
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As any VRD is a VARD with φa taking values in {0, 1}, by Theorem 4.1
we have the following corollary.

Corollary 4.2. Any ARD, D(n, pa), with n ≥ 4 is not a VRD.

4.1. All regions in Figure 1 are nonempty. Clearly, ARDs and VRDs
are nonempty. We next show that union of ARD and VRD families do not
constitute the entire class of VARDs when n ≥ 4.

Theorem 4.3. There exist VARDs with n ≥ 4 which are neither a VRD
nor an ARD.

Proof. Let 0 < α < β < 1 be real numbers. Consider a VARD, D(n,Ω, µ, ψa)
, with n ≥ 4 such that ψa(x, y) ∈ {α, β} and ψa(x, y) 6= ψa(y, x) for any
x 6= y. Equivalently, we have

(4.8) ψa(x, y)ψa(y, x) = αβ

and

(4.9) (1− ψa(x, y))(1− ψa(y, x)) = (1− α)(1− β)

for x 6= y. For example, one can take Ω = R, µ to be a continuous distribu-
tion and ψa(x, y) = α1{x≤y} + β1{y<x}.

Now suppose that it has another VARD representation D(n,Ω′, ν, φa).
We claim that φa satisfies the same properties of ψa given in (4.8) and (4.9)
ν2-a.s. Recall that in the proof of Theorem 4.1, the properties of an ARD,
D(n, pa), that we used are

(4.10) P (E2) = p8a = (p2a)
4 = (P (E1))

4

and

(4.11) P (E′2) = (1− pa)8 = ((1− pa)2)4 = (P (E′1))
4.

Notice that the equalities in (4.10) and (4.11) hold for D(n,Ω, µ, ψa) when
p2a and (1−pa)2 are replaced with αβ and (1−α)(1−β), respectively. That
is, for D(n,Ω, µ, ψa) we have

P (E2) = (αβ)4 = (P (E1))
4 and P (E′2) = ((1− α)(1− β))4 = (P (E′1))

4.

Therefore, following the same arguments in the proof of Theorem 4.1 we
obtain

φa(x, y)φa(y, x) = αβ

and

(1− φa(x, y))(1− φa(y, x)) = (1− α)(1− β) ν2-a.s.

and hence the claim follows. Then, by the choice of α, β, and ψa, we see
that D(n,Ω, µ, ψa) has neither an ARD nor a VRD representation. �

Recall that Corollary 4.2 and Theorem 4.3 imply that for n ≥ 4, we have
ARD ∩VRD = ∅ and VARD\(ARD ∪VRD) 6= ∅, respectively.
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Remark (Approximation to VARDs by VRDs). However, any VARD
can be arbitrarily closely approximated by VRDs. That is, for any VARD,
D, and ε > 0, there exists a VRD, D′, such that dTV(D,D′) < ε. This
result is a straightforward extension of approximation of VERGs by VRGs
which follows by the idea in the proof of Theorem 3.3 in [1]. Let D be a
VARD, D(n,Ω, µ, φa). Let M be a positive integer satisfying n2/ε < M , and
Ω′ = Ω× [0, 1]M × [M ]. Endow Ω′ with the product measure of its factors,
i.e., independently pick x ∈ Ω with respect to µ, an M -tuple f ∈ [0, 1]M uni-
formly, and a ∈ [M ] uniformly. Denote this measure by ν. We next define
ψa : Ω′×Ω′ → {0, 1} as follows: For every y1 = (x1, f1, a1), y2 = (x2, f2, a2) ∈
Ω′, let ψa(y1, y2) be the indicator of the event φa(x1, x2) ≥ f1(a2). Consider
the random digraph D′ with VRD representation D(n,Ω′, ν, ψa). By follow-
ing the same arguments in the proof of Theorem 3.3 in [1], one can easily
obtain that dTV(D,D′) < n2/M < ε. �

The complement of VARDs in the set of IIRDs in Figure 1 is also non-
empty (similarly, the complement of VERGs in the classification of IIRGs
in [1] is nonempty). Next we provide an important digraph family as an
example for IIRDs that are not VARDs.

4.2. Random nearest neighbor digraphs are IIRD but not VARD.
Random nearest neighbor digraphs (RNNDs) are one of the most commonly
studied random digraphs (e.g., see [11], [9], [8], and [22]). Let n ≥ 3, k ≥ 1,
and d ≥ 1 be integers with k < n − 1. Let µ be a probability distribution
over Rd with density function f that is assumed to be continuous almost
everywhere with respect to the Lebesgue measure. Let | · | denote a fixed
norm on Rd and X = (X1, . . . , Xn) be an i.i.d. vector in Rd drawn from µ.

For given x = (x1, . . . , xn), the set of k nearest neighbors (kNNs) of xi is
the closest k points to xi among the points {x1, . . . , xn}\{xi} with respect
to the given norm | · | and denoted as kNNx(xi). As the occurrence of a
tie is an event with zero probability for points from an a.e. continuous f ,
we may assume that kNNx(xi) is well-defined for each i with probability 1.
The k nearest neighbor digraph of x is the digraph with vertex set V = [n]
and the arc set A = {(i, j) : xj ∈ kNNx(xi)}, (i.e., the arc (i, j) is inserted
if and only if xj is one of the kNNs of xi) and denoted as kNND(x).

Definition 4.4. The random nearest neighbor digraph (RNND) is the ran-
dom digraph D(n, [k], d, µ, | · |) with

P (D) =

∫
1{kNND(x)=D}d(µx) for every D ∈ Dn.

Notice that we picked k to be less than n−1, because otherwise, we obtain
a degenerate random digraph.

Proposition 4.5. Every RNND is isomorphism-invariant.
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Proof. Let D(n, [k], d, µ, | · |) be a RNND and D,D′ ∈ Dn be isomorphic
digraphs. Then there exists a permutation σ on [n] such that

(i, j) ∈ A(D) ⇔ (σ(i), σ(j)) ∈ A(D′).

Let σ−1 be the inverse of σ and y = (y1, . . . , yn) such that yi = xσ−1(i) for
all 1 ≤ i ≤ n, i.e., yσ(i) = xi. Then it is easy to see that

kNND(x) = D ⇔ kNND(y) = D′.

The rest of the proof is similar to that of Proposition 3.8. �

As in VRDs, in the construction of a RNND, once x is fixed, then the
arcs are uniquely determined. However, in a VRD, by definition, inserting
the arc (i, j) only depends on xi and xj whereas in a RNND it depends on
all the data points. The following proposition implies that a RNND is not
a VRD.

Proposition 4.6. A RNND is not a VARD.

Proof. We show that no RNND has a VARD representation. In any VARD,
D(n,Ω, µ, φa), with n ≥ 3 we have

P ({(1, 2), (1, 3)} ⊂ A(D)) =

∫∫∫
φa(x1, x2)φa(x1, x3)d(µx1)d(µx2)d(µx3)

=

∫ (∫
φa(x1, x2)d(µx2)

)
×
(∫

φa(x1, x3)d(µx3)

)
d(µx1)

=

∫ (∫
φa(x1, x2)d(µx2)

)2

d(µx1)

≥
(∫∫

φa(x1, x2)d(µx1)d(µx2)

)2

= (P ((1, 2) ∈ A(D)))2(4.12)

by Fubini’s theorem and the Cauchy–Schwarz inequality applied to the con-
stant function 1 and

∫
φa(x1, x2)d(µx2).

On the other hand, in a RNND, we have

P ({(1, 2), (1, 3)} ⊂ A(D)) =
k(k − 1)

(n− 1)(n− 2)
<

(
k

n− 1

)2

= (P ((1, 2) ∈ A(D)))2(4.13)

by symmetry, and hence the result follows by (4.12) and (4.13). �

Note that Proposition 4.6 implies that the region VARDc in Figure 1 is
nonempty.

The underlying graph of a digraphD, denoted U(D), is the graph obtained
by replacing each arc of D with an edge, disallowing multiple edges between
two vertices ([7]).
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Definition 4.7. The underlying random graph of a random digraph D =
(Dn, PD) is the random graph G = (Gn, PG) such that

PG(G) =
∑

U(D)=G

PD(D) for every G ∈ Gn.

For example, the underlying random graph of an ARD, D(n, pa), is an
ERG, namely, G(n, pe) with pe = 2pa − p2a. Moreover, notice also that
the underlying random graph of a VARD, D(n,Ω, µ, φa), is the VERG,
G(n,Ω, µ, φu), where φu(x, y) = φa(x, y) + φa(y, x) − φa(x, y)φa(y, x). In
particular, the underlying random graph of a VRD is a VRG.

Remark (Underlying graph of a RNND is not a VERG). For any
set of points in Rd, the number of points sharing a common kNN is bounded
above by a constant which is independent of the number of points in the set
(see, [25]). That is, there exists a number c which only depends on d, k, and
the norm | · | such that in any kNND a vertex is the head of at most c arcs.
Therefore, a vertex of the underlying graph of a kNND is incident to at most
c + k edges. Hence, if G is the underlying random graph of a RNND with
n ≥ c+k+2, then we have P ({{1, 2}, {1, 3}, . . . , {1, n}} ⊂ E(G)) = 0 which
implies that G is not a VERG since that probability is always positive in a
nondegenerate VERG (see the inequality in (7)). �

Remark (Other NN type random digraphs). One can also generate
NN type random digraphs different from RNNDs. For instance, in the con-
struction of a RNND, insert the arc (i, j) if and only if xj is the kth NN of
xi (i.e., insert only the one to its kth NN instead of putting arcs from each
point to its all kNNs). We can generalize RNNDs to D(n, Sk, d, µ, | · |) where
Sk is a nonempty subset of [k] and we insert the arc (i, j) if and only if xj
is the sth NN of xi for some s ∈ Sk. Then the results for RNNDs in this
section are also valid for any D(n, Sk, d, µ, | · |), i.e., every D(n, Sk, d, µ, | · |)
is isomorphism-invariant, has no VARD representation, and for large n, has
an underlying random graph which is not a VERG. �

For n = 3, the only possible value of k is 1. In this case, the pair with the
minimum distance are NNs of each other and the NN of the remaining point
is one of the points in this pair. Thus, by symmetry we have P (A(D) =
{(i, j), (j, i), (k, i)}) = 1/6 for every pairwise distinct i, j, k ∈ {1, 2, 3}, and
therefore any RNND, D(3, 1, d, µ, | · |), is a uniform distribution over six
digraphs independent of d, µ and | · |. Also, note that the underlying random
graph of D(3, 1, d, µ, | · |) is always G(3, 2).

Remark (RNND and D(n, nk) are not the same). Observe that any
RNND and D(n, nk) have the same number of arcs. However, these two ran-
dom digraphs are different. Because, for the event E = {{(1, 2), . . . , (1, k +
2)} ⊂ A(D)}, we have P (E) = 0 in a RNND, since each vertex is tail of ex-
actly k arcs, whereas P (E) > 0 in D(n, nk) since nk ≥ k+ 1. Note that the
number of edges in the underlying graph of a kNND is nk minus the number
of symmetric arcs. It is easy to see that for n > 3, there exist kNNDs with
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different number of symmetric arcs, and therefore the underlying random
graph of a RNND with n > 3 is not a G(n,m). �

5. Direction Random Digraphs

One can also obtain IIRDs by first generating an IIRG and then assigning
directions randomly to each edge. Hence the IIRG classification of [1] is also
useful in the generation process of DRDs. Along this line, we first generate
an IIRG, G = (Gn, PG), and then for each edge ij ∈ E(G), independent
of other edges, pick a one sided or two sided direction randomly between
i and j. For a given direction probability 1/2 ≤ pd < 1, we put only the
arc (i, j) with probability 1− pd, only the arc (j, i) with probability 1− pd,
and both of the arcs with probability 2pd − 1 (i.e., there is a symmetric arc
between vertices i and j with probability 2pd − 1 and the arc (i, j) avoiding
the reverse arc is inserted with probability 1−pd and the same holds for arc
(j, i)). Observe that the arc (i, j) is put with probability 1−pd+2pd−1 = pd
(i.e., arc (i, j) exists as the only arc between i and j and also when there is
a symmetric arc between vertices i and j). Also, note that we omit the case
pd = 1 as it removes randomness in direction.

For a digraph D ∈ Dn, let na(D) = |A(D)| and ne(D) = |E(U(D))| (i.e.,
the number of edges of the underlying graph of D). Also, let ns(D) denote
the number of pairs of vertices i and j such that both (i, j) and (j, i) are
in A(D) (i.e., the number of symmetric arcs in D), and nas(D) denote the
number of arcs (i, j) in A(D) with (j, i) /∈ A(D). We write na, ne, ns, and
nas, respectively, dropping the digraph D in the notation for brevity. Note
that ne = ns + nas and na = 2ns + nas, hence na = ne + ns.

Definition 5.1. Let G = (Gn, PG) be an IIRG and 1/2 ≤ pd < 1. A
direction random digraph (DRD) is a random digraph D = (Dn, P ) with

P (D) = PG(U(D))(1− pd)nas(2pd − 1)ns for every D ∈ Dn,

and we say that D is generated by G with direction probability pd.

A natural question is why not start with any nonrandom graph and insert
directions randomly to the edges to obtain DRDs. There is a simple answer
to the question. Unfortunately, if directions are randomly inserted to the
edges of a (fixed) graph, the resulting random digraph is not isomorphism-
invariant unless we start with an empty graph (the graph with no edges)
or a complete graph (the graph with all possible edges). Notice that the
underlying random graph of a DRD generated by G is G itself. Observe
that if the digraphs D1 and D2 are isomorphic, then so are the (underlying)
graphs U(D1) and U(D2), and we also have ns(D1) = ns(D2) and nas(D1) =
nas(D2). Thus, a DRD is isomorphism-invariant only if it is generated by
an IIRG. Moreover, notice also that we may consider a (fixed) graph as a
degenerate random graph. Also, it is easy to see that the empty graph and
the complete graph with vertex set [n] are the only graphs in Gn which are
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isomorphic to no other graph in Gn, and therefore these two graphs are the
only isomorphism-invariant degenerate random graphs.

5.1. DERDs, DVRDs and DVERDs. We next provide three classes of
DRDs which are generated by ERGs, VRGs or VERGs.

Definition 5.2. The DRD generated by an ERG, G(n, pe), with direction
probability pd is called a direction-edge random digraph (DERD) and de-
noted as D(n, pe, pd).

Notice that letting pd be 1/2 avoids symmetric arcs, and hence in this
case, after generating an ERG, each edge is independently oriented in one
of the two directions with equal probability (e.g., see the model in [24]). For
example, letting pe = 1 and pd = 1/2 gives a random tournament in which
each edge of a complete graph is independently oriented in one direction
with equal probability. For more information about tournaments, see [20].

Definition 5.3. A DRD generated by a VRG is called direction-vertex ran-
dom digraph (DVRD). A direction-vertex-edge random digraph (DVERD)
is a DRD generated by a VERG.

Notice that the underlying random graphs of a DERD, a DVRD and a
DVERD are an ERG, a VRG, and a VERG, respectively. Clearly any ERG
or VRG is a VERG, and hence every DERD and DVRD has a DVERD
representation. In addition, the results in [1] imply the following: A nonde-
generate DRD which is both a DERD and a DVRD either has n ≤ 3 or is
generated by an ERG, G(n, pe), with pe = 1. For every n ≥ 6, there exist
DVERDs which are neither DERDs nor DVRDs. Moreover, for n ≥ 3, there
exist DRDs which are not among DVERDs, and for n ≤ 3, any DVERD is
also a DVRD.

Remark (Approximation to DVERDs by DVRDs). Let D = (Dn,
PD) be a DVERD generated by a VERG, G = (Gn, PG), with direction
probability pd. By Theorem 3.3 in [1], for any ε > 0 there exists a VRG,
G′ = (Gn, PG′), satisfying dTV(G,G′) < ε. Let D′ = (Dn, PD′) be the
DVRD generated by G′ with the same direction probability pd. Then, it is
easy to see that∑

U(D)=G

|PD(D)− PD′(D)| = |PG(G)− PG′(G)|

for every G ∈ Gn, and therefore we get dTV(D,D′) = dTV(G,G′) which
implies that the total variation distance between D and D′ is less than
ε. �

6. Inclusion/exclusion relations of DERDs with respect to
VARDs

In this section, for n ≥ 4, we show that a random digraph is both a DERD
and a VARD if and only if it is an ARD, and any DERD with n ≤ 3 is also
a VARD.
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Proposition 6.1. A DERD, D(n, pe, pd), is an ARD, D(n, pa), if and only
if

pd =
1

1 +
√

1− pe
and pa = 1−

√
1− pe.

Proof. Suppose that D(n, pe, pd) is an ARD D(n, pa). Then we have pepd =
pa since both are equal to P ((1, 2) ∈ A(D)). Similarly, we have pe(2pd −
1) = p2a as both are equal to P ({(1, 2), (2, 1)} ⊂ A(D)). Solving these two
equations gives pd = (1 ±

√
1− pe)/pe. If pe = 1, then definitely pd =

1. Otherwise, (1 −
√

1− pe)/pe < 1 < (1 +
√

1− pe)/pe and hence pd =
(1 −

√
1− pe)/pe. Note that (1 −

√
1− pe)/pe = 1/(1 +

√
1− pe) and so

1/2 ≤ pd ≤ 1. Finally, pa = pepd = 1−
√

1− pe.
We next show that whenever pd = 1/(1 +

√
1− pe) and pa = 1−

√
1− pe,

D(n, pe, pd) is D(n, pa). Note that in that case, 1 − pd = pa(1 − pa)/pe,
2pd − 1 = p2a/pe and 1 − pe = (1 − pa)2. Therefore, for a given D ∈ Dn we
have

P (D) = pne
e (1− pe)(

n
2)−ne(1− pd)nas(2pd − 1)ns

= pne
e (1− pe)

(n(n−1)−2ne)
2

pnas
a (1− pa)nas

pnas
e

p2ns
a

pns
e

= pne−nas−ns
e pnas+2ns

a (1− pa)n(n−1)−2ne+nas

= pna
a (1− pa)n(n−1)−na ,

since ne = nas+ns and na = nas+2ns. Thus, the desired result follows. �

In fact, for n ≥ 4, the family of ARDs is the intersection of the classes
DERDs and VARDs.

Theorem 6.2. If a DERD, D(n, pe, pd), with n ≥ 4 has a VARD repre-
sentation D(n,Ω, µ, φa), then pd = 1/(1 +

√
1− pe) and φa(x, y) = pepd

µ2-a.s.

Proof. Suppose D(n, pe, pd) has a VARD representation D(n,Ω, µ, φa). Note
that, as in any ARD, the events (i, j) ∈ A(D) and (k, l) ∈ A(D) are inde-
pendent in a DERD whenever {i, j} 6= {k, l}. Therefore, one can apply the
method used in the proof of Theorem 4.1 and obtain

(6.1) φa(x, y)φa(y, x) = pe(2pd − 1) µ2-a.s.

and

(6.2) (1− φa(x, y))(1− φa(y, x)) = 1− pe µ2-a.s.

Solving the equations in (6.1) and (6.2) yields

(6.3) φa(x, y) + φa(y, x) = 2pepd µ
2-a.s.

and

(6.4) φa(x, y) = pepd ±
√

(1−
√

1− pe − pepd)(1 +
√

1− pe − pepd)
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µ2-a.s. If pd > 1/(1 +
√

1− pe) = (1 −
√

1− pe)/pe, then the numbers
in the right-hand side of (6.4) have imaginary parts, and hence we get a
contradiction, since φa takes only real values.

Suppose pd ≤ 1/(1 +
√

1− pe). By the result in (4.12), recall that in any
VARD, D(n,Ω, µ, φa), with n ≥ 3 we have

(6.5) P ({(1, 2), (1, 3)} ⊂ A(D)) ≥ (P ((1, 2) ∈ A(D)))2 .

On the other hand, in any DERD, D(n, pe, pd), with n ≥ 3 we have

P ({(1, 2), (1, 3)} ⊂ A(D)) = (pepd)
2 = (P ((1, 2) ∈ A(D)))2 .

Therefore, we have the equality in the Cauchy–Schwarz inequality in (4.12).
Thus,

∫
φa(x1, x2)d(µx2) = c µ-a.s. for some constant c. Since

pepd = P ((1, 2) ∈ A(D)) =

∫∫
φa(x1, x2)d(µx2)d(µx1) =

∫
c d(µx1) = c,

we obtain c = pepd, that is,

(6.6)

∫
φa(x, y)d(µy) = pepd µ-a.s.

Similarly, in a VARD, D(n,Ω, µ, φa), with n ≥ 4 we have

P ({(1, 2), (2, 3), (1, 4), (4, 3)} ⊂ A(D))

=

∫∫∫∫
φa(x1, x2)φa(x2, x3)φa(x1, x4)φa(x4, x3)

× d(µx1)d(µx2)d(µx3)d(µx4)

=

∫∫ (∫
φa(x1, x2)φa(x2, x3)d(µx2)

)
×
(∫

φa(x1, x4)φa(x4, x3)d(µx4)

)
d(µx1)d(µx3)

=

∫∫ (∫
φa(x1, x2)φa(x2, x3)d(µx2)

)2

d(µx1)d(µx3)

≥
(∫∫∫

φa(x1, x2)φa(x2, x3)d(µx1)d(µx2)d(µx3)

)2

= (P ({(1, 2), (2, 3)} ⊂ A(D)))2(6.7)

by Fubini’s theorem and the Cauchy–Schwarz inequality applied to the
constant function 1 and

∫
φa(x1, x2)φa(x2, x3)d(µx2). Since in a DERD,

D(n, pe, pd), with n ≥ 4 we have

P ({(1, 2), (2, 3), (1, 4), (4, 3)} ⊂ A(D)) = (pepd)
4

= (P ({(1, 2), (2, 3)} ⊂ A(D)))2 ,

we obtain
∫
φa(x1, x2)φa(x2, x3)d(µx2) is constant µ2-a.s. by the equality in

the Cauchy–Schwarz inequality in (6.7). By the equality in (6.7), one can
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easily verify that

(6.8)

∫
φa(x, y)φa(y, z)d(µy) = (pepd)

2 µ2-a.s.

Let s(x, y) = i(φa(x, y) − pepd). Combining the results in (6.3), (6.4),
(6.6), and (6.8) gives

(6.9) s(x, y) = i(φa(x, y)− pepd) = −i(φa(y, x)− pepd) = s(y, x) µ2-a.s.

and

(6.10)

∫
s(x, y)s(y, z)d(µy) = 0 µ2-a.s.

Let T be the integral operator with kernel s on the space L2(Ω, µ)

(Tg)(x) =

∫
s(x, y)g(y)d(µy).

Since s is bounded and µ is a finite measure, the kernel s is in L2(µ × µ).
Moreover, the integral operator T is compact and self-adjoint by (6.9), which
implies that L2(Ω, µ) has an orthonormal basis (ψi)i≥1 of eigenfunctions for
T such that Tψi = λiψi for not necessarily distinct eigenvalues λi, and

(6.11) s(x, y) =
∑
i≥1

λiψi(x)ψi(y) µ2-a.s.

with the sum converging in L2 ([23]). Since ψi’s are orthonormal, equations
(6.10) and (6.11) imply

(6.12)
∑
i≥1

λ2iψi(x)ψi(z) = 0 µ2-a.s.

Therefore, for any m ≥ 1, by multiplying equation (6.12) by ψm(z)ψm(x)
and integrating over x and z we obtain λ2m = 0, i.e., λm = 0 for each m.
Thus, s(x, y) = 0 µ2-a.s. and hence φa(x, y) = pepd µ

2-a.s. which implies
pd = 1/(1 +

√
1− pe). �

Remark. Notice that Theorem 6.2 and Proposition 6.1 together imply The-
orem 4.1. However, we provide the proof of Theorem 4.1 to keep the proof
of Theorem 6.2 shorter and also to point out similarities and differences of
our techniques with those used in [1]. �

However, for n ≤ 3, any DERD has a VARD representation.

Theorem 6.3. Any DERD, D(n, pe, pd), with n ≤ 3 is also a VARD.

Proof. Let ⊕ and 	 denote addition and subtraction modulo 1, respectively.
In other words, for real numbers 0 ≤ x, y < 1,

x⊕ y =

{
x+ y, if x+ y < 1

x+ y − 1, if x+ y ≥ 1
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and

x	 y =

{
x− y, if x− y ≥ 0

x− y + 1, if x− y < 0.

If U1, U2, U3 are independent uniform random variables over [0, 1), then so
are U1 ⊕ U2, U2 ⊕ U3, and U3 ⊕ U1 (see Lemma 4.5 in [1]). Therefore,
G(3, pe) can be represented as a VRG G(3, [0, 1), ν, f) where ν is the uniform
distribution on [0, 1) and f(x, y) = 1{x⊕y≤pe} ([1]).

Let g(x, y) = 1{x	y≤1/2}+ (2pd− 1)1{x	y>1/2} for every 0 ≤ x, y < 1. We
claim that D(3, pe, pd) is a VARD, D(3,Ω, µ, φa), where Ω = [0, 1)× [0, 1), µ
is the product of two uniform distributions on [0, 1) and φa((u1, u

′
1), (u2, u

′
2)) =

f(u1, u2)g(u′1, u
′
2). First note that

(6.13) g(x, y) + g(y, x) = 2pd and g(x, y)g(y, x) = 2pd − 1,

for every 0 ≤ x, y < 1. As f is a symmetric indicator function, the equations
in (6.13) imply

(6.14) φa((u1, u
′
1), (u2, u

′
2))φa((u2, u

′
2), (u1, u

′
1)) = f(u1, u2)(2pd − 1),

φa((u1, u
′
1), (u2, u

′
2))(1− φa((u2, u′2), (u1, u′1)))

= f(u1, u2)(g(u′1, u
′
2)− (2pd − 1))(6.15)

and

(1− φa((u1, u′1), (u2, u′2)))(1− φa((u2, u′2), (u1, u′1)))
= 1− f(u1, u2).(6.16)

We next focus on the function g. It is easy to see that

(6.17)

∫ 1

0
g(x, y) dy =

∫ 1

0
g(x, y) dx =

1

2
1 +

1

2
(2pd − 1) = pd,

for every 0 ≤ x, y < 1.
Consider the circle obtained by identifying the end points of the interval

[0, 1] such that 1/4 is on the arc that starts from 0 and ends at 1/2 along
the clockwise direction. Then, x 	 y is equal to the length of the arc of
this circle which starts from x and ends at y along the counterclockwise
direction. Notice that g(x, y)g(y, z) and g(x, y)g(y, z)g(z, x) depends on the
ordering of x, y, z along counterclockwise direction and whether the points
x, y, z form an acute or obtuse triangle.

If x, y, z form an acute triangle, there are basically two cases for the
ordering, x, y, z or x, z, y. In the first case, g(x, y)g(y, z) = (2pd − 1)2, and
in the latter case g(x, y)g(y, z) = 12 = 1.

If x, y, z form an obtuse triangle, all six permutations of x, y, z (x, y, z;
x, z, y; y, x, z; y, z, x; z, x, y; z, y, x) are possible with the point at the middle
corresponding to the obtuse angle. Then, we have g(x, y)g(y, z) = (2pd −
1)2, (2pd − 1), (2pd − 1), (2pd − 1), (2pd − 1), 1, respectively. Moreover, it is
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easy to show that three uniformly at random points on the circle form an
acute triangle with probability 1/4. Therefore, we obtain∫

[0,1)3
g(x, y)g(y, z) dxdydz =

1

4
· 1

2
((2pd − 1)2 + 1)

+
3

4
· 1

6
((2pd − 1)2 + 4(2pd − 1) + 1)

= p2d.(6.18)

Similarly, we have∫
[0,1)3

g(x, y)g(y, z)g(z, x) dxdydz =
1

8
((2pd − 1)3 + 1)

+
1

8
(3(2pd − 1)2 + 3(2pd − 1))

= p3d.(6.19)

By using the results in (6.13)–(6.19), one can easily verify that∫
Px(D)d(µx) = pne

e (1− pe)3−ne(1− pd)nas(2pd − 1)ns ,

for every D ∈ D3, and hence the desired result follows. Furthermore, the
same setting works for n = 2 as well. �

For n = 2 the families DERDs and VRDs coincide with IIRDs. Let D1,
D2, D3, and D4 be the digraphs with vertex set [2] which has only the arc
(1,2), only the arc (2,1), both of the arcs, and none of the arcs, respectively.
Note that to obtain an isomorphism-invariant random digraph, a necessary
and sufficient condition is P (D1) = P (D2). Let D be the random digraph
with P (D1) = P (D2) = p1, P (D3) = p2, and P (D4) = 1 − 2p1 − p2. First
observe that D is an ARD if and only if

√
p2(1 −

√
p2) = p1. Letting pe =

2p1 + p2 and pd = (p1 + p2)/(2p1 + p2) gives that D is a DERD D(2, pe, pd).
With the same pe and pd, let φa((u1, u

′
1), (u2, u

′
2)) = 1{u1⊕u′1≤pe}1{u2	u′2≤pd}.

Then, it is easy to see that D is also VRD D(2,Ω, µ, φa), where Ω = [0, 1)×
[0, 1), µ is the uniform distribution on [0, 1)2. Therefore, when n = 2, any
isomorphism-invariant random digraph is both a DERD and a VRD (hence
also a VARD).

Proposition 6.4. A RNND is not a DRD.

Proof. We show that there is no RNND which is also a DRD by contra-
diction. Suppose that a RNND, D = (Dn, P ), is a DRD generated by the
random graph G = (Gn, PG) and with direction probability pd. Let G be a
graph in Gn with PG(G) > 0, and D be a digraph in Dn such that U(D) = G,
ns(D) = 0, and contains a vertex which is the tail of no arc. In other words,
D is a digraph whose underlying graph is G, contains no symmetric arcs,
and there exists a vertex v in V (D) such that v is the head of every arc
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incident to v. Then, as D is a DRD, we have

(6.20) P (D) = PG(G)(1− pd)nas > 0,

since PG(G) > 0 and pd < 1. On the other hand, for any given x =
(x1, . . . , xn), every vertex is the tail of exactly k arcs in kNND(x). Therefore,
we obtain P (D) = 0 which contradicts with (6.20). �

Note that Proposition 6.4 implies that the region DRDc in Figure 2 is
nonempty.

6.1. Open Problems for n ≥ 3. We have shown that DERDs and VRDs
coincide for n = 2. However, starting with n = 3, things start to get
more complicated. The function φa constructed in the proof of Theorem
6.3 is binary (only takes the values 0 or 1) if and only if pd = 1/2. Hence,
by Theorem 6.3 we see that any D(3, pe, 1/2) has a VRD representation.
But, by Proposition 6.1, D(3, pe, 1/2) is an ARD only if pe = 0 which
gives a degenerate random digraph, and hence D(3, pe, 1/2) does not yield
a nondegenerate ARD. Below we provide a list of open problems regarding
the relation of DVERDs and VARDs and their subfamilies.

• Other than the degenerate ones mentioned above, is there any DERD,
D(3, pe, pd), with pd > 1/2 which is also a VRD?
• Is there an ARD with n = 3 which has a VRD representation?
• Identifying IIRDs that are in the intersection of DVRDs and VARDs (that

is, which IIRDs have both DVRD and VARD representations?)
• Identifying IIRDs that are in the intersection of DVERDs and VARDs

Furthermore, we have the below conjecture for n = 3.

Conjecture. Any DERD with n = 3 is also a VRD.

7. Positive dependence between arcs of VARDs and its
relation with their arc Density

Recall that by the inequality in equation (4.12), for any VARD, D, we
have the positive dependence

P ({(1, 2), (1, 3)} ⊂ A(D)) ≥ P ((1, 2) ∈ A(D))P ((1, 3) ∈ A(D))

= P ((1, 2) ∈ A(D))2.(7.1)

Furthermore, the inequality in (7.1) can be generalized by Hölder’s inequal-
ity as follows

P ({(1, 2), . . . , (1,m)} ⊂ A(D)) ≥
m∏
i=2

P ((1, i) ∈ A(D))

= P ((1, 2) ∈ A(D))m−1(7.2)

where 2 ≤ m ≤ n, and notice that equality holds for every ARD. Similarly,
we have the same inequality in (7.2) for any DVERD as well and note
that equality holds for every DERD. However, there are random digraphs
other than DERDs satisfying equality in (7.2) for each m. For example,
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consider the VRD, D(n, [0, 1), µ, φa), where µ is the uniform distribution
over [0, 1) and φa(x, y) = 1{x	y≥3/8}1{y	x≥3/8}. Clearly, in this case, we
have P ((1, i) ∈ A(D)) = 1/4 for each i and P ({(1, 2), . . . , (1,m)} ⊂ A(D)) =
(1/4)m−1.

Also, it is easy to verify that D(n, [0, 1), µ, φa) has no DERD representa-
tion, since P ({(1, 2), (1, 3), (2, 3)} ⊂ A(D)) = 0. In the same manner, one
can easily obtain similar results for random graphs. In other words, for any
VERG, G(n,Ω, µ, φe), and 2 ≤ m ≤ n, we have

P ({{1, 2}, {1, 3}, . . . , {1,m}} ⊂ E(G)) ≥ P ({1, 2} ∈ E(G))m−1,

and equality holds for every ERG. The underlying random graph of the
VRD, D(n, [0, 1), µ, φa), described above is an example for random graphs
with no ERG representation which attains equality in (7) for every m.

This positive dependence for VARDs and VERGs has an interesting impli-
cation for their arc and edge densities, respectively. The arc density (edge
density) of a digraph D = (V,A) (graph G = (V,E)) of order |V | = n,
denoted ρa(D) (ρe(G)), is defined as

ρa(D) =
|A|

n(n− 1)

(
ρe(E) =

|E|(
n
2

) )

([14]).
Thus ρa(D) (ρe(G)) represents the ratio of the number of arcs (edges)

in the digraph D (graph G) to the number of arcs (edges) in the complete
symmetric digraph (complete graph) of order n, which is n(n − 1) (resp.
n(n− 1)/2).

Since the vertices X1, · · · , Xn
iid∼ µ, the arc density of the VARD, D, is a

U -statistic,

(7.3) ρa(D) =
1

n(n− 1)

∑∑
i<j

ha(Xi, Xj)

where ha(Xi, Xj) = 1{(Xi,Xj)∈A}+1{(Xj ,Xi)∈A}. We denote ha(Xi, Xj) as hija

for brevity of notation. Although the digraph is asymmetric, hija is defined
as the number of arcs in D between vertices Xi and Xj , in order to produce
a symmetric kernel with finite variance ([17]). Similarly, the edge density of
the VERG, G, is a U -statistic,

(7.4) ρe(G) =
2

n(n− 1)

∑∑
i<j

he(Xi, Xj)

where he(Xi, Xj) = 1{XiXj∈E}. We denote he(Xi, Xj) as hije for brevity of

notation. Since the graph is symmetric, hija is already a symmetric kernel
with finite variance.
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The random variable ρa(D) (ρe(E)) depends on n, µ, and φa (φe). Then
the expectation E[ρa(D)] is

(7.5) E[ρa(D)] =
1

n(n− 1)

∑∑
i<j

(P ((Xi, Xj) ∈ A) + P ((Xj , Xi) ∈ A)),

since E[ha(Xi, Xj)] = P ((Xi, Xj) ∈ A) + P ((Xj , Xi) ∈ A). Similarly, the
expectation E[ρe(G)] is

(7.6) E[ρe(G)] =
2

n(n− 1)

∑∑
i<j

P (XiXj ∈ E).

In particular, for VRDs, P ((Xi, Xj) ∈ A) = P ((X1, X2) ∈ A) =: πa, since
only vertices are random and they are i.i.d. from µ. Then E[ρa(D)] = πa.
Similarly, for ARDs, P ((Xi, Xj) ∈ A) = P ((X1, X2) ∈ A) = pa, since
only arcs are random and independently inserted with probability pa. Then
E[ρa(D)] = pa.

The variance Var[ρa(D)] for VRDs and ARDs simplifies to

(7.7) Var[ρa(D)] =
1

2n(n− 1)
Var[h12a ] +

n− 2

n(n− 1)
Cov[h12a , h

13
a ] ≤ 1/4.

A central limit theorem for U -statistics ([17]) yields

(7.8)
√
n
(
ρa(D)−E[ρa(D)]

) L−→ N
(
0,Cov[h12a , h

13
a ]
)

provided Cov[h12a , h
13
a ] > 0. Recall that Cov[h12a , h

13
a ] = E[h12a h13a ]−E[h12a ]

E[h13a ]. Then for ARDs, Cov[h12a , h
13
a ] = 0, since h12a and h13a are indepen-

dent because arcs are independently inserted with probability pa for each
ordered pair of vertices. Thus, the asymptotic distribution of arc density of

ARDs is degenerate with ρa(D)
L→ pa as n→∞. We also have

E[h12a h13a ] = E[(I((X1, X2) ∈ A) + I((X2, X1) ∈ A)) (I((X1, X3) ∈ A)

+ I((X3, X1) ∈ A)]

= P ({(X1, X2), (X1, X3)} ⊂ A) + P ({(X1, X2), (X3, X1)} ⊂ A)

+ P ({(X2, X1), (X1, X3)} ⊂ A) + P ({(X2, X1), (X3, X1)} ⊂ A).

So Cov[h12a , h
13
a ] is equal to

P ({(X1, X2), (X1, X3)} ⊂ A) + P ({(X1, X2), (X3, X1)} ⊂ A)

+ P ({(X2, X1), (X1, X3)} ⊂ A) + P ({(X2, X1), (X3, X1)} ⊂ A)

− [2P ((X1, X2) ∈ A)]2.

By the positive dependence shown in equation (4.12), we have

P ({(X1, X2), (X1, X3)} ⊂ A) ≥ (P ((X1, X2) ∈ A))2,

and similar to the derivation of positive dependence in equation (4.12), by
relabeling the vertices, we can show that

P ({(X1, X2), (X3, X1)} ⊂ A) ≥ (P ((X1, X2) ∈ A))2,
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P ({(X2, X1), (X1, X3)} ⊂ A) ≥ (P ((X1, X2) ∈ A))2,

and
P ({(X2, X1), (X3, X1)} ⊂ A) ≥ (P ((X1, X2) ∈ A))2.

So by positive dependence, we show that Cov[h12a 12, h12a 13] ≥ 0, and hence
the asymptotic variance of arc density for VRDs is nonnegative, so the
asymptotic distribution of the arc density for VRDs is a normal distribution
or it is degenerate with zero variance. For example, Cov[h12a , h

13
a ] = 0 if the

VRD is the complete digraph or the empty digraph. This result guarantees
the asymptotic distribution of PCDs is a valid distribution as PCDs are
VRDs.

Similarly, for VRGs, P (XiXj ∈ E) = P (X1X2 ∈ E) =: πe, since only
vertices are random and they are iid from µ, so E[ρe(G)] = πe. Similarly,
for ERGs, P (XiXj ∈ E) = P (X1X2 ∈ E) = pe, since only edges are random
and independently inserted with probability pe. Then E[ρe(G)] = pe.

The variance Var[ρe(G)] for VRGs and ERGs simplifies to the one in
equation (7.7) with a’s replaced with e’s and the CLT result follows provided
Cov[h12e , h

13
e ] > 0. For ERGs, Cov[h12e , h

13
e ] = 0 since h12e and h13e are

independent. Thus, the asymptotic distribution of edge density of ERGs is

degenerate with ρe(G)
L→ pe as n→∞.

Recall that hije = I{XiXj ∈ E}. Then

E[h12e h13e ] = E[I{X1X2 ∈ E}I{X1X3 ∈ E}]
= E[I{{X1X2, X1X3} ⊂ E}]
= P ({X1X2, X1X3} ⊂ E).

So Cov[h12e , h
13
e ] = P ({X1X2, X1X3} ⊂ E) − [P (X1X2 ∈ E)]2. By the

positive dependence in edges of VRGs (which can be shown as in equation
(4.12)), we have P ({X1X2, X1X3} ⊂ E) ≥ (P (X1X2 ∈ E))2. So we have
Cov[h12e , h

13
e ] ≥ 0, and hence the asymptotic variance of edge density for

VRGs is nonnegative, so the asymptotic distribution of the edge density for
VRGs is a normal distribution or it is degenerate with zero variance. For
example, Cov[h12e , h

13
e ] = 0 if the VRG is the complete graph or the empty

graph. This result guarantees the asymptotic distribution of the underlying
graphs of the PCDs is a valid distribution as the underlying graphs of PCDs
are VRGs ([5]).

8. Discussion and Conclusions

In this paper, we present four families, namely, arc random digraphs
(ARDs), vertex random digraphs (VRDs), vertex-arc random digraphs (VAR
Ds), and direction random digraphs (DRDs) of isomorphism-invariant ran-
dom digraphs (IIRDs) based on where the randomness resides. The first
three of these classes can be viewed as extensions of the isomorphism-
invariant random graph (IIRG) classification of [1] to digraphs. We also
introduce randomness in direction (together with arcs, vertices, etc.) to
obtain the family of DRDs which includes direction-edge random digraphs
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(DERDs), direction-vertex random digraphs (DVRDs), and direction-vertex-
edge random digraphs (DVERDs). We demonstrate that to obtain a DRD
as an IIRD, one has to start with an IIRG and insert directions randomly.

The main results of this paper are illustrated in Figures 1–3. For n ≥
4, we show that there is no random digraph that is both an ARD and a
VRD (which is the digraph counterpart of the result in [1], that there is no
nondegenerate random graph which is both an ERG and a VRG for n ≥ 4).
It is shown in [1] that for every n ≥ 6, there exist VERGs which neither
belong to ERGs nor VRGs. We reduce the lower bound for n from 6 to 4 by
using the asymmetric structure of the function φa, and obtain the digraph
counterpart of their result, i.e., there exist VARDs which have no ARD or
VRD representation for n ≥ 4. We also show the existence of IIRDs that are
not VARDs, and provide random nearest neighbor digraphs(RNNDs) as an
example. However, for DRDs we have the same lower bound for n; that is,
for n ≥ 6, there exist DVERDs which neither belong to DERDs or DVRDs.
We show that there are IIRDs which are not DRDs and as an example
provide RNNDs again. Moreover, the underlying graph of a RNND with
large n serves as an example of IIRG which is not a VERG. We also show
that for n ≥ 4, ARDs are the only random digraphs which have both DERD
and VARD representations. The method we use for the latter result is not
applicable to the intersection of the families DVRDs and VARDs (and also to
the intersection of DVERDs and VARDs), since we lose the independence of
the edges in a VRG. Therefore, identifying all random digraphs with both
DVRD and VARD representations is a challenging problem, and remains
open. We also provide other open problems, e.g., identifying the digraphs
in the intersection of DVERDs and VARDs and their subfamilies.

For n = 2, we show that any isomorphism-invariant random digraph has
DERD, DVRD and VRD representations. But things get more complicated
for n = 3 or larger. For n = 3, we show that any DERD has a VARD
representation and any DERD whose edge probability is 1/2 is also a VRD.
However, the question of whether there is other DERDs with VRD repre-
sentation is open, and we conjecture that any DERD is a VRD as well for
n = 3. Yet, when n = 3, every DVERD is a DVRD.

We also show positive dependence between the arcs of a VARD that share
the same tail. This positive dependence guarantees the variance of the as-
ymptotic distribution of the arc density of VRDs and ARDs is nonnegative.
Hence the asymptotic distribution of the arc density of VRDs is normal if
the asymptotic variance is positive, otherwise it is degenerate and asymp-
totic distribution of ARDs is degenerate. In particular, PCDs are a member
of the VRD family, and so their arc density either converges in distribution
to its expectation (i.e., is degenerate) or to normal distribution. Arc density
of PCDs have been applied for testing multi-class spatial patterns exploiting
their asymptotic normality ([4]). These results hold for VRGs and ERGs
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(and thus for the underlying graphs of VRDs and ARDs) as well. Simi-
lar to arc density of PCDs, edge density of the underlying graphs of PCDs
converges in distribution to its expected value or normal distribution.
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