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HAMILTON CYCLES IN BIDIRECTED COMPLETE

GRAPHS

ARTHUR BUSCH, MOHAMMED A. MUTAR, AND DANIEL SLILATY

Abstract. Zaslavsky observed that the topics of directed cycles in di-
rected graphs and alternating cycles in edge 2-colored graphs have a
common generalization in the study of coherent cycles in bidirected
graphs. There are classical theorems by Camion, Harary and Moser,
Häggkvist and Manoussakis, and Saad which relate strong connectiv-
ity and Hamiltonicity in directed “complete” graphs and edge 2-colored
“complete” graphs. We prove two analogues to these theorems for bidi-
rected “complete” signed graphs.

1. Introduction

There are many similarities between the two topics of directed paths and
directed cycles within directed graphs and alternating paths and alternating
cycles within edge-2-colored graphs. One viewpoint for these similarities
is that these topics have a common generalization as coherent paths and
coherent cycles in bidirected graphs. This common generalization was first
noted by Zaslavsky [21, p.26].

A bidirected graph is a graph B in which each edge is given two directional
arrows, one at each end of the edge. (Bidirected graphs were introduced by
Edmonds and Johnson [7].) Often a bidirection β on a graph G is thought
of as a function β : V (G)× E(G) → {−1, 0,+1} where β(v, e) = +1 means
the directional arrow of e at v is pointed towards v, β(v, e) = −1 means
the directional arrow of e at v is pointed away from v, and β(v, e) = 0
means that e is not incident to v. There are three types of bidirected edges:
directed, introverted, and extroverted (see Figure 1).
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Extroverted

Introverted

Directed

Figure 1. There are three types of edges in a bidirected graph.

Directed edges in a bidirected graph correspond to directed edges in a
directed graph and introverted and extroverted edges correspond to the two
different colors in an edge-2-colored graph. A vertex v in a bidirected graph
is called a source when all bidirectional arrows at v are pointed away from v,
a sink when all bidirectional arrows at v are pointed towards v, and singular
when it is either a source or a sink. A directed cycle in a directed graph is
a cycle in the underlying graph that has no singular vertex, an alternating
cycle in an edge-2-colored graph is a cycle in the underlying graph that has
no singular vertex, and so a coherent cycle in a bidirected graph is defined
to be a cycle in the underlying graph without a singular vertex. Thus
a coherent cycle in a bidirected graph generalizes both alternating cycles
in edge-2-colored graphs and directed cycles in directed graphs. Directed
paths, alternating paths, and coherent paths are similarly defined. Coherent
paths then come in the same three types as bidirected edges: extroverted,
introverted, and directed.

Say that a bidirected graph B is Hamiltonian if there is a Hamilton cy-
cle in the underlying graph which is coherent. There are classical theorems
dealing with conditions under which various forms of directed “complete”
graphs and edge-2-colored “complete” graphs are Hamiltonian. These in-
clude Theorems 3.1 by Camion [3], Theorem 3.2 by Harary and Moser [12],
Theorem 4.1 by Häggkvist, R. and Manoussakis, and Theorem 4.2 by Saad
[18]. In this paper we will prove some analogues to these theorems for vari-
ous forms of bidirected “complete” signed graphs. Signed graphs provide a
convenient setting for the study of bidirected graphs. This will be described
in section 2. Most of the work in this paper was developed as part of the
master’s thesis of the second author [16].

2. Preliminaries

2.1. Ordinary Graphs. All graphs in this paper will be loopless but not
necessarily simple. Our graph-theory terminology is mostly standard and
should cause no confusion to the reader familiar with the subject. We will,
however, review some pertinent terms here. A Hamilton cycle in a graph
G is a cycle passing through all of the vertices. A 2-factor in a graph G
spanning 2-regular subgraph, i.e., a vertex-disjoint union of cycles covering
all of the vertices of G. Hence a 2-factor is a Hamilton cycle if and only if
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it has one component. It is worth noting that the problem of determining
whether or not an arbitrary graph G has a Hamilton cycle is NP-hard while
the problem of determining whether or not G has a 2-factor is polynomial.
Meijer, Rodriguez, and Rappaport outline a polynomial algorithm for de-
ciding if a graph G has a 2-factor in [15]. The basic idea is as follows: take

an input graph G of minimum degree 2. Create a new graph Ĝ from G by
replacing each vertex v in G with a graph Gv consisting of a copy of K2,d(v)

along with pendant edges attached to the degree-2 vertices of the K2,d(v).
The edges of G incident to v are then attached to the degree-1 vertices of Gv.

Now the 2-factors of G correspond to complete matchings in Ĝ. Deciding if
a graph has a complete matching is calculable in polynomial time. The first
such polynomial-time algorithm was given by Edmonds [6].

2.2. Signed Graphs. A signed graph is a pair (G, σ) in which G is a graph
(which is often referred to as the underlying graph) and σ is a labeling of the
edges of G with elements of the multiplicative group {+,−}. When drawing
signed graphs, positive edges are drawn as solid curve segments and negative
edges as dashed curve segments. A cycle or path C in G is called positive
when the product of signs on its edges is positive; otherwise the cycle or
path is called negative. A signed graph (G, σ) is said to be simple when
every cycle of length two is negative; that is, there are no two edges with
the same sign that are parallel in G. Thus G need not be a simple graph for
(G, σ) to be a simple signed graph.

If G is an ordinary graph, then G can be thought of as a signed graph
in which each edge is positive. We sometimes denote this by +G. By −G
we mean the signed graph with underlying graph G in which each edge is
negative. By ±G we mean the signed graph obtained from G by doubling
each edge and for each such edge pair labeling one positive and one negative.
As a shorthand notation, we write {u, v}ϵ to mean an edge with endpoints
u and v having sign ϵ.

Given a signed graph (G, σ) a switching function is a function

η : V (G) → {+,−}.

The function ση is the labeling of the edges of G defined by

ση(e) = η(u)σ(e)η(v)

in which u and v are the endpoints of edge e. Notice that the edges of
G that change signs under the switching function η are those edges in the
edge cut [η−1(−), η−1(+)]. As such, a brief way to refer to the action of
η is that it switches on the vertices of η−1(−). Given a graph G, this
switching action defines an equivalence relation on the set of signed graphs
with underlying graph G. Two signed graphs on the same underlying graph
are called switching equivalent when they are in the same equivalence class;
furthermore, they are switching equivalent if and only if they have the same
set of negative cycles (confer Zaslavsky [20]).
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2.3. Bidirected Signed Graphs. A bidirection on a signed graph (G, σ)
is a function

β : V (G)× E(G) → {−1, 0,+1}
where for each edge e = {x, y}σ(e) of G, β(x, e)β(y, e) = −σ(e) and β(v, f) =
0 when (v, f) is not a vertex-edge incidence in G. Again, β(v, e) = +1 means
the directional arrow of e at v points towards v and β(v, e) = −1 means
the directional arrow of e at v points away from v. Note that negative
edges are either introverted or extroverted while positive edges are directed.
Also, a coherent cycle is necessarily positive with the negative edges of that
positive cycle in an alternating introverted-extroverted pattern around the
cycle; conversely, a positive cycle in a signed graph has exactly two different
coherent bidirections. We call the triple (G, σ, β) a bidirected signed graph.
A bidirected signed graph is Hamiltonian when it has a coherent Hamilton
cycle.

If η is a switching function on bidirected signed graph (G, σ, β), then βη

is defined by β(v, e) = η(v)β(v, e); that is, the arrows incident to vertices
in η−1(−) are reversed while arrows incident to vertices in η−1(+) remain
the same. Thus βη is a bidirection on signed graph (G, ση) if and only if β
is a bidirection on signed graph (G, σ) and a path or cycle of G is coherent
under β if and only if it is coherent under βη.

Given a bidirected signed graph B = (G, σ, β), construct its auxiliary
graph Aux(B) as follows. For each vertex v in B add two vertices v+ and

v− to Aux(B). For each edge e = {u, v}σ(e) in B, add edge {uβ(u,e), vβ(v,e)}
to Aux(B). Proposition 2.1 is immediate and tells us that the task of either
finding a bidirected 2-factor in a bidirected graph B or certifying that B
does not have a bidirected 2-factor can be computed in polynomial time.

Proposition 2.1. A subset X of the edge set of a bidirected graph B forms
a coherent 2-factor if and only if X form a complete matching in Aux(B).

3. Strong Connectivity

A directed graph B is said to be strongly connected when for any two
vertices u and v in B, there is a directed uv-path and a directed vu-path.
Robbins showed [17] that a graph G has a strongly-connected orientation if
and only if G is 2-edge-connected. Also, if G is Hamiltonian, then G must
be 2-connected. Consider the following theorems.

Theorem 3.1 (Camion [3]). If D is a directed Kn for n ≥ 3 (i.e., D is a
tournament), then D is Hamiltonian if and only if D is strongly connected.

Theorem 3.2 (Harary and Moser [12]). If D is a directed Kn for n ≥ 3,
then D has a directed cycle of length k for every k ∈ {3, . . . , n} if and only
if D is strongly connected.

Consider the following predicate statement P0(G) in which G is a 2-
connected graph. Theorem 3.1 tells us that P0(Kn) is true for n ≥ 3 and
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certainly P0(Cn) is true where Cn is a cycle with n ≥ 3. Grötschel and
Harary [9] proved that there is no other 2-connected simple graph G for
which P0(G) is true.

P0(G) =Any directed graph D with underlying graph G is Hamiltonian if
and only if D is strongly connected.

Saad [18] defines an edge-2-colored graph B to be strongly connected when
for any two vertices u and v, there are two alternating uv-paths P1 and P2

in which the edges of P1 and P2 incident to x ∈ {u, v} differ in color.
Strong connectivity in bidirected graphs is defined to generalize both of
these concepts in directed graphs and edge-2-colored graphs. A bidirected
graph B is said to be strongly connected when for any two vertices u and v,
there are two coherent uv-paths P1 and P2 in which the arrows of P1 and
P2 at x ∈ {u, v} are different. While an ordinary graph G has a strongly
connected orientation if and only if G is edge 2-connected, it seems harder to
characterize when a signed graph (G, σ) has a strongly connected bidirection.
We now consider the following predicate statement in which (G, σ) is a 2-
connected simple signed graph which has a strongly connected bidirection.
Theorem 3.3 gives us that P1(±Kn) is true for any n ≥ 3. It is easily seen
that P1(±Cn) is true as well. It would be interesting to know whether or
not there are any other such signed graphs satisfying P1(G, σ).

P1(G, σ) = Any bidirected signed graph B with underlying signed graph
(G, σ) is Hamiltonian if and only if B is strongly connected.

Theorem 3.3. If B is a bidirected ±Kn for some n ≥ 3, then B has a
coherent cycle of length k for every k ∈ {3, . . . , n} if and only if B is strongly
connected.

Proof. Certainly, the existence of a coherent cycle of length n in B implies
that B is strongly connected. Now assume that B is strongly connected.
First, we show that B contains some coherent cycle. Given any two vertices
u and v in B, strong connectivity implies that there are two coherent uv-
paths P1 and P2 whose arrows at u and v differ. Without loss of generality,
we may assume that P1 has length at least two and now apply switching
so that every edge in P1 is directed from u to v. Now, if P1 and P2 share
no internal vertex in common, then P1 ∪ P2 forms a coherent cycle. If P2

shares an internal vertex in common with P1, then P2 has length at least
two. Thus neither the edge {u, v}+ nor the edge {u, v}− is in P1∪P2. Since
the arrows of P1 and P2 differ at both u and v and since every edge in P1

is directed from u to v, either P1 ∪ {u, v}+ and P2 ∪ {u, v}+ is a coherent
cycle.

Second, we show that B must contain a coherent cycle of length three.
Let C be a coherent cycle of length at least four. By switching, assume that
all edges of C are directed. Now take any chord {u, v}+ of C in B. There is
now a coherent cycle C ′ in C ∪ {u, v}+ of length strictly less than C. Thus
a coherent triangle in B can be found.
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Now, inductively, assume that B has coherent cycles of lengths 3, . . . ,m.
If m = n, then we are done. Assuming that m ≤ n− 1, we will show that B
contains a coherent cycle of length m+1. Let C be a coherent cycle of length
m in B and apply switching so that every edge in C is directed. Consider
a vertex v not in C. If two positive vC-edges have different directions,
then the coherent cycle C may be extended to a coherent cycle of length
m+ 1. Similarly, if two negative vC-edges have different bidirections (that
is, one introverted and one extroverted), then again C can be extended to a
coherent cycle of length m+1. So now assume that for every vertex v /∈ C,
all positive vC-edges directed the same and all negative vC-edges bidirected
the same.

Now there are four possible patterns for the vC-edges: all arrows at v
are into v, all arrows at v are out from v, all arrows at C are into C and
all arrows at C are out from C. Let I, O, IC , and OC be the blocks of
the partition of V (B) − V (C) based on these four patterns. By applying
switching at the vertices in I, we may assume that I = ∅. Now, if there is
v ∈ IC and v′ ∈ OC , then using either of the two vv′-edges we can extend
C to a coherent cycle of length m + 1. Now switch if necessary all of the
vertices of C and we may assume that I = ∅ and IC = ∅.

If there is v ∈ O and v′ ∈ OC , then we can use v and v′ to extend C
to a coherent cycle of length m + 1 unless the {v, v′}+- and {v, v′}−-edges
both have outward arrows at v. Also, if there are distinct vertices v, v′ ∈ O,
then v and v′ may be used to extend C to a coherent cycle of length m+ 1
unless the {v, v′}−-edge is introverted. So assume that all of the negative
edges with both endpoints in O are introverted and all of the OOC-edges
have out arrows at O. So now if O ̸= ∅, then there is no coherent path
from any vertex v ∈ O to a vertex v′ ∈ C which has an in-arrow at v, a
contradiction of strong connectivity. Thus O = ∅ and OC ̸= ∅. Now if there
is a negative edge in B with both endpoints on C that is extroverted, then
there is a coherent path P of length m− 1 that is extroverted as indicated
in Figure 2.

Figure 2. An extroverted chord of a directed cycle of length
m yields an extroverted path of length m− 1.

Using the path P and any vertex from OC we get a coherent cycle of length
m + 1. So we can now assume that all of the negative edges with both
endpoints on C are introverted. Now every coherent path from a vertex



HAMILTON CYCLES IN BIDIRECTED COMPLETE GRAPHS 143

c ∈ C to a vertex v ∈ OC = V (B)− V (C) must have its arrow at c directed
away from c, a contradiction of strong connectivity. □

4. Strong Connectivity and a Coherent 2-Factor

For general bidirected graphs, strong connectivity alone is not sufficient
to assure Hamiltonicity. Adding in the existence of a coherent 2-factor along
with strong connectivity does yield interesting results.

Theorem 4.1 (Häggkvist and Manoussakis [11]). If B is a directed Kn,n,
then B is Hamiltonian if and only if B is strongly connected and contains a
directed 2-factor.

Theorem 4.2 (Saad [18]). If B is an edge 2-colored Kn, then B is Hamil-
tonian if and only if B is strongly connected and contains an alternating
2-factor.

Again, the main result of [9] tells us that the 2-factor in Theorem 4.1
is needed as a sufficient condition. To show that the alternating 2-factor
is needed as a sufficient condition in Theorem 4.2, consider the following
example. Take any Kn with n ≥ 5 and a + b = n with a > b ≥ 2. Color
the edges in vertex-disjoint Ka- and Kb-subgraphs blue and the remaining
edges in the Ka,b-subgraph red. There can be no alternating 2-factor and so
there is no alternating Hamilton cycle; however, this edge 2-colored Kn is
strongly connected. We are thus motivated to search for 2-connected simple
signed graphs (G, σ) that have a strongly connected bidirection and which
satisfy the following predicate.

P2(G, σ) = Any bidirected signed graph B with underlying signed graph
(G, σ) is Hamiltonian if and only if B is strongly connected and contains
a coherent 2-factor.
Theorem 4.3 is a simple corollary of Theorem 4.1, but Theorem 4.4 re-

quires a full proof.

Theorem 4.3. If B is an edge 2-colored Kn,n, then B is Hamiltonian if
and only if B is strongly connected and contains an alternating 2-factor.

Proof. Given the vertex bipartition X,Y for B with underlying graph Kn,n,
if we switch on the vertices ofX, then +Kn,n becomes−Kn,n while coherence
of paths and cycles and strong connectivity are preserved. The result is thus
implied by Theorem 4.1. □

Theorem 4.4. If B is a bidirected ±Kn,n, then B is Hamiltonian if and
only if B is strongly connected and contains a coherent 2-factor.

We will complete this paper with the formal proof of Theorem 4.4. We
make some comments and observations beforehand. Theorems 3.1 and 4.2
give us that P2(Kn, σ) is true for any σ that is switching equivalent to either
the all-positive signing or the all-negative signing. We thought that maybe
P2(Kn, σ) is true for any σ; however, this is not the case. Consider the
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following class of examples. For any Kn with n ≥ 6 let B be the bidirected
graph B on (Kn, σ) constructed as follows. Say that B has a coherent 2-
factor with two cycles C1 and C2. By switching we may assume that the
edges of C1 and C2 are all positive. Direct one edge from C1 to C2 and one
edge from C2 to C1. Let all of the other edges of B be extroverted. The
subgraph of B+ of B using only the positive edges is strongly connected
and so B is strongly connected; however, B is not Hamiltonian. This is
because a Hamilton cycle in B must use an equal number of introverted and
extroverted edges and so such a cycle cannot use any negative edges and
clearly B+ by itself is not Hamiltonian.

So we are left with the following questions: Is there any signed graph
(Kn, σ) aside from those switching equivalent to +Kn or −Kn for which
P2(Kn, σ) is true? Is there any ordinary graph G aside from Kn, Cn, or
Kn,n for which P2(G) is true? We suspect that the answer is no. As we
shall see, the basic strategy in the proof of Theorem 4.4 is as follows. (It is
an adaptation of the idea that is used by Saad in [18] and by Bánkfalvi and
Bánkfalvi in [2].) In a bidirected graph B, we call a 4-cycle Q a singular
quadrilateral if every vertex of Q is singular. Now if C1 and C2 are two
vertex-disjoint coherent cycles in a bidirected graph B and Q is a singular
quadrilateral with one edge in C1 and one edge in C2, then the edges in
the symmetric difference of E(Q) with E(C1 ∪ C2) form a coherent cycle
spanning V (C1) ∪ V (C2). Thus we take a coherent 2-factor and hunt for
singular quadrilaterals to hook the cycles of the 2-factor together. Note
also that a singular quadrilateral must be positive 4-cycle in the underlying
signed graph. Graphs and signed graphs other than these mentioned seem
to lack a “uniform enough” distribution of positive 4-cycles. Consider, for
example, Proposition 4.5.

Proposition 4.5. If every 4-cycle in the signed graph (Kn, σ) is positive,
then (Kn, σ) is switching equivalent to +Kn or −Kn.

Proof. Extend the sign function σ of a signed graph (G, σ) to all subsets
X ⊆ E(G) by σ(∅) = + and

σ(X) =
∏
e∈X

σ(e).

Now σ yields a linear transformation from the binary cycle space Z(G) to
the multiplicative group {+,−}. The switching equivalence class of a signing
on G is uniquely determined by this linear transformation.

Now say that every 4-cycle in (Kn, σ) is positive. We claim that either
every triangle in (Kn, σ) is positive or every triangle in (Kn, σ) is negative.
Let T and T ′ be triangles in (Kn, σ). Evidently there is a sequence of
triangles T1, . . . , Tn in which n ∈ {2, 3, 4}, T1 = T , Tn = T ′, and Ti ∪ Ti+1

forms a 4-cycle Q along with a single diagonal edge. As such

σ(Ti)σ(Ti+1) = σ(Ti + Ti+1) = σ(Q) = +

so σ(Ti) = σ(Ti+1) so σ(T ) = σ(T ′) which proves our claim.
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Now if C is a cycle of length m in (Kn, σ), then in the binary vector space
Z(Kn), C is the sum of m − 2 triangles. As such σ(C) = + when every
triangle in (Kn, σ) is positive and σ(C) = (−1)m−2 when every triangle in
(Kn, σ) is negative. In the former case (Kn, σ) is switching equivalent to
+Kn and in the latter case (Kn, σ) is switching equivalent to −Kn. □

Proof of Theorem 4.4. The necessity of these conditions is obvious. Let B
be a bidirected ±Kn,n that is strongly connected and contains a coherent
2-factor F . If F has only one cycle, then we are done and so we assume that
F contains at least two cycles. Apply switching so that the edges of F are
all positive. We will show that there is a coherent 2-factor in B with fewer
cycles than F and this will complete our proof.

Let C and D be two cycles in F . Consider the collection M of positive
CD-edges. Claim 4.6 will either yield a completion of our proof or that all
positive CD-edges have the same direction. Also, if η is a switching function
with η−1(−) = V (C), then we can again apply Claim 4.6 to complete our
proof or get that all negative CD-edges in B (i.e., the positive CD-edges in
Bη) have the same bidirection.

Claim 4.6. Either there is a coherent cycle in B with vertex set V (C)∪V (D)
or all of the edges of M have the same direction.

Proof. If there is a singular quadrilateral with one edge in C, one edge in D,
and two edges in M , then the first result holds. So for the rest of the proof of
this claim assume that there is no such singular quadrilateral; furthermore,
say that the direction from C to D is down and the direction from D to C
is up.

Let X,Y be the bipartition of the vertices of ±Kn,n. Denote the vertices
of C in cyclic order by c1, . . . , cl in which all edges are directed ci to ci+1.
(Addition of subscripts for C is taken modulo l.) Denote the vertices of
d in cyclic order by d1, . . . , dm in which all edges are directed di to di−1.
(Addition of subscripts for D is taken modulo m.) Without loss of generality
we may assume that l ≤ m, c2i+1 ∈ X, and d2i+1 ∈ Y .

Partition the edges of M into m/2 matchings M0,M2, . . . ,Mm of l-edges
each where

M2i =
{
{ck, dk+2i}+ : k ∈ {1, . . . , l}

}
.

Since there is no singular quadrilateral, there is no 1 ≤ k ≤ l − 1 for which
{ck, dk+2i}+ is down and {ck+1, dk+1+2i}+ is up. Therefore, for each match-
ing M2i either: all of its edges are up, all of its edges are down, or there
is some 2 ≤ k ≤ l such that {c1, d1+2i}+, . . . , {ck−1, dk−1+2i}+ are all up
and {ck, dk+2i}+, . . . , {cl, dl+2i}+ are all down. In Case 1 say that there is
no M2i whose edges are of this third (i.e., mixed) type. In Case 2 say that
there is some M2i of this mixed type.
Case 1: If the matchings are all directed upwards or all directed downwards,
then we are done. So suppose there is at least one of each. Taking subscripts
modulom there isM2i that is directed downwards andM2i+2 that is directed
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upwards. There is now a coherent cycle of length l +m in

E(C) ∪ E(D) ∪M2i ∪M2i+2

as indicated in Figure 3 after rotating D backwards 2i vertices.

C

D

C

D

Figure 3. Case 1: Hooking together C and D using M2i

and M2i+2. The techniques for l < m and l = m are slightly
different.

Case 2: After rotating D and relabeling its vertices we may assume that
M0 has mixed directions, up to down. The fact that there is no singular
quadrilateral linking together C and D implies that l < m. Consider Ml.
Since the last edge of M0 is down, the first edge of Ml must be down because
there are no singular quadrilaterals for C and D (see Figure 4).

C

D

Figure 4. Case 2: If the last edge of Mjl is down and the
first edge ofM(j+1)l is up, they create a singular quadrilateral
for C and D. Subscript addition is taken modulo m.

Thus all of the edges in Ml are down and inductively we now must have
that all of the edges of Mr are down for each r in the subgroup ⟨l⟩ of Zm.
However, again taking subscripts modulo m, the last edge of M−l is down
and the first edge of M0 is up; these form a singular quadrilateral for C and
D, a contradiction. □
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Now again consider any two cycles C and D in F . Let M+ be the collec-
tion of positive CD-edges and letM− be the collection of negative CD-edges.
Assume that all of the edges in M+ have the same direction and all of the
edges in M− have the same bidirection. Now either all of the arrows on the
edges of M+ ∪M− at cycle C are in the same direction or all of the arrows
on the edges of M+∪M− at cycle D are in the same direction but not both.
Assuming that the arrows of M+∪M− at D are in the same direction, then
the arrows of M+ at C are in the opposite direction as the arrows of M−

at C. In this case, we say that the edges of M+ ∪M− are mixed at C and
unidirectional at D.

Claim 4.7. If the edges of M+ ∪M− are unidirectional at D and pointed
away from D, then either: all of the negative edges of B with both endpoints
in V (D) are introverted or there is a coherent cycle in B on vertex set
V (C) ∪ V (D). The analogous conclusion holds when the negative edges of
M+ ∪M− are unidirectional at D and pointed towards D.

Proof. If there is a negative edge e with both endpoints in D that is extro-
verted, then we can find an extroverted path P in D ∪ e that spans V (D)
as indicated in Figure 2. Now using C, P , one edge from M+, and one edge
from M− we obtain a coherent cycle spanning V (C) ∪ V (D). □

Now let C1, . . . , Ct be the cycles of F with t ≥ 2. Assume that B has
no coherent cycle on the union of the vertex sets of any two of the cycles
of F . By Claim 4.6, the CiCj-edges in B are either unidirectional at Ci or
unidirectional at Cj . Supposing that the CiCj-edges are unidirectional at Ci

and are pointed towards Ci, Claim 4.7 now implies that all of the negative
edges of B with both endpoints on Ci are extroverted. Again by Claim 4.7,
if there is another Ck in which the CiCk-edges are unidirectional at Ci, then
these arrows must also point towards Ci. Now for each Ci ∈ {C1, . . . , Ct}, if
there is Cj for which the CiCj-edges are all unidirectional at Ci, then apply
switching if necessary to V (Ci) so that the CiCj-edges are unidirectional at
Ci and pointed towards Ci.

It cannot be that there is Ci ∈ {C1, . . . , Ct} such that for every Cj ̸= Ci,
the CiCj-edges are unidirectional at Ci. If this were the case, then there
would be no coherent path from any vertex u /∈ V (Ci) to a vertex v ∈
V (Ci) whose arrow at v would point away from v, a contradiction of strong
connectivity. This also implies that t ≥ 3.

Now construct a bidirected ±Kt from B, call it B̂, whose vertex set

corresponds to {C1, . . . , Ct} and the two CiCj-edges in B̂ are bidirected to

match the CiCj-edges in B. As shown in the last paragraph, no vertex of B̂

is singular and if the two CiCj-edges of B̂ are unidirectional at Ci, then they
point towards Ci. So now consider a maximum-length path P of 2-cycles in

B̂ which are bidirected as shown in Figure 5.
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Figure 5. A path of 2-cycles in B̂.

Since the rightmost vertex of P , call it C, is nonsingular in B̂, there is a
2-cycle in B whose arrows at vertex C are mixed. Since the length of P is a
maximum, the other vertex of this 2-cycle is some interior vertex of P . Thus

B̂ contains a coherently directed cycle Ĉ. If D1, . . . , Ds are the vertices of

Ĉ, then the edges of Ĉ can be used to construct a coherent cycle in B on
vertex set V (D1) ∪ · · · ∪ V (Ds). □
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