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FACE MODULE FOR REALIZABLE Z-MATROIDS

IVAN MARTINO

Abstract. In this work, we define the face module for a realizable
matroid over Z. Its Hilbert series is, indeed, the expected specialization
of the Grothendieck–Tutte polynomial defined by Fink and Moci in [10].

A matroid M is a simplicial complex I on a ground set [n] = {1, . . . , n},
such that

A,B ∈ I,#A > #B ⇒ ∃a ∈ A \B : B ∪ {a} ∈ I.

The latter is called independent set exchange property and I is often called
independent sets family. Matroids encapsulate the combinatorics that un-
derline the arrangements of hyperplanes in affine or projective space.

There are two classical objects one associates to a matroid: the Stanley–
Reisner ring k[M ], that is the face ring of I, and the Tutte polynomial TM .
They are related by the following result:

Theorem. Let M be a matroid of rank r with ground set [n] and call M∗

its dual matroid. Then:

Hilb(k[M ], t) =
tr

(1− t)r
TM∗(1, 1/t).

where Hilb(k[M ], t) is the Hilbert series of k[M ].

Fink and Moci [10] generalize the concept of matroid to a larger setting: a
matroidM over a commutative ring R on the ground set [n] is an assignment
of an R-module M(A) for every subset A of [n]. This assignment has to
respect a certain local patching condition.

One of the reasons behind this generalization is to deal with arrangements
of hypersurfaces. Steps toward a Rota cryptomorphism are already done
over a Dedekind domain [10], over valuation ring [11] and, more relevant for
this manuscript, over Z [8].

For the goal of this paper, it is worth recalling that a realizable matroid
over Z relates to a generalized toric arrangement [17, 4].
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In this paper, we introduce a candidate for the role of the independent
set complex for realizable matroids over Z, that we call a partially order set
(poset) of torsions of M. This new poset provides a combinatorial tool for
(generalized) toric arrangements to compute their integral cohomology [2], to
construct their wonderful models [18] and their projective wonderful models
[3]. Moreover, this paves the way to show one of Rota’s cryptomorphisms
for matroids over Z.

Given a matroid M over Z, M(A) is an abelian group and so

M(A) = Zd(A) ×GA,

where GA is a torsion group and its cardinality, #GA, is often referred as
the multiplicity of A, m(A). Call d = d(∅), the dimension of the matroid
M and CA, the dual group of GA.

Definition. We denote by GrM the set of torsions of M. This is the set
of all pairs (A, l) with d− d(A) = #A and l ∈ CA.

First, observe that (∅, e) always belongs to GrM. We are going to give a
partial order to GrM by defining certain covering relations inspired by the
poset of layers of a toric arrangement [17, 4]. Similar ad hoc constructions
appear also in [2]. This order depends on the realization of the matroidsM.
Indeed, every realization provides a surjective map π : CA∪b � CA. (See
Section 2 for further details.)

Definition. Let M be a realized Z-matroid. Let (A ∪ {b}, h) and (A, l) be
two elements of GrM. We say that (A ∪ {b}, h) covers (A, l) if and only if
π(h) = l.

This poset is not a simplicial complex, but it is the union of identical
simplicial posets.

Theorem A. If M is a realized Z-matroid, then GrM is a disjoint union
of m(∅) simplicial posets isomorphic to the link of (∅, e) in the poset GrM.

As a byproduct, one can reproduce many of the results of Sections 5 and
6 of [17], but at the cost of losing part of the geometrical intuition.

From the poset GrM we define a face module k[M] associated toM. For
this, we use Stanley’s construction [19] of the face ring for simplicial posets.
As proof that GrM is the correct combinatorial object to study, we also
show that the Hilbert series of its face module is the specialization of the
Grothendieck–Tutte polynomial, as in the classical case:

Theorem B. If M is a realizable Z-matroid of rank r, then

Hilb(k[M], t) =
tr

(1− t)r
TM∗(1, 1/t).

The Grothendieck–Tutte polynomial for matroid over a ring has been
defined by Fink and Moci [10] as a function ofM in a certain Grothendieck
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ring of matroids, but, in our setting, TM is more concretely the arithmetic
Tutte polynomial, see [4]. Precisely,

TM(x, y) =
∑
A⊆[n]

m(A)(x− 1)r−cork(A)(y − 1)#A−cork(A),

where cork(A) = d(∅)− d(A).
It is worth mentioning that it is not clear if the poset of torsion is uniquely

defined for nonrealizable matroids. On the other hand, the proof of Theorem
B holds easily for any simplicial poset with the correct f -vector. Therefore
we conjecture that Theorem B holds for every Z-matroid. We say more
about this in Remark 4.2.

The paper is organized as follows: in Section 1 we recall all the basic
notions needed for a full comprehension of the results. In Section 2 we
define the poset of torsions and in Section 3 we prove Theorem A. Finally,
in Section 4 we show Theorem B.

1. Basic notions

1.1. Simplicial posets. Let (P,<) be a finite partially ordered set (poset).
A poset with a unique initial element, denoted by 0̂, is said to be simplicial
if for each σ ∈ P the segment [0̂, σ] = {x ∈ P : 0̂ ≤ x ≤ σ} is a boolean
lattice. We say that the rank of [0̂, σ] is the length of its maximal chain;
therefore (P,<) has a natural rank function rk induced by the rank of the
segments [0̂, σ]. We denote by r the rank of P , the maximal rank among all
its segments.

For any σ and τ in P , σ ∧ τ is the set of their greatest lower bounds
(meets) and σ ∨ τ is the set of their least common upper bounds (joins).
For a simplicial poset, σ ∧ τ is a singleton and by an abuse of notation we
identify the σ ∧ τ with the unique greatest lower bound of σ and τ .

Example 1.1. Consider the set given by P1 = {0̂, a, b, 1, 2}, where every
number is greater or equal to every letter and every element is greater or
equal to 0̂, see Figure 1.a). This is a simplicial poset. It is not the face
poset of any simplicial complex, but it is the face poset of a digon, a CW-
complex shown in Figure 1.b). Its order complex is a triangulation of the
one dimensional sphere, see Figure 1.c). We compute few examples of meets
and joins that are useful in future computations: 1 ∧ a = {a}, a ∧ b = {0̂},
a ∨ b = {1, 2}, and 1 ∨ 2 = ∅.

Example 1.2. Consider the set P2 = {0̂, a, b, c, 1} with the same order law
given for P1, see Figure 1.d). This is not a simplicial poset, because [0̂, 1] is
not boolean.

1.2. Face ring. Given a field k, we set the polynomial ring RP = k[xσ :
σ ∈ P ] where xσ has degree rkσ. In this recap section we are going to follow
the notation in [19].
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Figure 1. a) The poset P1 in Example 1.1; b) The CW-
complex with face poset P1; c) The order complex of P1; d)
The poset P2 in Example 1.2.

Definition 1.3. The face ideal of a simplicial poset P is the ideal of RP
defined as

IP =

(
x0̂ − 1, xσxτ − xσ∧τ

( ∑
γ∈σ∨τ

xγ

)
for any σ, τ ∈ P

)
.

As a notation, the sum
∑

γ∈σ∨τ xγ is zero if σ ∨ τ = ∅. Moreover, the face
ring of a simplicial poset P is the quotient

k[P ] =
k[xσ : σ ∈ P ]

IP
.

Example 1.4. Consider the simplicial poset P1 defined in Example 1.1, RP1

is the polynomial ring k[x0̂, xa, xb, x1, x2].

The ideal IP1 =
〈
x0̂ − 1, xaxb − (x1 + x2), x1x2

〉
. Indeed, the basis gen-

erators are obtained by substituting respectively (a, b) and (1, 2) to the pair

the (σ, τ) into xσxτ − xσ∧τ
(∑

γ∈σ∨τ xγ

)
. For all other values of (σ, τ), the

previous relation is trivial. The face ring of P1 is therefore defined as the
quotient

k[P1] =
k[x0̂, xa, xb, x1, x2](

x0̂ − 1, xaxb − (x1 + x2), x1x2

) .
This definition generalizes the Stanley–Reisner ring of a simplicial com-

plex. Given an abstract simplicial complex ∆ on n vertices its Stanley–
Reisner ring k[∆] the following quotient ring k[∆] = k[x1,...,xn]/I∆, where
I∆ = 〈xi1 . . . xir : {i1, . . . , ir} /∈ ∆〉. One can easily check that the two face
ring definitions coincide in the case of an abstract simplicial complex.

Example 1.5. Consider the simplicial poset P2 defined in Figure 2.a). This
is the face poset of a simplicial complex. Precisely, the path graph on 3
elements. Its face ring, k[P2], is isomorphic to k[x,y,z]/(xz).

From now on, we assume that P is a simplicial poset, that ∆ is an abstract
simplicial complex and r denotes their ranks.



78 IVAN MARTINO

1.3. The Hilbert series of the face ring. Let N be a finitely generated
N-graded A-module where A is a finitely generated N-graded commutative
algebra over k. Denote by Ni the homogeneous part of degree i. The Hilbert
series of N is the following generating function:

Hilb(N, t) =
∑
i≥0

dimk(Ni)t
i,

where dimk(Ni) is the dimension of Ni as a k-vector space. We consider
Hilb(A, t) as the Hilbert series of A seen as a module over its self.

The ring k[P ] is graded and its Hilbert series encodes many combina-
torial objects, like the f -vector and the h-vector. Here, we briefly recall
their definitions. The f -vector, f(P ), of a simplicial poset P is the vector
(f−1, f0, . . . , fr−1) where fi is the number of elements of rank i + 1 in P ;
by notation f−1 = 1 counts the empty set as a dimension −1 object. The
h-vector of P is the vector h(P ) = (h0, h1, . . . , hr) defined recursively from
the f -vector by using

∑r
i=0 fi−1(t− 1)r−i =

∑r
i=0 hit

r−i.

Example 1.6. We compute f(P1) and h(P1) for the simplicial poset in

Example 1.1. Trivially, f(P1) = (1, 2, 2). Expanding
∑2

i=0 fi−1(t−1)2−i one
gets t2 + 1 and therefore h(P1) = (1, 0, 1).

Example 1.7. Let us make similar computation for P2 in Example 1.5.
Clearly f(P2) = (1, 3, 2) and by expanding

∑2
i=0 fi−1(t− 1)2−i = t2 + t and

therefore h(P2) = (1, 1, 0).

As said, one can read the f -vector and the h-vector from the face ring
k[P ].

Theorem 1.8 ([19, Proposition 3.8]). Let P be a simplicial poset of rank r
and let k[P ] be its face ring. Then

Hilb(k[P ], t) =
h0 + h1t+ · · ·+ hrt

r

(1− t)r
.

Example 1.9. Let us verify the previous theorem for our toy simplicial
poset P1. Its face ring is computed in Example 1.4 and its f -vector and
h-vector are shown in Example 1.6.

By a dirty hands computation or by using Macaulay2 [13] we see that
this Hilbert series simplifies to

Hilb(k[P1], t) =
1− t2 − t4 + t6

(1− t2)2(1− t2)
=

1 + t2

(1− t)2

and this is indeed the expected result.

Example 1.10. In the case of the face poset P2, it is easy to verify what
we have just stated. Indeed, in Example 1.5, the face ring and in Example
1.6 we computed the face ring, the f -vector and h-vector. It is trivial to
observe the following:

Hilb

(
k[x, y, z]

(xz)
, t

)
=

1− t2

(1− t)3
=

1 + t

(1− t)2
.
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1.4. Matroid over a ring R. In [10], Fink and Moci generalize the concept
of matroid to matroid over a commutative ring R. In this section we give
the general definition then deal with the case R = Z.

1.4.1. R-matroids. Let 2[n] be the set of all subsets of [n] and let R–mod
the category of finitely generated R-modules.

Definition 1.11. A matroid over the ring R is the function

M : 2[n] → R– mod

such that for any subset A of [n] and any elements b and c of [n] \ A there
exist xb,c and yb,c in M(A), such that:

M(A ∪ {b}) ' M(A)/(xb,c)

M(A ∪ {c}) ' M(A)/(yb,c)

M(A ∪ {b, c}) ' M(A)/(xb,c,yb,c)

The choice of M is relevant only up to isomorphism. Moreover, we are
going to assume thatM is essential, that is no nontrivial projective module
is a direct summand of M([n]).

In Proposition 2.6 of [10], Fink and Moci had shown that an essential
matroid over a field k is a matroid in the classical case. For this reason,
from now on, we are going to call these k-matroids.

1.4.2. Realizable Z-Matroids. For this paper, we are going to set R = Z.
We define a corank function cork(A) of M as the corank function of the
Q-matroid M⊗Z Q:

cork(A) = corkQM⊗Z Q(A).

For any subset A of [n], M(A) is an abelian group,

M(A) = Zd(A) ×GA,
where GA is the torsion part. We call m(A) = #GA the multiplicity of A.
Clearly, cork(A) = d(∅)− d(A).

A Z-matroidM on [n] is realizable if there is a list of elements z1, . . . , zn ∈
M(∅) such that M(A) = M(∅)/(zi:i∈A).

The definition (see Section 2) of the poset GrM depends on the realiza-
tion of the matroidM. For this, when we need to use explicitly a realization
of a matroid M we are going to talk about realized matroid M.

Example 1.12. Let R = Z and n = 2. Set M(∅) = Z2, M({1}) = Z2/(2,0),
M({2}) = Z2/(0,1) and M({1, 2}) = Z2/((2,0),(0,1)).

Example 1.13. Let A = Z and n = 2. Set M(∅) = Z2, M({1}) = Z2/(1,1),
M({2}) = Z2/(1,−1) and M({1, 2}) = Z2/((1,1),(1,−1)).

Remark 1.14. The definition and results in the next sections hold also for
arithmetic matroids. We do not need any of the arithmetic matroids tools.
In Section 6.1 of [10, Section 6.1] it is shown that Z-matroids with an extra
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molecule condition are arithmetic matroids. (Not all arithmetic matroids
can be seen as a Z-matroid.)

1.4.3. Grothendieck–Tutte polynomial. In the rest of this section, we are
going to define the Grothendieck–Tutte polynomial for a matroid over Z.

Let L0(Ab) be the Grothendieck type ring of abelian groups, that is the
free group generated by the isomorphic classes [G] for any finitely generated
abelian group G. There is a ring multiplication given by [G][G′] = [G×G′].
This object is very useful; for instance it appears in [6, 7, 15, 16]. In Section
7.1 of [10], it is proved the Grothendieck–Tutte class is well defined to be
the following element of L0(Ab)⊗ L0(Ab):

GTM =
∑
A⊆E

[M(A)][M∗(E \A)]

whereM∗ is the matroid dual toM and E is their common ground set. (We
use E to avoid confusion between [n] and [M(−)].) For a precise definition
of the dual matroid M∗ we refer to Section 7 of [4].

Let G be a group and consider its class [G] in L0(Ab): since G ' Zd×Gt,
one has that [G] = [Zd][Gt] ∈ L0(Ab). Now, fix the following evaluations for
L0(Ab): vx([G]) = #Gt(x − 1)d and similarly, vy([G]) = #Gt(y − 1)d and
consider the image of GTM with respect to the map

vx ⊗ vy : L0(Ab)⊗Z L0(Ab)→ Z[x, y].

The Grothendieck–Tutte polynomial for M is TM(x, y) = (vx ⊗ vy)(GTM).
Then,

(1) TM(x, y) =
∑
A⊆[n]

m(A)(x− 1)r−d(A)(y − 1)#A−d(A).

This polynomial was first introduced by Moci in [17] and it is often called
the arithmetic Tutte polynomial. It easy to observe that

(2) TM(x, y) = TM∗(y, x).

Example 1.15. Let us compute TM for the Z-matroid given in Example
1.12. In (1) the contribution of the empty set is (x−1)2; the contribution of
the singleton {1} is 2(x−1); the contribution of the singleton {2} is (x−1);
finally, the contribution of the full ground set [2] is 2. Thus, TM(x, y) =
x2 + x.

Example 1.16. We compute TM for the matroid in Example 1.13. In
(1) the contribution of the empty set is (x − 1)2; the contribution of each
singleton is (x − 1); finally, the contribution of the full ground set [2] is 2.
Thus, TM(x, y) = x2 + 1.

As remarked in the introduction, the face ring and the Grothendieck–
Tutte polynomial of a k-matroid are related.
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Theorem 1.17. LetM be a k-matroid of rank r. Let k[M] be its face ring.
Then,

Hilb(k[M], t) =
tr

(1− t)r
TM∗(1, 1/t).

Proof. To the author’s best knowledge, this result appears first in the above
form in the Appendix (section A.3) by Björner in the work of De Concini
and Procesi [5]. �

The goal of the paper is to extend this result to realizable Z-matroids.

2. The poset of torsions

The aim of this section is to define a new poset taking the role of the
independent complex in the case of k-matroids.

Throughout this section we assume that A is a subset of [n] and b is
in [n]\A. Let b = c in Definition 1.11: it requires the existence of a quotient
homomorphism by xb,b ∈M(A):

(3) π(A,b) :M(A)→M(A ∪ {b}).

Call π(A,b) the canonical projection associated to A and b. While the homo-
morphism π(A,b) is unique, the choice of xb,b is not. In the case of realizable
Z-matroids, xb,b is unique and we denote it by xb.

For any subset A of [n], M(A) ' Zd(A) ×GA, where d(A) is the rank of
M(A) and GA is the torsion part ofM(A). Call CA, the dual group of GA.

Definition 2.1. We call GrM the set of torsions of M. This is the set of
all pairs (A, l) with d(∅)− d(A) = #A and l ∈ CA.

Inspired by Section 5 of [17], we are going to view such a set as a bunch of
tori with the right dimension and cardinality, prescribed by the Z-matroid.
This is the reason that lead us to work with the dual group CA instead of
GA, even if they are isomorphic. Moreover, consider A and A∪{b} such that
d(∅) − d(A) = #A and d(∅) − d(A ∪ {b}) = #A + 1. Then, the map π(A,b)

restricted to GA is injective and its dual π(A,b) : CA∪{b} � CA is surjective.

Definition 2.2. Let (A ∪ {b}, h) and (A, l) be two elements of GrM. We
say that (A ∪ {b}, h) covers (A, l), and we write (A ∪ {b}, h)B (A, l), if and
only if h ⊆ l.

Example 2.3. Let us compute the poset of torsions of the matroid given
in Example 1.12. We show the poset in Figure 2.a). Clearly there are six
elements (∅, e), ({1}, e), ({1}, ζ), ({2}, e), ([2], e), and ([2], ζ).

Now observe that trivially ({1}, e), ({1}, ζ), ({2}, e) cover (∅, e) and ([2], x)
covers ({2}, e) because C[2] surjects to C{2} = {e}. Moreover ([2], x) covers

({1}, x), because C[2] ' C{1}, thus π({1},2)(x) = x. This also shows that
([2], x) does not cover ({1}, y) if x 6= y ∈ Z/2Z.
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Figure 2. a) The poset of torsions of the matroid given
in Example 1.12; b) The poset of torsions P1 of the matroid
given in Example 1.13 c) The poset of torsions of the matroid
in Example 4.3.

Example 2.4. The poset of torsions of the matroid given in Example 1.13
is actually the poset P1 defined in Example 1.1 and discussed throughout
Section 1. This poset is in Figure 2.b). We leave to the reader to verify the
covering relations, which are straightforward.

3. GrM is a union of simplicial posets

In this section we are going to prove Theorem A, that is GrM is a union
of simplicial posets. We start by proving two properties of GrM.

Proposition 3.1. Let M be a realizable matroid over Z. Let (A ∪ {b}, h),
(A, l1), (A, l2) be in GrM. If (A∪{b}, h)B (A, l1) and (A∪{b}, h)B (A, l2)
then l1 = l2 ∈M(A).

Proof. By Definition 2.2 if (A ∪ {b}, h) B (A, l1) and (A ∪ {b}, h) B (A, l2)

then π(A,b)(h) = l1 and π(A,b)(h) = l2, thus l1 = l2 ∈ CA. �

Proposition 3.2. Let M be a realizable matroid over Z. Let (A ∪ {b}, h)
be in GrM. Then, there exist l ∈ GA such that (A ∪ {b}, h)B (A, l).

Proof. Consider the Q-matroidM⊗Q and observe thatM⊗Q(A) = Qd(A).
Thus, (A ∪ {b}, h) ∈ GrM implies that A ∪ {b} belongs to the independent
set complex ofM⊗Q. This is a simplicial complex and so if A ⊂ A∪{b} then
A also belongs to the independent set complex and so, by definition, one has
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that d(∅)−d(A) = #A. Hence, remark that the map π(A,b) : CA∪{b} → CA is

well defined and pick l = π(A,b)(h). Such l ∈ CA satisfies the statement. �

Theorem 3.3. For every representable matroidM over Z withM(∅) = Zd,
GrM is a simplicial poset.

Proof. The element (∅, e) is the bottom element. The only thing to check is
that the interval I = [(∅, e), (A ∪ {b}, h)] is boolean for every independent
set A ∪ {b} and every h ∈ GA∪{b}. Recursively using Proposition 3.2, for
every subset E of A ∪ {b} there exists le ∈ GE such that (E, le) belongs to
I. Moreover, because of Proposition 3.1, such subset E appears only once
in the interval I. Thus, I is isomorphic as a poset to the boolean lattice
[∅, A ∪ {b}]. �

Many of the facts shown in Sections 5 and 6 of [17] can be proved as an
application of the previous theorem. It is worth mentioning, for instance,
that as a corollary of Theorem 3.3, one gets Lemma 6.1 of [17].

Lemma 3.4 ([17, Lemma 6.1]). Let M be a realizable matroid over Z. We

call EM(y) =
∑

A⊆[n](y−1)#A−cork(A) the polynomial of the external activity

of M. Denote by C0 the pair (A, l) ∈ GrM such that d(A) = 0. Finally
call MA the restriction of the matroid M to (A, l).

Then,

TM(1, y) =
∑

(A,l)∈C0

EMA
(y).

Indeed, the fact that each interval [(∅, e), (A∪{b}, h)] is isomorphic to the
boolean lattice [∅, A∪{b}] implies that in the realizable arithmetic case, the
toric arrangement associated looks locally as a hyperplane arrangement.

By applying Theorem 3.3, one can extend the main result to any realizable
Z-matroid. To do this, we need the following technical definition. Given an
element σ of a poset P we denote the link of σ by linkP (σ):

linkP (σ) = {τ ∈ P : σ ≤ τ} ⊆ P.
Theorem A. IfM is a realizable Z-matroid, then GrM is a disjoint union
of m(∅) (= #G∅) simplicial posets isomorphic to linkGrM(∅, e).
Proof. If M(∅) is a free group, we have already proved that the statement
is true in Theorem 3.3. If M(∅) is not free, pick c ∈ C∅. Each pair (∅, c) is
minimal in GrM. Moreover, there is a natural poset isomorphism from the
elements of linkGrM(∅, e) to the elements of linkGrM(∅, c). The isomorphism
sends (E, l) ∈ linkGrM(∅, e) to (E, cl) ∈ linkGrM(∅, c).

Finally, define for every A ⊆ [n], M′(A) = M(A)/G∅. This is a realizable
Z-matroid and M′(∅) is free. Moreover, Gr(M′) = linkGrM(∅, e). �

4. The Hilbert series of the face module

In this section we show that the face module and the Grothendieck–Tutte
polynomial of a realizable Z-matroid are related as in the classical case.
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Recall that the face ring of a simplicial poset P has been defined in Section
1 and it is denoted by k[P ]. Theorem 3.3 shows that if M is representable
matroid over Z withM(∅) = Zd, then GrM is a simplicial poset. Therefore,
we might define the face ring of such matroid M as

k[M] = k[Gr(M)].

In the general realizable caseM(∅) = Zd(∅)×G∅, Theorem A ensures that
GrM is a union of m(∅) = #G∅ a simplicial posets. The correct algebraic
structure is no longer a ring, but a module. Combining these facts, the
reader can make sense of the following definition.

Definition 4.1. The face module k[M] of M is

k[M] = k[Gr(M′)]m(∅),

where M′ is the matroid defined for every A ⊆ [n] by M′(A) = M(A)/G∅.

Note that k[M] is a free module over the ring k[linkGrM(∅, e)]. In other

words, k[M] = k[linkGrM(∅, e)]m(∅). If M(∅) is free then the face module
has a ring structure, i.e. k[M] = k[GrM]. Finally, recall that the dual of a
realizable Z-matroid is still realizable (see Section 2 of [4]).

Theorem B. If M is a realizable Z-matroid of rank r, then

Hilb(k[M], t) =
tr

(1− t)r
TM∗(1, 1/t).

Proof. For the additivity property of the Hilbert series, it is enough to show
that the theorem is true in the case m(∅) = 1. GrM is a simplicial poset
because of Theorem 3.3. One defines its h-vector as

r∑
i=0

fi−1(GrM)(t− 1)r−i =

r∑
i=0

hi(GrM)tr−i.

We observe that
fi−1(GrM) =

∑
#A=i

m(A),

where m(A) is the order of the torsion part of M(A). Hence
r∑
i=0

hi(GrM)tr−i =
∑
A∈[n]

m(A)(t− 1)r−d(A) = TM(t, 1).

Therefore, trTM(1/t, 1) =
∑r

i=0 hi(GrM)ti. We now apply Theorem 1.8
together with (2) to get the result. �

Remark 4.2. The proof of the above theorem works for every simplicial
partial order of the set in Definition 2.1. We conjecture Theorem B is true
for every matroid over Z and the only obstacle to this result is hidden in the
nature of the canonical projections. Indeed, for a nonrealizable Z-matroid,
it is not clear if there is a unique simplicial order of the set in Definition 2.1,
that respects Definition 2.2.
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Throughout the paper we have played with two toy examples: M1 defined
in Example 1.12 andM2 defined in Example 1.13. In Table 1 we summarize
where to find the related calculations: the computations of the poset, the
Tutte polynomial, the face ring, etc.

M TM GrM h, f k[M] Hilb Fig.
M1 Ex. 1.12 Ex. 1.15 Ex. 2.3 Ex. 1.7 Ex. 1.5 Ex. 1.10 Fig. 2.a)
M2 Ex. 1.13 Ex. 1.16 Ex. 2.3 Ex. 1.6 Ex. 1.4 Ex. 1.9 Fig. 2.b)

Table 1. The computations of the toy examples M1 and M2.

We now provide a more substantial example to verify the recently proved
Theorem B.

Example 4.3. Let n = 3 and we define M as follows:

M({1, 2}) = Z2/((1,1),(1,−1)) M({2, 3}) = Z2/((1,−1),(1,0)) M({1, 3}) = Z2/((1,1),(1,0))

M({1, 2, 3}) = Z2/((1,1),(1,−1),(1,0))

M({3}) = Z2/(1,0)M({2}) = Z2/(1,−1)M({1}) = Z2/(1,1)

M(∅) = Z2

Let us compute TM. We list the contribution in (1) for each subset:

∅ (x− 1)2

{1}, {2}, {3} (x− 1)
{1, 2} 2
{1, 3} 1
{2, 3} 1
{1, 2, 3} (y − 1)

Thus, we get TM(x, y) = x2 + x+ y + 1.
Now we want to construct GrM. We start by observing that the ma-

troid in Example 1.13 is a submatroid of M. We have already studied this
submatroid and therefore we do not need to explain the covering relation
among (∅, e), ({1}, e), ({1}, ζ), ({2}, e), ([2], e), and ([2], ζ).

In GrM, we also find ({3}, e), ({1, 3}, e), and ({2, 3}, e). We remark that
the subset [3] does not appear in the poset, because 2 = cork([3]) 6= #[3] =
3. Thus, it remains to study which elements are covered by the subsets
containing 3. Readily, ({3}, e) covers (∅, e).
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Since C{2,3}, C{1,3} are trivial groups, then ({1, 3}, e) covers ({1}, e) and
({3}, e), and similarly ({2, 3}, e) covers ({2}, e) and ({3}, e). Figure 2.c)
shows GrM.

Using Macaulay2 [13], we compute the Hilbert series of the face ring:

Hilb(k[M], t) =
1 + t+ 2t2

(1− t)2
.

Let us focus on the dual matroid; one can easily compute that

M∗({1, 2}) = e M∗({2, 3}) = e M∗({1, 3}) = e

M∗({1, 2, 3}) = e

M∗({3}) = Z/2ZM∗({2}) = eM∗({1}) = e

M∗(∅) = Z

By duality TM∗(x, y) = y2 + y + x+ 1 and by trivial computation,

Hilb(k[M∗], t) =
1 + 3t

(1− t)
.
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