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ON THE ORDER OF APPEARANCE OF PRODUCTS OF

FIBONACCI NUMBERS

NARISSARA KHAOCHIM AND PRAPANPONG PONGSRIIAM

Abstract. Let Fn be the nth Fibonacci number. For each positive in-
teger m, the order of appearance of m, denoted by z(m), is the smallest
positive integer k such that m divides Fk. Recently, D. Marques has
obtained a formula for z(FnFn+1), z(FnFn+1Fn+2), and z(FnFn+1Fn+2

Fn+3). In this paper, we extend Marques’ result to the case z(FnFn+1 · · ·
Fn+k), for 4 ≤ k ≤ 6.

1. Introduction

Throughout this article, we write (a1, a2, . . . , ak) and [a1, a2, . . . , ak] for
the greatest common divisor and the least common multiple of a1, a2, . . . , ak,
respectively.

The Fibonacci sequence (Fn)n≥1 is defined by F1 = F2 = 1 and Fn =
Fn−1 +Fn−2 for n ≥ 3. For each m ∈ N, the order of appearance of m in the
Fibonacci sequence, denoted by z(m), is the smallest positive integer k such
that m divides Fk. The divisibility property of Fibonacci numbers and the
behavior of the order of appearance have been a popular area of research,
see [1, 2, 5, 6, 8, 15, 18, 19, 24, 26, 27, 28, 29] and references therein for
additional details and history. Recently, D. Marques [10, 11, 12, 13, 14] has
obtained formulas for z(m) for various types of m. In particular, he [13]
obtains formulas for z(FnFn+1), z(FnFn+1Fn+2), and z(FnFn+1Fn+2Fn+3).
In this article, we extend his results to the case z(FnFn+1 · · ·Fn+k), for
4 ≤ k ≤ 6. Our method is simpler and gives a general idea on how to obtain
formulas for z(FnFn+1 · · ·Fn+k), for every k ≥ 1.
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2. Auxiliary Results

In this section, we give some lemmas that will be used in the proof of the
main theorems. First we recall the following well-known results [4, 6, 8, 27]
which will be applied throughout this article:

(2.1) For n ≥ 3, m ≥ 1, Fn | Fm if and only if n | m.

(2.2) For m,n ≥ 1, (Fm, Fn) = F(m,n).

We will need to calculate 2-adic and 3-adic orders of Fibonacci numbers; the
next lemma will be useful.

Lemma 2.1 (Lengyel [9]). For each n ≥ 1, let vp(n) be the p-adic order of
n. Then

v2(Fn) =


0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

v2(n) + 2, if n ≡ 0 (mod 6),

v5(Fn) = v5(n), and if p is a prime, p 6= 2, and p 6= 5, then

vp(Fn) =

{
vp(n) + vp(Fz(p)), if n ≡ 0 (mod z(p));

0, if n 6≡ 0 (mod z(p)).

In particular,

v3(Fn) =

{
v3(n) + 1, if n ≡ 0 (mod 4);

0, if n 6≡ 0 (mod 4).

We will also need to calculate the least common multiple of consecutive
integers such as [n, n + 1, n + 2, n + 3, n + 4]. It is not difficult to compute
directly the formula for [n, n + 1, . . . , n + k] in terms of n, n + 1, . . . , n + k
for 1 ≤ k ≤ 6. But it is more convenient to apply the result of Farhi and
Kane [3] on the recursive relation of the function gk : N→ N given by

(2.3) gk(n) =
n(n + 1) · · · (n + k)

[n, n + 1, . . . , n + k]
.

Lemma 2.2 (Farhi and Kane [3]). For each k ∈ N ∪ {0}, let gk be the
function defined by (2.3). Then g0(n) = g1(n) = 1 for every n ∈ N and gk
satisfies the recursive relation

gk(n) = (k!, (n + k)gk−1(n)) for all k, n ∈ N.

Let a, b, c be positive integers. Recall the basic results in elementary
number theory that if (a, b) = 1, then (c, ab) = (c, a)(c, b), and (a, bc) =
(a, c). In addition, ((a, b), c) = (a, b, c), (a, b) = (b, a), (ca, cb) = c(a, b), and
if a ≡ b (mod c), then (a, c) = (b, c). Combining these and Lemma 2.2, we
obtain the following result.
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Lemma 2.3. For each k, n ∈ N, let Lk(n) = [n, n+ 1, . . . , n+ k]. Then the
following statements hold.

L1(n) = n(n + 1),

L2(n) =
n(n + 1)(n + 2)

(2, n)
,

L3(n) =
n(n + 1)(n + 2)(n + 3)

2(3, n)
,

L4(n) =
n(n + 1)(n + 2)(n + 3)(n + 4)

2(4, n)(3, n(n + 1))
,

L5(n) =
n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

6(5, n)(4, n(n + 1))
,

L6(n) =
n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)

12(3, n)(5, n(n + 1))
(

4, (n + 2)
(

2, n(n+1)
2

)) .
Proof. By the definition of the function gk(n), we obtain

[n, n + 1, . . . , n + k] =
n(n + 1) · · · (n + k)

gk(n)
.

So we only need to find gk(n) for k = 1, 2, 3, 4, 5, 6. Since each case is
similar, we will only give the proof in the cases k = 5, 6 assuming that cases
k = 1, 2, 3, 4 are already obtained.
Case 1 : k = 5.

From the case k = 4, we have g4(n) = 2(4, n)(3, n(n + 1)) and we
obtain by Lemma 2.2 that

g5(n) = (5!, (n + 5)g4(n))

= (5!, 2(n + 5)(4, n)(3, n(n + 1)))

= 2(5 · 4 · 3, (n + 5)(4, n)(3, n(n + 1)))

= 2(5, n + 5)(4, (n + 5)(4, n))(3, (n + 5)(3, n(n + 1)))

= 2(5, n)(4, (n + 1)(4, n))(3, 3(n + 5), n(n + 1)(n + 5))

= 2(5, n)(4, 4(n + 1), n(n + 1))(3, n(n + 1)(n + 5))

= 2(5, n)(4, n(n + 1))3

= 6(5, n)(4, n(n + 1)).

Case 2 : k = 6.



48 NARISSARA KHAOCHIM AND PRAPANPONG PONGSRIIAM

We have

g6(n) = (6!, (n + 6)g5(n))

= (6!, 6(n + 6)(5, n)(4, n(n + 1)))

= 6(8 · 5 · 3, (n + 6)(5, n)(4, n(n + 1)))

= 6(8, (n + 6)(4, n(n + 1)))(5, (n + 6)(5, n))(3, n + 6)

= 6(8, (n + 6)(4, n(n + 1)))(5, (n + 1)(5, n))(3, n)

= 6(8, (n + 6)(4, n(n + 1)))(5, 5(n + 1), n(n + 1))(3, n)

= 12

(
4, (n + 6)

(
2,

n(n + 1)

2

))
(5, n(n + 1))(3, n)

= 12

(
4, (n + 2)

(
2,

n(n + 1)

2

))
(5, n(n + 1))(3, n).

This completes the proof. �

Next we calculate the least common multiple of consecutive Fibonacci
numbers.

Lemma 2.4. For each k, n ∈ N, let LFk(n) = [Fn, Fn+1, . . . , Fn+k]. Then
the following statements hold.

(i) LF1(n) = FnFn+1.
(ii) LF2(n) = FnFn+1Fn+2.

(iii) LF3(n) = FnFn+1Fn+2Fn+3

F(n,3)
.

(iv) LF4(n) =

{FnFn+1Fn+2Fn+3Fn+4

F(n,4)
, if n ≡ 1 (mod 3);

FnFn+1Fn+2Fn+3Fn+4

2F(n,4)
, if n ≡ 0, 2 (mod 3).

(v) LF5(n) =

{FnFn+1Fn+2Fn+3Fn+4Fn+5

2F(n,5)
, if n ≡ 1, 2 (mod 4);

FnFn+1Fn+2Fn+3Fn+4Fn+5

6F(n,5)
, if n ≡ 0, 3 (mod 4).

(vi) LF6(n) =

{FnFn+1Fn+2Fn+3Fn+4Fn+5Fn+6

2F(n(n+1),5)F(n,6)
, if n ≡ 1 (mod 4);

FnFn+1Fn+2Fn+3Fn+4Fn+5Fn+6

6F(n(n+1),5)F(n,6)
, if n ≡ 0, 2, 3 (mod 4).

Proof. By (2.2), it is easy to check that Fn, Fn+1, Fn+2 are pairwise relatively
prime. So (i) and (ii) follow immediately. Since (iii), (iv), (v), and (vi) follow
from the same idea, we will only show the proof for (iii), (v), and (vi).

Recall that [a1, a2, . . . , ak] = [[a1, a2, . . . , ak−1], ak] and [a, b] = ab/(a, b).
For convenience, we let Pk = FnFn+1 · · ·Fn+k. Then (iii) follows from (ii)
by
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[Fn, Fn+1, Fn+2, Fn+3] = [[Fn, Fn+1, Fn+2], Fn+3]

=
[Fn, Fn+1, Fn+2]Fn+3

([Fn, Fn+1, Fn+2], Fn+3)
=

FnFn+1Fn+2Fn+3

(FnFn+1Fn+2, Fn+3)

=
P3

(Fn, Fn+3)(Fn+1, Fn+3)(Fn+2, Fn+3)

=
P3

F(n,n+3)
=

P3

F(n,3)
.

Assuming (iv), we can obtain (v) in the following similar way. Since Fn+3,
Fn+4, Fn+5 are pairwise relatively prime, we see that

(P4, Fn+5) = (Fn, Fn+5)(Fn+1, Fn+5)(Fn+2, Fn+5)

= F(n,n+5)F(n+1,n+5)F(n+2,n+5)

= F(n,5)F(n+1,4)F(n+2,3).(2.4)

Case 1 : n ≡ 1 (mod 3).
Then

[Fn, Fn+1, Fn+2, Fn+3, Fn+4, Fn+5] = [[Fn, Fn+1, Fn+2, Fn+3, Fn+4], Fn+5]

=

[
FnFn+1Fn+2Fn+3Fn+4

F(n,4)
, Fn+5

]
=

FnFn+1Fn+2Fn+3Fn+4Fn+5

F(n,4)

(
FnFn+1Fn+2Fn+3Fn+4

F(n,4)
, Fn+5

)
=

FnFn+1Fn+2Fn+3Fn+4Fn+5

(FnFn+1Fn+2Fn+3Fn+4, F(n,4)Fn+5)

=
P5

(P4, F(n,4)Fn+5)
.

Since
(
F(n,4), Fn+5

)
= F((n,4),n+5) = F(n,(4,n+5)) = F(n,4,n+1) = 1 and

n ≡ 1 (mod 3), we obtain by (2.4) that

(2.5) (P4, F(n,4)Fn+5) = 2(P4, F(n,4))F(n,5)F(n+1,4).

It is easy to check that if n ≡ 1, 2 (mod 4), then the right hand side of
(2.5) is equal to 2F(n,5), and if n ≡ 0, 3 (mod 4), then it is equal to 6F(n,5).
Case 2 : n ≡ 0, 2 (mod 3).

Similar to Case 1, we have

[Fn, Fn+1, Fn+2, Fn+3, Fn+4, Fn+5] =
P5

(P4, 2F(n,4)Fn+5)
.

It is easy to check using (2.2) that 2 = F3 is relatively prime to F(n,4) and
Fn+5, and that (F(n,4), Fn+5) = F((n,4),n+5) = 1. This and (2.4) implies
that

(P4, 2F(n,4)Fn+5) = 2(P4, F(n,4))F(n,5)F(n+1,4),
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which is the same as (2.5). So if n ≡ 1, 2 (mod 4), then it is equal to
2F(n,5), and if n ≡ 0, 3 (mod 4), then it is equal to 6F(n,5). This proves
(v).

Next we give a proof of (vi).
Case 1 : n ≡ 1, 2 (mod 4).

Similar to the proof of (v), we have

[Fn, Fn+1, Fn+2, Fn+3, Fn+4, Fn+5, Fn+6] =
P6

(P5, 2F(n,5)Fn+6)
.

It is easy to see that F(n,5) is relatively prime to 2. This implies that
(F(n,5), 2Fn+6) = (F(n,5), Fn+6) = F((n,5),n+6) = 1. So

(P5, 2F(n,5)Fn+6) = (P5, F(n,5))(P5, 2Fn+6)

= (FnFn+5, F(n,5))(P5, 2Fn+6).

We see that if 5 | n, then (FnFn+5, F(n,5)) = 5, and if 5 - n, then
(FnFn+5, F(n,5)) = 1. This implies that (FnFn+5, F(n,5)) = F(n,5). Thus
the above equation becomes

(2.6) (P5, 2F(n,5)Fn+6) = F(n,5)(P5, 2Fn+6).

Consider (2, Fn+6) = (F3, Fn+6) = F(3,n+6) = F(3,n).
Subcase 1.1 : 3 - n.

Then (2, Fn+6) = 1, and Fn+6 is relatively prime to Fn+5, Fn+4,
and Fn+3. So (2.6) becomes

(P5, 2F(n,5)Fn+6) = 2F(n,5)(P5, Fn+6)

= 2F(n,5)(FnFn+1Fn+2, Fn+6)

= 2F(n,5)(Fn, Fn+6)(Fn+1, Fn+6)(Fn+2, Fn+6)

= 2F(n,5)F(n,6)F(n+1,5)F(n+2,4)

= 2F(n(n+1),5)F(n,6)F(n+2,4).(2.7)

Subcase 1.2 : 3 | n.
Then 2 and Fn+6 are relatively prime to Fn+4 and Fn+5. In addi-

tion, (FnFn+1Fn+2, Fn+3) = (Fn, Fn+3) = F(n,3) = 2. So

(
FnFn+1Fn+2

2
,
Fn+3

2

)
= 1.
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Therefore

(P5, 2Fn+6) = (FnFn+1Fn+2Fn+3, 2Fn+6)

= 4

(
FnFn+1Fn+2Fn+3

4
,
Fn+6

2

)
= 4

(
FnFn+1Fn+2

2

Fn+3

2
,
Fn+6

2

)
= 4

(
FnFn+1Fn+2

2
,
Fn+6

2

)(
Fn+3

2
,
Fn+6

2

)
= (FnFn+1Fn+2, Fn+6)(Fn+3, Fn+6)

= (Fn, Fn+6)(Fn+1, Fn+6)(Fn+2, Fn+6)(Fn+3, Fn+6)

= F(n,6)F(n+1,5)F(n+2,4)F(n+3,3) = 2F(n,6)F(n+1,5)F(n+2,4).

Thus (2.6) becomes

(P5, 2F(n,5)Fn+6) = 2F(n,5)F(n,6)F(n+1,5)F(n+2,4)

= 2F(n(n+1),5)F(n+2,4)F(n,6),

which is the same as (2.7).
We conclude that Subcases 1.1 and 1.2 lead to the same formula for

[Fn, Fn+1, Fn+2, Fn+3, Fn+4, Fn+5, Fn+6]. Observe that if n ≡ 1 (mod 4),
then F(n+2,4) = 1, and if n ≡ 2 (mod 4), then F(n+2,4) = 3. This leads
to the desired formula in (vi).

Case 2 : n ≡ 0, 3 (mod 4).
Similar to the proof of (v), we have

[Fn, Fn+1, Fn+2, Fn+3, Fn+4, Fn+5, Fn+6] =
P6

(P5, 6F(n,5)Fn+6)
.

It is easy to see that F(n,5) is relatively prime to 2 and 3. So (F(n,5),
6Fn+6) = (F(n,5), Fn+6) = F((n,5),n+6) = 1. Thus

(2.8) (P5, 6F(n,5)Fn+6) = (P5, F(n,5))(P5, 6Fn+6) = F(n,5)(P5, 6Fn+6).

Subcase 2.1 : 3 - n.
Then (6, Fn+6) = 1 and (Fn+3Fn+4Fn+5, Fn+6) = 1. So

(P5, 6Fn+6) = 6(P5, Fn+6) = 6(FnFn+1Fn+2, Fn+6)

= 6(Fn, Fn+6)(Fn+1, Fn+6)(Fn+2, Fn+6)

= 6F(n,6)F(n+1,5).

So we obtain by (2.8) that

(2.9) (P5, 6F(n,5)Fn+6) = 6F(n,5)F(n,6)F(n+1,5) = 6F(n,6)F(n(n+1),5).

Subcase 2.2 : 3 | n.
Then (Fn+5, 6Fn+6) = (Fn+5, 6) = (F4, Fn+5)(F3, Fn+5)= F(4,n+1).

We obtain similarly that (Fn+4, 6Fn+6) = F(4,n) and (Fn+3, 6Fn+6)
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= (Fn+3, 3)(Fn+3, 2Fn+6) = (Fn+3, 2Fn+6) = (Fn+3, 4), where the
last equality is obtained from the fact that (Fn+3, Fn+6) = 2. So

(2.10) (Fn+3Fn+4Fn+5, 6Fn+6) = F(4,n+1)F(4,n)(Fn+3, 4).

From this we obtain by Lemma 2.1 that

(Fn+3Fn+4Fn+5, 6Fn+6) =

{
6, if n ≡ 0 (mod 12);

12, if n ≡ 3 (mod 12).

Subsubcase 2.2.1 : n ≡ 0 (mod 12).

Then
(
Fn+3Fn+4Fn+5

6 , Fn+6

)
= 1. So

(P5, 6Fn+6) = 6

(
FnFn+1Fn+2

Fn+3Fn+4Fn+5

6
, Fn+6

)
= 6(FnFn+1Fn+2, Fn+6)

= 6(Fn, Fn+6)(Fn+1, Fn+6)(Fn+2, Fn+6)

= 6F(n,6)F(n+1,5).

Thus we obtain by (2.8) that

(2.11) (P5, 6F(n,5)Fn+6) = 6F(n,6)F(n+1,5)F(n,5) = 6F(n,6)F(n(n+1),5),

which is the same as (2.9).
Subsubcase 2.2.2 : n ≡ 3 (mod 12).

Then
(
Fn+3Fn+4Fn+5

12 , Fn+6

2

)
= 1. So

(P5, 6Fn+6) = 12

(
FnFn+1Fn+2

Fn+3Fn+4Fn+5

12
,
Fn+6

2

)
= 12

(
FnFn+1Fn+2,

Fn+6

2

)
= 12

(
Fn,

Fn+6

2

)(
Fn+1,

Fn+6

2

)(
Fn+2,

Fn+6

2

)
.

Consider (Fn+2, Fn+6) = F(n+2,4) = 1, (Fn+1, Fn+6) = F(n+1,5),
(Fn, Fn+6) = F(n,6) = F(3,6) = 2, and v2(Fn) = v2(Fn+6) = 1.
Therefore (P5, 6Fn+6) = 12F(n+1,5), and thus (P5, 6F(n,5)Fn+6) =
12F(n,5)F(n+1,5) = 6F(n,6)F(n(n+1),5), which is the same as (2.11)
and (2.9).

So Subcases 2.1 and 2.2 lead to the same formula for

[Fn, Fn+1, Fn+2, Fn+3Fn+4, Fn+5Fn+6].

This completes the proof of (vi).
�



ON THE ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS 53

3. Main Results

As mentioned in the introduction, our method of proof gives a gen-
eral idea on how to obtain z(FnFn+1 · · ·Fn+k) for every k ≥ 1. In fact,
the next theorem describes a general strategy for obtaining a formula for
z(FnFn+1 · · ·Fn+k).

Theorem 3.1. Let n ≥ 3, k ≥ 1, a = [n, n + 1, . . . , n + k], b = FnFn+1 · · ·
Fn+k and

fk(n) =
FnFn+1Fn+2 · · ·Fn+k

[Fn, Fn+1, Fn+2, . . . , Fn+k]

Then the following holds.

(i) b | fk(n)Faj for every j ≥ 1.
(ii) z(b) = aj where j is the smallest positive integer such that b | Faj.

In fact, j is the smallest positive integer such that vp(b) ≤ vp(Faj)
for every prime p dividing fk(n).

Proof. Since n+ i | a for all 0 ≤ i ≤ k, we obtain by (2.1) that Fn+i | Fa for
all 0 ≤ i ≤ k. So [Fn, Fn+1, . . . , Fn+k] | Fa. By the definition of fk(n), we
see that b | fk(n)Fa. Since Fa | Faj ,

b | fk(n)Faj for every j ≥ 1.

This proves (i). Next let z(b) = `. Then b | F`. Therefore Fn+i | F` for all
0 ≤ i ≤ k. Since n ≥ 3, we obtain by (2.1) that n + i | ` for all 0 ≤ i ≤ k,
which implies that a | `. Thus ` = aj for some j ∈ N. By the definition of
z(b), we see that j is the smallest positive integer such that

(3.1) b | Faj .

Note that (3.1) is equivalent to vp(b) ≤ vp(Faj) for every prime p. But by
(i), if p is a prime and p - fk(n), then

vp(b) ≤ vp(fk(n)Faj) = vp(Faj).

Therefore (3.1) is equivalent to

(3.2) vp(b) ≤ vp(Faj) for every prime p dividing fk(n).

Hence z(b) = ` = aj and j is the smallest positive integer satisfying (3.2).
This proves (ii). �

Theorem 3.2. Let n ≥ 1, a = [n, n + 1, n + 2, n + 3, n + 4], and b =
FnFn+1Fn+2Fn+3Fn+4. Then

z(b) =


a, if n ≡ 1, 2, 3, 4, 5, 6, 7, 10 (mod 12), or n ≡ 8, 60 (mod 72);

2a, if n ≡ 9, 11 (mod 12), or n ≡ 24, 44 (mod 72);

3a, if n ≡ 12, 32, 36, 56 (mod 72);

6a, if n ≡ 0, 20, 48, 68 (mod 72).
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Proof. It is easy to check that the result holds for n = 1, 2. So assume that
n ≥ 3.
Case 1 : n ≡ 1 (mod 3).

Then by Lemma 2.4 and Theorem 3.1, we have b | F(n,4)Faj for every
j ≥ 1 and we would like to find the smallest j such that b | Faj . If
n ≡ 1, 2, 3 (mod 4), then F(n,4) = 1, so we can choose j = 1 and obtain
z(b) = a. So assume that n ≡ 0 (mod 4). Then F(n,4) = 3 and by
Theorem 3.1 we only need to consider v3(b) and v3(Faj). Since n ≡
1 (mod 3) and n ≡ 0 (mod 4), we obtain by Lemma 2.1 that v3(b) =
v3(Fn) + v3(Fn+4) = v3(n) + v3(n + 4) + 2 = 2. Since 4 | n and n | aj,
4 | aj. So we obtain by Lemmas 2.1 and 2.3 that for every j ≥ 1,

v3(Faj) = v3(a) + v3(j) + 1

= v3

(
n(n + 1)(n + 2)(n + 3)(n + 4)

8

)
+ v3(j) + 1

= v3(n + 2) + v3(j) + 1 ≥ 2 + v3(j) ≥ 2 = v3(b).

Thus we can choose j = 1 and obtain z(b) = a. This shows z(b) = a
whenever n ≡ 1 (mod 3). We remark that the idea that will be used in
the following case is still the same as that in the previous case. So our
argument will be shorter.

Case 2 : n ≡ 2 (mod 3).
Then by Lemma 2.4 and Theorem 3.1, we have b divides 2F(n,4)Faj for

every j ≥ 1 and our problem is reduced to finding the smallest positive
integer j such that vp(b) ≤ vp(Faj) for every prime p dividing 2F(n,4).
Let j ≥ 1. Since 3 | n + 1 and n + 1 | a, we see that 3 | aj. Similarly
2 | aj. Therefore 6 | aj. By Lemma 2.1, v2(Faj) = v2(aj) + 2. In
addition, v2(b) = v2(Fn+1) + v2(Fn+4).
Subcase 2.1 : n ≡ 1 (mod 4).

Then by Lemmas 2.1 and 2.3, we obtain

v2(Faj) = v2(a) + v2(j) + 2

= v2(n + 1) + v2(n + 3)− v2(2) + v2(j) + 2

= v2(n + 3) + v2(j) + 2 ≥ 4 = v2(n + 1) + 3

= v2(Fn+1) + v2(Fn+4) = v2(b).

So in this case, we can choose j = 1 and obtain z(b) = a.
Subcase 2.2 : n ≡ 2 (mod 4).

Similar to Subcase 2.1, we see that

v2(Faj) = v2(n) + v2(n + 2) + v2(n + 4)− v2(4) + v2(j) + 2

= v2(n + 2) + v2(j) + 2 ≥ 4 = v2(b), and z(b) = a.

Subcase 2.3 : n ≡ 3 (mod 4).
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Then v2(b) = v2(n + 1) + 3, and v2(Faj) = v2(n + 1) + v2(j) + 2.
So v2(Faj) ≥ v2(b) if and only if v2(j) ≥ 1. So we choose j = 2 and
obtain z(b) = 2a.

Subcase 2.4 : n ≡ 0 (mod 4).
Then 2F(n,4) = 6 and we need to consider 2-adic and 3-adic orders

of b and Faj . By Lemmas 2.1 and 2.3, we obtain similarly to the
other cases that

v2(b) = v2(n + 4) + 3

v2(Faj) = v2(n) + v2(n + 4) + v2(j),

v3(b) = v3(Fn) + v3(Fn+4)

= v3(n) + v3(n + 4) + 2 = v3(n + 4) + 2, and

v3(Faj) = v3(aj) + 1 = v3(n + 1) + v3(n + 4) + v3(j).

So we need to find the smallest j ≥ 1 such that

v2(n) + v2(j) ≥ 3 and v3(n + 1) + v3(j) ≥ 2.

Note that n ≡ 0, 4 (mod 8) and n + 1 ≡ 0, 3, 6 (mod 9).

(i) If n ≡ 0 (mod 8) and n+1 ≡ 0 (mod 9), then v2(j) = v3(j) =
0, so j = 1 and

z(b) = a =
72a

(8, n)(9, n + 1)
.

(ii) If n ≡ 0 (mod 8) and n + 1 ≡ 3, 6 (mod 9), then v2(j) = 0
and v3(j) = 1, so j = 3 and

z(b) = 3a =
72a

(8, n)(9, n + 1)
.

(iii) If n ≡ 4 (mod 8) and n+ 1 ≡ 0 (mod 9), then v2(j) = 1 and
v3(j) = 0, so j = 2 and

z(b) = 2a =
72a

(8, n)(9, n + 1)
.

(iv) If n ≡ 4 (mod 8) and n + 1 ≡ 3, 6 (mod 9), then v2(j) =
v3(j) = 1, so j = 6 and

z(b) = 6a =
72a

(8, n)(9, n + 1)
.

Case 3 : n ≡ 0 (mod 3).
Similar to Case 2, b | 2F(n,4)Faj for every j ≥ 1 and we need to find the

smallest j such that vp(b) ≤ vp(Faj) for every prime p dividing 2F(n,4).
Subcase 3.1 : n ≡ 1 (mod 4).

Then 2F(n,4) = 2, v2(b) = v2(n+ 3) + 3, and v2(Faj) = v2(n+ 3) +
v2(j) + 2. So we need j = 2 and therefore z(b) = 2a.

Subcase 3.2 : n ≡ 2 (mod 4).
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Then 2F(n,4) = 2, v2(b) = 4, and v2(Faj) = v2(n+ 2) + v2(j) + 2 ≥
4 = v2(b). So j = 1 and z(b) = a.

Subcase 3.3 : n ≡ 3 (mod 4).
Then 2F(n,4) = 2, v2(b) = 4, and v2(Faj) = v2(n+ 1) + v2(j) + 2 ≥

4 = v2(b). So j = 1 and z(b) = a.
Subcase 3.4 : n ≡ 0 (mod 4).

Then 2F(n,4) = 6. So we need to consider 2-adic and 3-adic orders
of b and Faj . By Lemmas 2.1 and 2.3, we obtain that

v2(b) = v2(n) + 3,

v2(Faj) = v2(n) + v2(n + 4) + v2(j),

v3(b) = v3(Fn) + v3(Fn+4)

= v3(n) + v3(n + 4) + 2 = v3(n) + 2, and

v3(Faj) = v3(aj) + 1 = v3(n) + v3(n + 3) + v3(j).

So we need to find the smallest j ≥ 1 such that

v2(n + 4) + v2(j) ≥ 3 and v3(n + 3) + v3(j) ≥ 2.

Note that n + 4 ≡ 0, 4 (mod 8) and n + 3 ≡ 0, 3, 6 (mod 9).

(i) If n + 4 ≡ 0 (mod 8) and n + 3 ≡ 0 (mod 9), then v2(j) =
v3(j) = 0, so j = 1 and

z(b) = a =
72a

(8, n + 4)(9, n + 3)
.

(ii) If n+4 ≡ 0 (mod 8) and n+3 ≡ 3, 6 (mod 9), then v2(j) = 0
and v3(j) = 1, so j = 3 and

z(b) = 3a =
72a

(8, n + 4)(9, n + 3)
.

(iii) If n + 4 ≡ 4 (mod 8) and n + 3 ≡ 0 (mod 9), then v2(j) = 1
and v3(j) = 0, so j = 2 and

z(b) = 2a =
72a

(8, n + 4)(9, n + 3)
.

(iv) If n + 4 ≡ 4 (mod 8) and n + 3 ≡ 3, 6 (mod 9), then v2(j) =
v3(j) = 1, so j = 6 and

z(b) = 6a =
72a

(8, n + 4)(9, n + 3)
.

This completes the proof.
�

We can state Theorem 3.2 in another form as follows.
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Corollary 3.3. Let n ≥ 1, a = [n, n + 1, n + 2, n + 3, n + 4], and b =
FnFn+1Fn+2Fn+3Fn+4. Then

z(b) =


a, if n ≡ 1 (mod 3) or n ≡ 2, 3, 5, 6 (mod 12);

2a, if n ≡ 9, 11 (mod 12);
72a

(8,n)(9,n+1) , if n ≡ 8 (mod 12);
72a

(8,n+4)(9,n+3) , if n ≡ 0 (mod 12).

Proof. This can be obtained from the proof of Theorem 3.2, or by comparing
the result with Theorem 3.2. �

Corollary 3.4. Let n ≥ 1 and b = FnFn+1Fn+2Fn+3Fn+4. Then

z(b) =



n(n+1)(n+2)(n+3)(n+4)
2 , if n ≡ 1, 7 (mod 12);

n(n+1)(n+2)(n+3)(n+4)
3 , if n ≡ 9, 11 (mod 12);

n(n+1)(n+2)(n+3)(n+4)
4 , if n ≡ 10 (mod 12)

or n ≡ 0, 20, 48, 68 (mod 72);
n(n+1)(n+2)(n+3)(n+4)

6 , if n ≡ 3, 5 (mod 12);
n(n+1)(n+2)(n+3)(n+4)

8 , if n ≡ 4 (mod 12)

or n ≡ 12, 32, 36, 56 (mod 72);
n(n+1)(n+2)(n+3)(n+4)

12 , if n ≡ 2, 6 (mod 12)

or n ≡ 24, 44 (mod 72);
n(n+1)(n+2)(n+3)(n+4)

24 , if n ≡ 8, 60 (mod 72).

Proof. This follows from Theorem 3.2 and Lemma 2.3. �

Theorem 3.5. Let n ≥ 1, a = [n, n + 1, . . . , n + 5], b = FnFn+1 · · ·Fn+5,
and c = (5, n). Then

z(b) =



ac, if n ≡ 1, 2, 3, 4, 5, 6 (mod 12), or

n ≡ 7, 8, 59, 60 (mod 72);

2ac, if n ≡ 9, 10 (mod 12), or n ≡ 23, 24, 43, 44 (mod 72);

3ac, if n ≡ 11, 12, 31, 32, 35, 36, 55, 56 (mod 72);

6ac, if n ≡ 0, 19, 20, 47, 48, 67, 68, 71 (mod 72).

Proof. The proof of this theorem is similar to that of Theorem 3.2. So we
will be brief here. It is easy to check that the result holds for n = 1, 2.
So assume that n ≥ 3. By Lemma 2.4 and Theorem 3.1, we obtain that
b | `F(n,5)Faj for every j ≥ 1 where ` = 2, 6. So we need to consider only
v2, v3, and v5 of b and Faj . It is easy to check using Lemmas 2.1 and 2.3
that when 5 | n, v5(b) ≤ v5(Faj) if and only if v5(j) ≥ 1, and when 5 - n,
v5(b) ≤ v5(Faj) for every j ≥ 1.

In addition, v2 and v3 of b and Faj are

v2(b) =

{
4, if n ≡ 1, 2, 3, 4, 5, 6 (mod 12);

v2(n + 12− r) + 3, if n ≡ r (mod 12) and 7 ≤ r ≤ 12,
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v2(Faj) =


v2(n + 4− r) + v2(j) + 2, if n ≡ r (mod 4)

and 1 ≤ r ≤ 2;

v2(n + 4− r) + v2(n + 8− r) + v2(j), if n ≡ r (mod 4)

and 3 ≤ r ≤ 4,

v3(b) =


1, if n ≡ 1, 2, 5, 6 (mod 12);

2, if n ≡ 3, 4 (mod 12);

v3(n + 12− r) + 1, if n ≡ r (mod 12) and r ∈ {9, 10};
v3(n + 12− r) + 2, if n ≡ r (mod 12) and r ∈ {7, 8, 11, 12},

v3(Faj) = v3(n+3−r)+v3(n+6−r)+v3(j), if n ≡ r (mod 3) and 1 ≤ r ≤ 3.

Case 1 : n ≡ 1 (mod 4).
Then b | 2F(n,5)Faj for every j ≥ 1 and we only need to consider vp(b)

and vp(Faj) for p = 2, 5. If n ≡ 1 (mod 3), then v2(Faj) ≥ v2(b). So if
5 - n, we can choose j = 1 and obtain z(b) = a, and if 5 | n, we can choose
j = 5 and obtain z(b) = 5a. Therefore z(b) = (5, n)a. If n ≡ 2 (mod 3),
then v2(Faj) ≥ v2(b) and we similarly obtain that z(b) = (5, n)a. If
n ≡ 0 (mod 3), then v2(Faj) ≥ v2(b) if and only if v2(j) ≥ 1. Thus if
5 - n, we can choose j = 2 and obtain z(b) = 2a, and if 5 | n, we can
choose j = 10 and obtain z(b) = 10a. Therefore z(b) = 2(5, n)a.

Case 2 : n ≡ 2 (mod 4).
This case is similar to Case 1 and we obtain

z(b) =

{
(5, n)a, if n ≡ 0, 2 (mod 3);

2(5, n)a, if n ≡ 1 (mod 3).

Case 3 : n ≡ 3 (mod 4).
Then b | 6F(n,5)Faj for every j ≥ 1, and we need to consider vp(b) and

vp(Faj) for p = 2, 3, 5.
Subcase 3.1 : n ≡ 1 (mod 3).

Then

v2(b) ≤ v2(Faj)⇔ v2(n + 1) + v2(j) ≥ 3, and

v3(b) ≤ v3(Faj)⇔ v3(n + 2) + v3(j) ≥ 2.

Note that n + 1 ≡ 0, 4 (mod 8) and n + 2 ≡ 0, 3, 6 (mod 9).

(i) If n + 1 ≡ 0 (mod 8) and n + 2 ≡ 0 (mod 9), then v2(j) =
v3(j) = 0, and so

z(b) = (5, n)a =
72(5, n)a

(8, n + 1)(9, n + 2)
.

(ii) If n+1 ≡ 0 (mod 8) and n+2 ≡ 3, 6 (mod 9), then v2(j) = 0
and v3(j) = 1, and so

z(b) = 3(5, n)a =
72(5, n)a

(8, n + 1)(9, n + 2)
.
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(iii) If n + 1 ≡ 4 (mod 8) and n + 2 ≡ 0 (mod 9), then v2(j) = 1
and v3(j) = 0, and so

z(b) = 2(5, n)a =
72(5, n)a

(8, n + 1)(9, n + 2)
.

(iv) If n + 1 ≡ 4 (mod 8) and n + 2 ≡ 3, 6 (mod 9), then v2(j) =
v3(j) = 1, and so

z(b) = 6(5, n)a =
72(5, n)a

(8, n + 1)(9, n + 2)
.

Subcase 3.2 : n ≡ 2 (mod 3).
This case is similar to Subcase 3.1 and we obtain

v2(b) ≤ v2(Faj)⇔ v2(n + 5) + v2(j) ≥ 3,

v3(b) ≤ v3(Faj)⇔ v3(n + 4) + v3(j) ≥ 2, and

z(b) =
72(5, n)a

(8, n + 5)(9, n + 4)
.

Subcase 3.3 : n ≡ 0 (mod 3).
This case leads to z(b) = (5, n)a.

Case 4 : n ≡ 0 (mod 4).
Similar to Case 3, we obtain

z(b) =


(5, n)a, if n ≡ 1 (mod 3);

72(5,n)a
(8,n)(9,n+1) , if n ≡ 2 (mod 3);

72(5,n)a
(8,n+4)(9,n+3) , if n ≡ 0 (mod 3).

This completes the proof.
�

We can obtain the following result from the proof of Theorem 3.5.

Corollary 3.6. Let n ≥ 1, a = [n, n + 1, . . . , n + 5], b = FnFn+1 · · ·Fn+5,
and c = (5, n). Then

z(b) =


ac, if n ≡ 1, 2, 3, 4, 5, 6 (mod 12)

2ac, if n ≡ 9, 10 (mod 12);
72(5,n)a

(8,n+|r−8|)(9,n+|r−9|) , if n ≡ r (mod 12) and r ∈ {7, 8, 12};
72(5,n)a

(8,n+5)(9,n+4) , if n ≡ 11 (mod 12).

Next we give the formula of z(FnFn+1 · · ·Fn+6). It is shorter to state it
in the form similar to Corollary 3.6 than Theorem 3.5.
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Theorem 3.7. Let n ≥ 1, a = [n, n + 1, . . . , n + 6], b = FnFn+1 · · ·Fn+6,
and c = (5, n(n + 1)). Then z(b) =

ac, if n ≡ 1, 2, 3, 4, 5 (mod 12);
(64)(27)ac

(64,n+2)(27,n(n+3)) , if n ≡ 6 (mod 24);
(8)(27)ac

(27,n(n+3)) , if n ≡ 18 (mod 24);
72ac

(8,n−r)(9,n−r) , if n ≡ r (mod 12) and r ∈ {7, 8};
4ac, if n ≡ 9 (mod 12);

72ac
(8,n+6)(9,n+5) , if n ≡ 10 (mod 12);

72ac
(8,n+5)(9,n+4) , if n ≡ 11 (mod 12);

(64)(27)ac
(64,n+4)(27,(n+3)(n+6)) , if n ≡ 0 (mod 12).

Proof. The proof of this theorem follows the same ideas used previously. So
we will only give the evaluation of v2, v3, and v5 of b and Faj . Similar to
the proof of Theorem 3.5, we have when 5 | n(n+ 1), v5(b) ≤ v5(Faj) if and
only if v5(j) ≥ 1, when 5 - n(n + 1), v5(b) ≤ v5(Faj) for every j ≥ 1,

v2(Faj) =



v2(n + 3) + v2(j) + 2, if n ≡ 1 (mod 4);

v2(n + 6) + v2(j) + 3, if n ≡ 2 (mod 8);

v2(n + 2) + v2(j) + 2, if n ≡ 6 (mod 8);

v2(n + 1) + v2(n + 5) + v2(j), if n ≡ 3 (mod 4);

v2(n) + v2(n + 4) + v2(j), if n ≡ 0 (mod 4),

v3(Faj) =


v3(n + 2) + v3(n + 5) + v3(j), if n ≡ 1 (mod 3);

v3(n + 1) + v3(n + 4) + v3(j), if n ≡ 2 (mod 3);

v3(n) + v3(n + 3) + v3(n + 6) + v3(j)− 1, if n ≡ 0 (mod 3),

v2(b) =



4, if n ≡ 1, 2, 4, 5 (mod 12);

5, if n ≡ 3 (mod 12);

v2(n + 12− r) + 3, if n ≡ r (mod 12) and r ∈ {7, 8, 10, 11};
v2(n + 3) + 4, if n ≡ 9 (mod 12);

v2(n + 12− r) + 6, if n ≡ r (mod 12) and r ∈ {6, 12},

v3(b) =



1, if n ≡ 1, 5 (mod 12);

2, if n ≡ 2, 3, 4 (mod 12);

v3(n + 12− r) + 2, if n ≡ r (mod 12) and

r ∈ {6, 7, 8, 10, 11, 12};
v3(n + 3) + 1, if n ≡ 9 (mod 12).

�
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4. Conclusion

In this article, we give a systematic method in calculating the order of
appearance of products of consecutive Fibonacci numbers. We also obtain
the corresponding results for the Lucas numbers in [7]. The converse of
the results in [18] is given in [16] and the order of appearance of factorials
is obtained in [23]. For other closedly related results, see for example in
[17, 21, 22, 20].
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