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SOME REMARKS ON THE LONELY RUNNER

CONJECTURE

TERENCE TAO

Abstract. The lonely runner conjecture of Wills and Cusick, in its
most popular formulation, asserts that if n runners with distinct con-
stant speeds run around a unit circle R/Z starting at a common time
and place, then each runner will at some time be separated by a distance
of at least 1

n+1
from the others. In this paper we make some remarks

on this conjecture. Firstly, we can improve the trivial lower bound of
1
2n

slightly for large n, to 1
2n

+ c logn
n2(log logn)2

for some absolute constant

c > 0; previous improvements were roughly of the form 1
2n

+ c
n2 . Sec-

ondly, we show that to verify the conjecture, it suffices to do so under

the assumption that the speeds are integers of size nO(n2). We also ob-
tain some results in the case when all the velocities are integ rs of size
O(n).

1. Introduction

The lonely runner conjecture of Wills [19] and Cusick [9] (as formulated
in [4]) asserts that if n ≥ 2 is an integer and n runners run around the
unit circle R/Z with constant distinct speeds starting from a common time
and place, then each runner is “lonely” in the sense that there exists a
time in which the runner is separated by a distance at least 1

n from the
others. The conjecture originated from questions in view obstruction [9]
and diophantine approximation [19], but also has connections to chromatic
numbers of distance graphs [20] and to flows in regular matroids [4]. The
conjecture is known for n ≤ 7 (see [2] and the references therein), and under
various “lacunarity” hypotheses on the velocities (see [15], [17], [3], [11]).
We refer the reader to the recent paper [16] for further discussion of the
literature on this conjecture and additional references.

It is known (see e.g., [6, §4]) that one can assume without loss of generality
that the speeds of the runners are integers, which allows one to place the
time variable t in the unit circle R/Z rather than on the real line; one can
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also normalise the speed of the “lonely” runner to be zero. This allows us to
reformulate the conjecture (after decrementing n by one to account for the
normalised speed of the lonely runner) as follows. Given an element t of the
unit circle R/Z, let ‖t‖R/Z denote the distance of (any representative of) t
to the nearest integer. Given an n-tuple of nonzero integers v1, . . . , vn, let
δ(v1, . . . , vn) denote the maximal value of min(‖tv1‖R/Z, . . . , ‖tvn‖R/Z) as t
ranges in R/Z; note that this minimum is attained because R/Z is compact.
We then let δn denote the infimal value of δ(v1, . . . , vn) as (v1, . . . , vn) ranges
over n-tuples of distinct nonzero integers; this quantity was termed the gap
of loneliness in [16]. The Dirichlet approximation theorem implies that
δ(1, . . . , n) ≤ 1

n+1 , and hence

(1.1) δn ≤
1

n+ 1
.

See also [13] for further sets of n-tuples (v1, . . . , vn) that witness this bound.
The lonely runner conjecture is then equivalent to the assertion that this
bound is sharp:

Conjecture 1.1 (Lonely runner conjecture). For every n ≥ 1, one has
δn = 1

n+1 .

Because we have decremented n by one, Conjecture 1.1 is currently only
known for n ≤ 6 [2].

For any frequency v ∈ Z and radius δ > 0, we define the rank one Bohr
set

(1.2) B(v; δ) := {t ∈ R/Z : ‖tv‖R/Z ≤ δ};
more generally, we define the higher rank Bohr sets B(v1, . . . , vr; δ1, . . . , δr)
for δ1, . . . , δr > 0 and v1, . . . , vr ∈ Z and some rank r ≥ 1 by the formula

(1.3) B(v1, . . . , vr; δ1, . . . , δr) := B(v1; δ1) ∩ · · · ∩B(vr; δr).

We can then interpret δn in terms of Bohr sets in a number of equivalent
ways:

(i) δn is the largest number for which one has the strict inclusion
n⋃
i=1

B(vi; δ) ( R/Z

(or equivalently, min(‖tv1‖R/Z, . . . , ‖tvn‖R/Z) > δ for some time t)
for every nonzero integers v1, . . . , vn and 0 < δ < δn.

(ii) Taking contrapositives, δn is the least number for which one there
exists a covering of the form

(1.4) R/Z =
n⋃
i=1

B(vi; δn)

of the unit circle by n rank one Bohr sets B(vi; δn), i = 1, . . . , n, for
some nonzero integers v1, . . . , vn.
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We have a simple and well known lower bound on δn that gets within a
factor of two of the lonely runner conjecture:

Proposition 1.2. For every n ≥ 1, one has δn ≥ 1
2n .

Proof. If t is drawn uniformly at random from R/Z, then for any nonzero
integer vi, tvi is also distributed uniformly at random on R/Z. Letting m
denote the Lebesgue measure on R/Z, we thus have

(1.5) m(B(vi; δn)) = 2δn

for every i = 1, . . . , n (noting from (1.1) that δn ≤ 1/2). Using the union
bound

(1.6) m

(
n⋃
i=1

B(vi; δn)

)
≤

n∑
i=1

m(B(vi; δn))

and (1.4), we conclude that

1 ≤
n∑
i=1

2δn

and the claim follows. �

The union bound (1.6) is very crude, and one would naively expect to
be able to improve significantly upon Proposition 1.2 by using more so-
phisticated bounds, for instance by using some variant of the inclusion-
exclusion formula combined with bounds on the size of higher-rank Bohr
sets B(vi1 , . . . , vir ; δn, . . . , δn). However, only slight improvements to this
bound are known. Chen [7] obtained the bound

(1.7) δn ≥
1

2n− 1 + 1
2n−3

and Chen and Cusick [8] obtained the improvement

δn ≥
1

2n− 3

assuming that 2n − 3 was prime. In the recent paper [16], a bound of the
form

(1.8) δn ≥
1

2n− 2 + o(1)

as well as the variant bound

(1.9) δ(v1, . . . , vn) ≥ 1

2(n−
∑n

i=2
1
vi

)

was obtained as n→∞, without any primality restrictions. These improve-
ments relied primarily on estimates on rank two Bohr sets B(vi, vj ; δn, δn).

These bounds only improve on the bound in Proposition 1.2 by a mul-
tiplicative factor of 1 + O(1/n). The following example can help explain
why this factor is so close to 1. Let n be a large integer, and let p1, . . . , ps
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denote the primes between n/4 and n/2, thus by the prime number theo-
rem s = (1 + o(1)) n

4 logn as n → ∞. For each i = 1, . . . , s, the rank one

Bohr set B(pi; δn) consists of pi intervals of the form [ api −
δn
pi
, api + δn

pi
] for

a = 0, . . . , p − 1 (where we identify these intervals with subsets of R/Z in
the usual fashion). This makes this collection of Bohr sets behave like a
“sunflower” (in the sense of [12]) with a very small “kernel”. To see this, we
separate the a = 0 interval of B(pi; δn) from the others, writing

B(pi; δn) =

[
−δn
pi
,
δn
pi

]
∪B′(pi; δn)

where we think of the interval
[
− δn
pi
, δnpi

]
as the “kernel” of B(pi, δn), and

where B′(pi, δn) is the “petal” set

B′(pi; δn) :=

pi−1⋃
a=1

[
a

pi
− δn
pi
,
a

pi
+
δn
pi

]
.

Clearly, the interval [− δn
pi
, δnpi ] has measure 2δn/pi, and so by (1.5) the re-

maining portion B′(pi; δn) of the rank one Bohr set has measure (1− 1
pi

)2δn.

Now we claim that the “petal” sets B′(pi; δn) for i = 1, . . . , r are disjoint,
for reasons relating to the spacing properties of the Farey sequence. Indeed,
suppose for contradiction that there was a point t ∈ R/Z that was in both
B′(pi; δn) and B′(pj ; δn) for some 1 ≤ i < j ≤ n. Then we have∥∥∥∥t− a

pi

∥∥∥∥
R/Z
≤ δn
pi
,

∥∥∥∥t− b

pj

∥∥∥∥
R/Z
≤ δn
pj

for some 1 ≤ a ≤ pi and 1 ≤ b ≤ pj . In particular by the triangle inequality
we have ∥∥∥∥ api − b

pj

∥∥∥∥
R/Z
≤ δn
pi

+
δn
pj
.

On the other hand, as pi, pj are distinct primes, and a, b are not divisible by

pi, pj respectively, the fraction a
pi
− b

pj
is not an integer, and hence∥∥∥∥ api − b

pj

∥∥∥∥
R/Z
≥ 1

pipj
.

Comparing the two inequalities and multiplying by pipj , we obtain

δn(pi + pj) ≥ 1,

but this contradicts (1.1) and the hypothesis pi, pj ≤ n/2.
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From this disjointness, we see that the union bound is obeyed with equal-
ity for the B′(pi, δn), and hence

m

(
s⋃
i=1

B(pi; δn)

)
≥ m

(
s⋃
i=1

B′(pi; δn)

)

=
s∑
i=1

m(B′(pi; δn))

=

s∑
i=1

(
1− 1

pi

)
2δn

≥
(

1− 4

n

) s∑
i=1

m(B(pi; δn)).

In particular, we see that the union bound

m

(
s⋃
i=1

B(pi; δn)

)
≤

s∑
i=1

m(B(pi; δn))

is only off from the truth by a multiplicative factor of 1 +O(1/n), which is
consistent with the improvements to Proposition 1.2 in the known literature.

On the other hand, the above example only involves s rank one Bohr sets
rather than n rank one Bohr sets. As s is comparable to n/ log n rather
than n, this suggests that perhaps some “logarithmic” improvement to the
known lower bounds on δn is still possible via some refinement of the union
bound. The first main result of this paper shows that this is (almost) indeed
the case:

Theorem 1.3. There exists an absolute constant c > 0 such that

δn ≥
1

2n
+

c log n

n2(log log n)2

for all sufficiently large n.

It is likely that with a refinement of the arguments below, one could
eliminate at least one of the log log n factors in the denominator; however
the example discussed above suggests to the author that significantly more
effort would be needed in order to improve the log n factor in the numerator
by these methods. The constant c is in principle computable explicitly, but
we have not attempted to arrange the arguments to optimise this constant.

We prove Theorem 1.3 in Section 3. In addition to the control on rank two
Bohr sets B(vi, vj ; δn, δn) that was exploited in previous literature, we also
now use estimates on the size of rank three Bohr sets B(vi, vj , vk; δn, δn, δn).
The key point is that if the union bound (1.6) were to be close to sharp with
δn very close to 1/2n, then one can use Hölder’s inequality (or the Cauchy–
Schwarz inequality), together with lower bounds on the size of rank two
Bohr sets to show that many rank three Bohr sets must be extremely large.
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After using some Fourier analysis to compute the size of these rank three
Bohr sets, together with some elementary additive combinatorics involving
generalised arithmetic progressions, one eventually concludes that a large
fraction of the velocities vi must be1 essentially contained (ignoring some
“small denominators”) in an arithmetic progression of length comparable to
n and symmetric around the origin. As the preceding example indicates,
this by itself is not inconsistent with the union bound being close to tight, if
the velocities vi behave like (rescaled versions of) prime numbers pi. But the
primes are a logarithmically sparse set, and standard sieve theory bounds
tell us that most numbers of size comparable to n will not only be compos-
ite, but in fact contain a medium-sized prime factor (e.g., a factor between

log10 n and n1/10). One can use these medium-sized prime factors to show
that many of the rank one Bohr sets will intersect other rank one Bohr sets
in various disjoint (and reasonably large) “major arcs”, which can then be
used to improve upon the union bound. See also (1.9) for some compara-
ble improvements on the union bound in the case when the velocities are
contained in a progression of length comparable to n.

Our second result is of a different nature, and is concerned with the de-
cidability of the lonely runner conjecture for bounded values of n. In its
current formulation, it is not obvious that one can decide Conjecture 1.1 in
finite time for any fixed n, since one potentially has to compute δ(v1, . . . , vn)
for an infinite number of tuples (v1, . . . , vn). However, the following result2

shows that one only needs to verify the conjecture for a finite (albeit large)
number of tuples for each n:

Theorem 1.4. There exists an absolute (and explicitly3 computable) con-
stant C0 > 0, such that the following assertions are logically equivalent for
every natural number n0 ≥ 1:

(i) One has δn = 1
n+1 for all n ≤ n0 (that is, Conjecture 1.1 holds for

n up to n0).
(ii) One has δ(v1, . . . , vn) ≥ 1

n+1 for all n ≤ n0 and every tuple (v1, . . . ,

vn) of nonzero distinct integers with |vi| ≤ nC0n2
for all i = 1, . . . , n.

Since δ(v1, . . . , vn) is clearly computable for any fixed choice of v1, . . . , vn
(note that the function min(‖tv1‖R/Z, . . . , ‖tvn‖R/Z) is piecewise linear), we
conclude

1This can be compared with the results in [10], [1], which study the opposite case where
the velocities are assumed to be random rather than highly structured, in which case the
gap δ(v1, . . . , vn) is in fact very close to 1/2.

2This result first appeared on the author’s blog at terrytao.wordpress.com/2015/05/
13.

3This theorem is trivially true if one allows the constant C0 to be ineffective. Indeed,
one could set C0 to be arbitrary if the lonely runner conjecture was true up to n0, and to
be sufficiently large (depending on the first counterexample to this conjecture) otherwise.
We thank Kevin O’Bryant for this remark.
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Corollary 1.5. For any natural number n0 ≥ 1, the assertion that Con-
jecture 1.1 holds for n up to n0 is decidable (and the truth value may be

computed in time O
(
n
O(n2

0)
0

)
).

Thus, for instance, one can decide in finite time whether Conjecture 1.1
holds for n = 7. Unfortunately, the bounds on v1, . . . , vn given by the above
theorem are far too large to suggest a practical algorithm for doing so. On
the other hand, it is not clear that the previous work on the lonely runner
conjecture for small values of n could extend, even in principle, to all larger
values of n; for instance, the arguments in [2] that treated the n = 6 case
relied crucially on the fact that n+ 1 was prime.

We prove Theorem 1.4 in Section 4. Roughly speaking, the argument
proceeds as follows. The implication of (ii) from (i) is trivial; the main task
is to show that (ii) implies (i). That is, we have to use (ii) to obtain the
bound

(1.10) δ(v1, . . . , vn) ≥ 1

n+ 1

for every choice of nonzero distinct integers (v1, . . . , vn), and all n ≤ n0. Us-
ing standard additive combinatorics, one can place the velocities v1, . . . , vn
somewhat efficiently in a “sufficiently proper” generalised arithmetic pro-
gression P = P (w1, . . . , wr;N1, . . . , Nr) of some rank r ≥ 1. If this rank is
equal to one, then we can easily derive (1.10) from (ii) by a rescaling argu-
ment. If the rank exceeds one, then it is possible to map (via a Freiman
homomorphism, see e.g., [?]) the velocities v1, . . . , vn to a transformed set of
nonzero velocities v′1, . . . , v

′
n for which there is at least one collision v′i = v′j

for some distinct i, j. Assuming inductively that (1.10) has already been
established for smaller values of n, we can show that

(1.11) δ(v′1, . . . , v
′
n) ≥ 1

n
.

One then uses Fourier analysis to show (if P is sufficiently proper, and the
Freiman homomorphism is of sufficiently high quality) that δ(v1, . . . , vn) is
close to (or larger than) δ(v′1, . . . , v

′
n); because 1

n is slightly larger than 1
n+1 ,

this will let us obtain (1.10) after selecting all the quantitative parameters
suitably.

Theorem 1.4 suggests that one possible route to solving Conjecture 1.1
is to first reduce to the case when v1, . . . , vn are contained in a fairly short
progression, and then treat that case by a separate argument. As a simple
example of such an argument, we prove the following elementary (but rather
weak) result in Section 5:

Proposition 1.6. Let n ≥ 1, and let v1, . . . , vn be positive integers such
that vi ≤ 1.2n for all i = 1, . . . , n. Then δ(v1, . . . , vn) ≥ 1

n+1 .

There is of course a huge gap between 1.2n and nC0n2
, and so Theorem

1.4 and Proposition 1.6 fall well short of a full proof of the lonely runner
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conjecture. Nevertheless it seems of interest to increase the quantity 1.2n
appearing in Proposition 1.6. A natural target would be 2n, as one then has
multiple (presumed) extremisers δ(v1, . . . , vn) = 1

n+1 even after accounting
for the freedom to permute the v1, . . . , vn. Indeed, in addition to the stan-
dard extremiser (1, 2, . . . , n), one now also has the dilate (2, 4, . . . , 2n), and
also one has a number of additional examples coming from the construction
in [13], namely those tuples formed from (1, . . . , n) by replacing one element
r ∈ {2, . . . , n − 1} with 2r, provided that r shares a common factor with
each integer b in the range n− r+ 1 ≤ b ≤ 2n− 2r+ 1; for instance one can
take r = 6, n = 7 and consider4 the tuple (1, 2, 3, 4, 5, 7, 12).

In a similar spirit to Proposition 1.6, we have the following improvement
of Theorem 1.3 when the vi are constrained to be small:

Proposition 1.7. Let C > 0, and suppose that n is sufficiently large de-
pending on C. Let v1, . . . , vn be positive integers such that vi ≤ Cn for all
i = 1, . . . , n. Then one has δ(v1, . . . , vn) ≥ 1+c

2n , where c > 0 depends only
on C.

We prove this proposition in Section 5, using some of the same argu-
ments used to prove Theorem 1.3. This bound may be compared with the
bound (1.9), which under the hypotheses of Proposition 1.6 can give a bound
slightly better than that in Theorem 1.3 if the vi contain some relatively
small integers.

2. Notation and preliminaries

In this paper, n will be an asymptotic integer parameter going to infinity.
We use the notation X = O(Y ), X � Y , or Y � X to denote an estimate
of the form |X| ≤ CY where C is independent of n. In some cases, C
will be allowed to depend on other parameters, and we will denote this
by subscripts unless otherwise specified, for instance X �r Y means that
|X| ≤ CrY for some Cr depending on r. We use X � Y to denote the
estimates X � Y � X. Thus for instance from (1.1) and Proposition 1.2
we have

(2.1) δn �
1

n
.

We also use X = o(Y ) to denote the estimate |X| ≤ c(n)Y where c(n)
is a quantity that goes to zero as n → ∞, keeping all other parameters
independent of n fixed.

Given a finite set S, we use #S to denote its cardinality. Given a state-
ment E, we define the indicator 1E to be 1 if E is true and 0 if E is false.
If A is a set, we write 1A for the indicator function 1A(x) := 1x∈A.

4This particular tuple was also discovered previously in an unpublished work of Peter
Flor. Thanks to Jörg Wills for this reference. See also [13] for some other variants of
this construction, for instance one can take the tuple (1, 2, . . . , 73) and replace the two
velocities 70, 72 by their doubles 140, 144 respectively and still obtain an extremiser.
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Given a function φ : R→ R which is in the Schwartz class (that is, smooth

and all derivatives rapidly decreasing), its Fourier transform φ̂ : R → R is
defined by the formula

φ̂(t) :=

∫
R
φ(s)e−2πits ds;

as is well known, this is also in the Schwartz class, and we have the Fourier
inversion formula

φ(s) :=

∫
R
φ̂(t)e2πits dt.

One can construct φ which are nonnegative and compactly supported, and
whose Fourier transform φ̂ is strictly positive; indeed, starting from any
nonnegative compactly supported and even φ, one can convolve φ with itself
to make φ̂ nonnegative, and then square the resulting convolution to make
φ̂ strictly positive everywhere. Inverting the Fourier transform, one can also
find a Schwartz class φ that is strictly positive, and whose Fourier transform
is nonnegative and compactly supported; by rescaling, one can make this
compact support as small as desired (e.g., contained in [−1, 1]).

In addition to the Bohr sets B(v1, . . . , vr; δ1, . . . , δr) defined in (1.2),
we will also need the dual notion of a generalised arithmetic progression
P (w1, . . . , wr;N1, . . . , Nr) of some rank r ≥ 1, defined for generators w1, . . . ,
wr ∈ Z and dimensions N1, . . . , Nr > 0 (which may be real numbers instead
of integers) as

P (w1, . . . , wr;N1, . . . , Nr) :=

{n1w1 + · · ·+ nrwr : n1, . . . , nr ∈ Z; |ni| ≤ Ni ∀i = 1, . . . , n}.

Given such a generalised arithmetic progression P = P (w1, . . . , wr;N1,
. . . , Nr) and a scaling factor t > 0, we define the dilation5 tP to be the
generalised arithmetic progression

tP := P (w1, . . . , wr; tN1, . . . , tNr),

in particular

2P := P (w1, . . . , wr; 2N1, . . . , 2Nr).

A generalised arithmetic progression P = P (w1, . . . , wr;N1, . . . , Nr) is said
to be t-proper if the sums n1w1+· · ·+nrwr for n1, . . . , nr ∈ Z and |ni| ≤ tNi

for i = 1, . . . , n are all distinct. Thus for instance any rank one progression
P (w,N) will be t-proper for any t > 0 if the generator w is nonzero. For
ranks greater than one, it is possible for generalised arithmetic progressions

5Strictly speaking, for this notation to be well-defined, one should
view P not just as an unstructured set of integers, but as a tuple
(r, (w1, . . . , wr), (N1, . . . , Nr), P (w1, . . . , wr;N1, . . . , Nr)), because it is possible for a
single set of integers to arise from progressions of different ranks, generators, and
dimensions, and the dilations tP may depend on this data. Similarly for the notion of
t-properness. However, we shall abuse notation and identify a generalised arithmetic
progression with the set of its elements.
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to fail to be t-proper even when the generators are nonzero; indeed, this is
inevitable for t large enough. However, we do have the following inclusion:

Proposition 2.1 (Progressions lie in proper progressions). Let P = P (w1,
. . . , wr;N1, . . . , Nr) be a generalised arithmetic progression, and let t ≥
1. Then there exists a generalised t-proper arithmetic progression Q =
Q(w′1, . . . , w

′
r′ ;N

′
1, . . . , N

′
r′) with r′ ≤ r such that P ⊂ Q and

#Q ≤ (2t)rr6r2
r∏
i=1

(2Ni + 1).

Proof. See [5, Theorem 2.1]. �

Given a generalised arithmetic progression P = P (v1, . . . , vr;N1, . . . , Nr),
define its multiplicity µ(P ) to be the number of tuples (n1, . . . , nr) ∈ Zr

with |ni| ≤ Ni for i = 1, . . . , r such that n1v1 + . . . nrvr = 0. Thus µ(P )
is a positive integer that equals 1 when P is 1-proper; conversely, for any
t > 0, P will be t-proper whenever µ(2tP ) = 1. We have the following basic
connection between the size of a Bohr set B(v1, . . . , vr; δ1, . . . , δr) and the
multiplicity of its dual progression P (v1, . . . , vr;

1
δ1
, . . . , 1

δr
):

Lemma 2.2 (Size of Bohr sets). For any Bohr set B(v1, . . . , vr; δ1, . . . , δr)
with δ1, . . . , δr < 1/2, one has

m(B(v1, . . . , vr; δ1, . . . , δr) =

exp(O(r))µ

(
P

(
v1, . . . , vr;

1

δ1
, . . . ,

1

δr

)) r∏
j=1

δr.

Proof. Let Ω denote the set of tuples (n1, . . . , nr) ∈ Zr with |nj | ≤ 1/δj for
j = 1, . . . , r, such that

n1v1 + · · ·+ nrvr = 0,

then our task is to show that

m(B(v1, . . . , vr; δ1, . . . , δr) = exp(O(r))(#Ω)
r∏
j=1

δr.

We first prove the upper bound. As discussed previously, we can locate
a Schwartz class function φ : R → R supported on [−1, 1] whose Fourier

transform φ̂ is positive everywhere; we allow implied constants to depend
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on φ. Then by the Poisson summation formula we have

m

 r⋂
j=1

B(vj , δj)

 =

∫ 1

0

r∏
j=1

∑
mj∈Z

1[−δj ,δj ](tvj +mj) dt

≤ exp(O(r))

∫ 1

0

r∏
j=1

∑
mj∈Z

φ̂

(
tvj +mj

δj

)
dt

= exp(O(r))

∫ 1

0

r∏
j=1

∑
nj∈Z

δjφ(δjnj)e
−2πitvjnj dt

= exp(O(r))
∑

(n1,...,nr)∈Ω

r∏
j=1

δjφ(δjnj)

≤ exp(O(r))(#Ω)
r∏
j=1

δj

as required. For the lower bound, we swap the roles of φ and φ̂:

m

 r⋂
j=1

B(vj , δj)

 =

∫ 1

0

r∏
j=1

∑
mj∈Z

1[−δj ,δj ](tvj +mj) dt

≥ exp(O(r))

∫ 1

0

r∏
j=1

∑
mj∈Z

φ

(
tvj +mj

δj

)
dt

= exp(O(r))

∫ 1

0

r∏
j=1

∑
nj∈Z

δjφ̂(δjnj)e
2πitvjnj dt

= exp(O(r))
∑

(n1,...,nr)∈Zr:n1v1+···+nrvr=0

r∏
j=1

δjφ̂(δjnj)

≥ exp(O(r))(#Ω)

r∏
j=1

δj .

�

Combining the above lemma with the crude lower bound

µ

(
P

(
v1, . . . , vr;

1

δ1
, . . . ,

1

δr

))
≥ 1

we obtain (cf. [?, Lemma 4.20])

Corollary 2.3 (Crude lower bound on Bohr set size). For any Bohr set
B(v1, . . . , vr; δ1, . . . , δr), one has

m(B(v1, . . . , vr; δ1, . . . , δr) ≥ exp(O(r))
r∏
j=1

δr.
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For further discussion of generalised arithmetic progressions and Bohr
sets, see [?].

3. Proof of first theorem

We now prove Theorem 1.3. Suppose the claim failed, then there exist
arbitrarily large n for which one has

δn ≤
1

2n
+ o

(
log n

n2(log log n)2

)
,

thus (by the existing bounds on δn) one has

(3.1) δn =
1

2n
+
A

n2

for some A with

(3.2) A = o

(
log n

(log log n)2

)
.

Using one of the existing bounds (1.7), (1.8) we also see that

(3.3) A� 1

for n large enough.
Henceforth we assume that n is sufficiently large and that (3.2), (3.3)

holds. In particular

(3.4) δn =
1 + o(1)

2n
.

If we let F : R/Z→ R denote the multiplicity function

F (t) :=
n∑
i=1

1B(vi,δn)(t)

then from (1.4) we have

(3.5) F (t) ≥ 1

for all t ∈ R/Z.
On the other hand, from (1.5) we have the first moment

(3.6)

∫
R/Z

F (t) dt = 2nδn = 1 +
2A

n

and hence F − 1 has a small integral:

(3.7)

∫
R/Z

(F (t)− 1) dt =
2A

n
.

Now we lower bound the second moment.

Lemma 3.1. We have

(3.8)

∫
R/Z

F (t)2 dt ≥ 1 + c− o(1)

for some absolute constant c > 0.



LONELY RUNNER CONJECTURE 13

Proof. The left-hand side can be expanded as

n∑
i=1

n∑
j=1

m(B(vi, vj ; δn, δn)),

where m denotes the Lebesgue measure. By (1.1), the contribution of the
diagonal case i = j is 2nδn = 1 + o(1), thanks to (3.4). Thus, to complete
the proof of (3.8), it will suffice to establish the lower bound

(3.9) m(B(vi, vj ; δn, δn))� 1

n2

for all 1 ≤ i, j ≤ n. But this follows from Corollary 2.3 and (3.4). �

Remark. Using [16, Proposition 2], one can in fact take c = 1/2, basically
because [16, Corollary 9] allows one to take the implied constant in (3.9) to
be 2. However, the exact value of c will not be important for our argument,
so long as it is positive.

From (3.8) and (3.6) we conclude in particular that∫
R/Z

(F (t)− 1)2 dt =

∫
R/Z

F (t)2 dt− 1− o(1) ≥ c− o(1)

so for n large enough we have

1 ≤
∫
R/Z

F (t)2 dt�
∫
R/Z

(F (t)− 1)2 dt.

From (3.5), (3.7), Hölder’s inequality (or Cauchy–Schwarz), and (3.8), we
thus have the third moment bound∫

R/Z
F (t)3 dt ≥

∫
R/Z

(F (t)− 1)3 dt

≥

(∫
R/Z(F (t)− 1)2 dt

)2∫
R/Z(F (t)− 1) dt

=
n

2A

(∫
R/Z

(F (t)− 1)2 dt

)2

� n

A

(∫
R/Z

F (t)2 dt

)2

� n

A

∫
R/Z

F (t)2 dt.

Expanding out the second and third moments of F , we conclude that∑
1≤i,j,k≤n

m(B(vi, vj , vk; δn, δn, δn))� n

A

∑
1≤i,j≤n

m(B(vi, vj ; δn, δn))
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and hence by the pigeonhole principle, there exist 1 ≤ i, j ≤ n (not neces-
sarily distinct) such that∑

1≤k≤n
m(B(vi, vj , vk; δn, δn, δn))� n

A
m(B(vi, vj ; δn, δn)).

Henceforth i, j are fixed. Clearly, the majority of the contribution to the
sum on the left-hand side will come from those k for which

(3.10) m(B(vi, vj , vk; δn, δn, δn))� 1

A
m(B(vi, vj ; δn, δn)).

On the other hand, we have the trivial upper bound

m(B(vi, vj , vk; δn, δn, δn)) ≤ m(B(vi, vj ; δn, δn))

(note this already recovers the bound (3.3), which is of comparable strength
to the existing bounds (1.7), (1.8)). Subdividing into O(log(1 + A)) =
O(log log n) dyadic regions and using the pigeonhole principle, we thus con-
clude the existence of some

(3.11) 1� A1 � A

such that

(3.12)
∑

1≤k≤n: n
2A1
≤m(B(vi,vj ,vk;δn,δn,δn))≤ n

A1

m(B(vi, vj , vk; δn, δn, δn))

� n

A log log n
m(B(vi, vj ; δn, δn)).

In particular, we see that the estimate

m(B(vi, vj , vk; δn, δn, δn)) � 1

A1
m(B(vi, vj ; δn, δn))

holds for � A1n
A log logn values of k = 1, . . . , n.

Henceforth A1 is fixed. Applying Lemma 2.2 and (3.4), we conclude that
the estimate

(3.13) µ

(
P

(
vi, vj , vk;

1

δn
,

1

δn
,

1

δn

))
� n

A1
µ

(
P

(
vi, vj ;

1

δn
,

1

δn

))
holds for � A1n

A log logn values of k = 1, . . . , n.

Informally, the estimate (3.13) is asserting that many velocities of the vk
are somehow arithmetically related to the fixed velocities vi, vj . We make
this precise as follows.

Proposition 3.2. Let k = 1, . . . , n obey (3.13). Then there exists a positive
integer

(3.14) ak = O(A1)

such that we have a linear relation between vi, vj , vk of the form

(3.15) akvk = ni,kvi + nj,kvj
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with |ni,k|, |nj,k| ≤ 2
δn

. In particular, from (3.14), (3.2), (3.11) we have

(3.16) ak = o(log n).

Proof. It will be convenient to write the fraction vi/vj in lowest terms as

(3.17)
vi
vj

=
hi
hj

for some coprime nonzero integers hi, hj . Set H := max(|hi|, |hj |) to be the
height of this fraction.

The equation nivi + njvj = 0 is only solvable in integers when (ni, nj) is
an integer multiple of (hj ,−hi), which is a vector of magnitude ∼ H. From
(3.4) and the definition of multiplicity, we conclude that

µ

(
P

(
vi, vj ;

1

δn
,

1

δn

))
� 1 +

n

H
.

For similar reasons, we see that every integer has at most O(1 + n
H ) repre-

sentations of the form nivi + njvj with |ni|, |nj | ≤ 1/δn, and hence

µ

(
P

(
vi, vj , vk;

1

δn
,

1

δn
,

1

δn

))
�
(

1 +
n

H

)
# (Pij ∩ Pk)

where Pij is the rank two generalised arithmetic progression

Pij := P

(
vi, vj ;

1

δn
,

1

δn

)
and Pk is the rank one progression

Pk := P

(
vk;

1

δn

)
.

From (3.13), we thus have

(3.18) #(Pij ∩ Pk)�
n

A1

for � A1n
A log logn values of k = 1, . . . , n.

Let k = 1, . . . , n obey (3.18). Every element of Pij ∩Pk clearly lies in Pk,
and is thus of the form nkvk for some nk = O(A). On the other hand, from
(3.18) there are � n/A1 such elements nkvk. By the pigeonhole principle
(or Dirichlet box principle), there must therefore exist distinct elements
nkvk, n

′
kvk of the set Pij ∩ Pk with n′k − nk = O(A1). Subtracting, we

conclude that that there exists a positive integer ak of size O(A1) such that
akvk ∈ 2Pij , and the claim follows. �

As in the proof of the above lemma, we write vi/vj in lowest terms using
(3.17), thus we may write vi = hiv0 and vj = hjv0 for some nonzero integer
v0. We have already seen that vk is arithmetically related to vi and vj . We
now show that vk is also arithmetically related to v0:
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Proposition 3.3. After removing at most n3/4+o(1) exceptional choices of
k, for all remaining k obeying (3.13), there exists a positive integer

(3.19) 1 ≤ a′k � A1

and an integer n′0,k coprime to a′k with

(3.20) |n′0,k| � A1n

such that

(3.21) a′kvk = n′0,kv0.

Proof. We first dispose of a degenerate case in which ni,k, nj,k are both small,

say |ni,k|, |nj,k| ≤ n1/3. The number of triples (ak, ni,k, nj,k) of this form does
not exceed

O
(
A1 × n1/3 × n1/3

)
= O(n2/3+o(1)).

Sinced the vk are all distinct, we conclude from (3.15) that there are at most

O(n2/3+o(1)) k which are of these form. Discarding these k as exceptional,
we may assume that

(3.22) max(|ni,k|, |nj,k|) > n1/3.

In particular, if we let mk be the largest natural number such that mk|ni,k|,
mk|nj,k| ≤ 2/δn, then we have

(3.23) 1 ≤ mk � n2/3.

Next, we recall the progressions Pij , Pk from the proof of Lemma 3.2.
Since vi = hiv0 and vj = hjv0 with H := max(|hi|, |hj |), we see that

(3.24) Pij ⊂ P (v0; 10Hn)

and similarly

(3.25) 2Pij ⊂ P (v0; 20Hn).

Since akvk lies in 2Pij , we conclude that

akvk = n0,kv0

for some integer n0,k with |n0,k| ≤ 20Hn. Reducing to lowest terms, we thus
have (3.21) for some positive integer a′k obeying (3.19) and some integer

n′0,k coprime to a′k with |n′0,k| ≤ 20Hn. If |n′0,k| ≤ n3/4, then the number

of possible pairs (a′k, n
′
0,k) is at most O(n3/4+o(1)), so we may again discard

these k as exceptional. Thus we may assume that

(3.26) |n′0,k| > n3/4.

We now divide into three cases depending on the size of the height H.
Let us first suppose that we are in the highly incommensurable case when
H ≥ n log10 n; this informally corresponds to the case where Pij behaves
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“two-dimensionally”. Then we have makvk 6∈ 2Pij whenever mk < m <
log10 n

10 mk (say). This implies that for any integer v, the set{
m ∈ Z : 0 ≤ m <

log10 n

10
mk : v +makvk ∈ Pij

}
can have cardinality at most mk (indeed this set must have diameter at
most mk). As a consequence, the set Pij ∩ Pk appearing in (3.18) intersects
each arithmetic progression of the form {(m0 + mak)vk : m ∈ Z : 0 ≤ m <
log10 n

10 mk} in a set of cardinality at most mk (so in particular in a set of

relative density O(log−10 n) in the arithmetic progression). Covering Pk by

O

(
1
δn

log10 n
10 mk

)

such progressions (noting from (3.23), (3.16), (3.4) that ak
log10 n

10 mk is sig-
nificantly smaller than 1/δn), we conclude that

Pij ∩ Pk � n log−10 n.

But this, using (3.2), contradicts (3.18) if n is large enough. Thus the highly
incommensurable case does not occur.

Now we consider the commensurable case when H ≤ 10n; this informally
corresponds to the case where Pij behaves “one-dimensionally”. Using (3.24)
and (3.21), we obtain the inclusion

Pij ∩ Pk ⊂ P (v0; 10Hn) ∩ Pk ⊂ P

(
a′kvk;

10Hn

|n′0,k|

)
.

In particular we have

#(Pij ∩ Pk)� 1 +
10Hn

|n′0,k|
.

Comparing this with (3.18) and using H ≤ 10n (and (3.11), (3.2)), we obtain
(3.20) as desired.

Finally, we consider the moderately incommensurable case 10n < B <
n log10 n. We treat this case by a combination of the two preceding argu-
ments. As in the commensurable case, we have the inclusion

Pij ∩ Pk ⊂ P

(
a′kvk;

10Hn

|n′0,k|

)
.

On the other hand, by repeating the highly incommensurable arguments, we
see that the set Pij ∩ Pk intersects each arithmetic progression of the form

(3.27)

{
(m0 +mak)vk : m ∈ Z : 0 ≤ m <

H

10n
mk

}
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in a set of relative density O(n/H) in those progressions. Recall that ak is
a multiple of a′k, and by (3.26), (3.23), and (3.16) we have

ak
B

10n
mk � a′k

10Hn

|n′0,k|
.

Thus we may cover P (a′kvk;
10Hn
|n′0,k|

) by

O

 10Hn
|n′0,k|
H

10nmk


progressions of the form (3.27) and conclude that

#(Pij ∩ Pk)�
n

H

Hn

|n′0,k|
� n2

|n′0,k|
.

Comparing this with (3.18) we again conclude (3.20) as desired. �

From the above proposition (and (3.2), (3.11)), we see that all k in a
subset K ⊂ {1, . . . , n} of cardinality

#K � A1n

A log log n
,

one can write

(3.28) vk = n′0,k
v0

a′k

for some positive integer

(3.29) a′k = o(log n)

and some integer

(3.30) n′0,k = O(A1n).

We partition K into K1 ∪ K2, where K1 is the set of those k ∈ K for
which n′0,k = n′0,l for some l ∈ K\{k}, and K2 is the remaining set of k ∈ K.
By the pigeonhole principle we have

(3.31) #Ka �
A1n

A log log n

for some a = 1, 2, which we now fix.
Now we are ready to improve the union bound. From (3.5) we have the

pointwise inequality

F (t)− 1 ≥ 1

2
F (t)1F (t)≥2,

so upon integrating and using (3.7) we have

(3.32)
2A

n
≥ 1

2

∫
R/Z

F (t)1F (t)≥2 dt.
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We can expand∫
R/Z

F (t)1F (t)≥2 dt =
n∑
k=1

m(B(vk; δn) ∩ {F ≥ 2})

=
n∑
k=1

m

B(vk; δn) ∩
⋃

1≤l≤n:l 6=k
B(vl; δn)


≥
∑
k∈Ka

m

B(vk; δn) ∩
⋃

l∈Ka:l 6=k
B(vl; δn)


(3.33)

and thus

(3.34) A� n
∑
k∈Ka

m

B(vk; δn) ∩
⋃

l∈Ka:l 6=k
B(vl; δn)

 .

We now divide into two cases, depending on the value of a. First suppose
that a = 1. Then for every k ∈ Ka, there is l ∈ Ka distinct from k such
that n′0,k = n′0,l. From (3.28) we then have the inclusion

B(vk, vl; δn, δn) ⊃ B

(
n′0,kv0

bk,l
;
δn
a′ka
′
l

)
where bk,l is the least common multiple of a′k and a′l, so in particular (by
Corollary 2.3 or (1.5) and (3.4), (3.29))

m

B(vk; δn) ∩
⋃

l∈Ka:l 6=k
B(vl; δn)

� 1

n log2 n
.

Inserting this into (3.34) and using (3.31) we conclude that

A� A1n

A log2 n log logn
,

which contradicts (3.2), (3.11) (with substantial room to spare).
Now suppose that a = 2, then the n′0,k are all distinct as k varies in Ka.

Define a medium-sized prime to be a prime p in the range log10 n ≤ p ≤
n1/10. Suppose that p is a medium-sized prime that divides both n′0,k and

n′0,l for some distinct k, l ∈ Ka. Then the frequencies vk = n′0,kv0/a
′
k and

vl = n′0,lv0/a
′
l are both integer multiples of pv0/bk,l, where bk,l = o(log2 n)

is the greatest common divisor of v0 and a′ka
′
l (note from (3.29) that the

medium-sized prime p will not divide a′k or a′l). From (3.30), (3.4), (3.29),
and (3.2) we then have the inclusion

B(vk, vl; δn, δn) ⊃ B
(
pv0

bk,l
,

p

n2 log5 n

)
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(say). In particular we have

B(vk, vl; δn, δn) ⊃ Bp,bk,l

where Bp,bk,l is the “major arc” set

Bp,bk,l :=

p−1⋃
c=1

{
t ∈ R/Z :

∥∥∥∥ tv0

bk,l
− c

p

∥∥∥∥
R/Z
≤ 1

n2 log5 n

}
.

Observe that each set Bp,bk,l has measure

m(Bp,bk,l) =
2(p− 1)

n2 log5 n
� log5 n

n2
.

Also, we claim that if p, p′ are two distinct medium-sized primes, and b, b′ =
o(log2 n) are positive integers dividing v0, then the sets Bp,b and Bp′,b′ are
disjoint. This will be a variant of the arguments in the introduction. Suppose
for contradiction that there was t ∈ R/Z that was in both Bp,b and Bp′,b′ ,
then we have ∥∥∥∥ tv0

b
− c

p

∥∥∥∥
R/Z

,

∥∥∥∥ tv0

b′
− c′

p′

∥∥∥∥
R/Z
≤ 1

n2 log5 n

for some 1 ≤ c ≤ p− 1 and 1 ≤ c′ ≤ p′ − 1. Eliminating t using the triangle
inequality, we conclude that

(3.35)

∥∥∥∥bcp − b′c′

p′

∥∥∥∥
R/Z
≤ b+ b′

n2 log5 n
.

As p, p′ are medium-sized primes, they do not divide b, b′ = o(log2 n), and

so the fraction bc
p −

b′c′

p′ is noninteger. In particular∥∥∥∥bcp − b′c′

p′

∥∥∥∥
R/Z
≥ 1

pp′
≥ 1

n1/5
,

which contradicts (3.35) since b, b′ = o(log2 n).
In view of the above facts, we see that if a medium-sized prime p divides

n′0,k for r values of k ∈ Ka, and r ≥ 2, then this prime contributes �
rlog5 n/n2 to the sum in (3.34); furthermore, the contributions of different
medium-sized primes are disjoint. We conclude that

A� n
∑
p

log5 n

n2
(#{k ∈ K : p|n0,k} − 1)

where in the remainder of the argument, p is understood to range over
medium-sized primes. The contribution of the −1 term can be crudely
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bounded by O(
∑

p
log5 n
n ) = o(1), hence

A�
∑
p

log5 n

n
#{k ∈ K : p|n0,k} − o(1)

=
log5 n

n

∑
k∈K

∑
p:p|n0,k

1− o(1).

Standard sieve bounds (see e.g. [14, Corollary 6.2]) show that the number
of integers in the set {n′ ∈ Z : n′ = O(A1n)} which are not divisible by any
medium-sized prime p is at most

O

(
log(log10 n)

log(n1/10)
A1n

)
= O

(
log logn

log n
A1n

)
.

Since the n′0,k for k ∈ Ka are distinct, this implies that the number of k ∈ Ka

with n′0,k not divisible by any medium-sized prime is also O( log logn
logn A1n).

Comparing this with (3.31) and (3.2), we see that there are � A1n
A log logn

elements k of Ka that are divisible by at least one medium-sized prime p.
We conclude that

A� log5 n

n

A1n

A log log n
− o(1)

which contradicts (3.2), (3.11) for n large enough (with some room to spare).
The claim follows.

4. Proof of second theorem

We now prove Theorem 1.4. Let C1 be a large constant to be chosen
later, and set C0 := C2

1 . We prove the theorem by induction on n0. The
claim is trivial for n0 = 1, so suppose that n0 > 1 and that the claim has
already been proven for smaller values of n0. The implication of (ii) from
(i) is trivial, so it remains to assume (ii) and establish (i). By the induction
hypothesis, we already have

(4.1) δn =
1

n+ 1

for all n < n0, and (in view of (1.1)) our task is then to show that

(4.2) δ(v1, . . . , vn0) ≥ 1

n0 + 1

for any nonzero distinct integers v1, . . . , vn0 . From (4.1), we see that

(4.3) δ(v′1, . . . , v
′
n0

) ≥ 1

n0

whenever v′1, . . . , v
′
n0

are nonzero integers with at least one collision v′i = v′j
for 1 ≤ i < j ≤ n0, since one can remove all duplicate velocities and apply
(4.1) with the surviving n velocities for some n < n0. As mentioned in the
introduction, the strategy is to compare δ(v1, . . . , vn0) to some δ(v′1, . . . , v

′
n0

)
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involving a collision if the v1, . . . , vn0 are not already efficiently contained in
a (rank one) arithmetic progression.

We turn to the details. For brevity we now abbreviate n0 as n henceforth.
Let v1, . . . , vn be nonzero distinct integers. Applying Proposition 2.1 with
P = P (v1, . . . , vn; 1, . . . , 1) and t = nC1n, we can find a nC1n-proper gener-
alised arithmetic progression Q = Q(w1, . . . , wr;N1, . . . , Nr) of rank r ≤ n
that contains all of the v1, . . . , vn, with

#Q� nO(C1n2).

Let φ : Rr → R denote the linear map

φ(n1, . . . , nr) := n1w1 + · · ·+ nrwr,

then by the construction of Q we have

(4.4) vi = φ(ai)

for i = 1, . . . , n and some ai ∈ Zr that lie in the box

{(n1, . . . , nr) ∈ Rr : |n1| ≤ N1, . . . , |nr| ≤ Nr}.

We now need an elementary lemma that allows us to create a “collision”
between two of the a1, . . . , an via a linear projection, without making any
of the ai collide with the origin:

Lemma 4.1. Let a1, . . . , an ∈ Rr be nonzero vectors that are not all collinear
with the origin. Then, after replacing one or more of the ai with their
negatives −ai if necessary, there exists a pair ai, aj such that ai − aj 6= 0,
and such that none of the a1, . . . , an is a scalar multiple of ai − aj.

Proof. We may assume that r ≥ 2, since the r ≤ 1 case is vacuous. Applying
a generic linear projection to R2 (which does not affect collinearity, or the
property that a given ak is a scalar multiple of ai−aj), we may then reduce
to the case r = 2.

By a rotation and relabeling, we may assume that a1 lies on the negative
x-axis; by flipping signs as necessary, we may then assume that all of the
a2, . . . , an lie in the closed right half-plane. As the ai are not all collinear
with the origin, one of the ai lies off of the x-axis, by relabeling, we may
assume that a2 lies off of the x-axis and makes a minimal angle with the
x-axis. Then the angle of a2 − a1 with the x-axis is nonzero but smaller
than any nonzero angle that any of the ai make with this axis, and so none
of the ai are a scalar multiple of a2 − a1, and the claim follows. �

We now return to the proof of the proposition. If the a1, . . . , an are
all collinear with the origin, then φ(a1), . . . , φ(an) lie in a one-dimensional
arithmetic progression P (v; #Q); by rescaling we may then take v1, . . . , vn
to be integers of magnitude at most #Q � nO(C1n2), and the claim (4.2)
then follows from the hypothesis (ii) if C1 is large enough, since C0 = C2

1 .
Thus, we may assume that the a1, . . . , an are not all collinear with the origin,
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and so by the above lemma and relabeling we may assume that an − a1 is
nonzero, and that none of the ai are scalar multiples of an − a1.

We will replace the velocities vi = φ(ai) by a variant v′i = φ′(ai), where
φ′ : Rr → R is a modification of φ : Rr → R designed to create a collision.
To construct φ′, we write

(4.5) an − a1 = q~c

where q is a positive integer and ~c = (c1, . . . , cr) ∈ Zr is a vector whose
coefficients cj have no common factor and obey the bound |cj | ≤ 2Ni for
j = 1, . . . , r; by relabeling we may assume without loss of generality that cr
is nonzero, and furthermore that

(4.6)
|cj |
Nj
≤ |cr|
Nr

for j = 1, . . . , r.
We now define a variant φ′ : Rr → R of φ : Rr → R by the formula

φ′(n1, . . . , nr) :=
r∑
j=1

w′j(njcr − nrcj),

where the w′1, . . . , w
′
r are an “extremely lacunary” sequence of integers; the

precise form of w′j is not important for our argument, but for sake of con-
creteness we set

w′j := njC1n100
.

We then set v′1, . . . , v
′
n to be the integers

(4.7) v′i := φ′(ai).

By contruction, the map φ′ : Rr → R is linear and annihilates an−a1, hence
we have a collision

v′1 = v′n.

We also have the nonvanishing of the v′i:

Lemma 4.2. One has v′i 6= 0 for every i = 1, . . . , n.

Proof. If we write ai = (n1,i, . . . , nr,i), then by construction ai is not parallel
to an − a1, and is thus not a multiple of ~c. In particular, at least one of the
coefficients nj,icr − nr,icj of the quantity

v′i = φ′(ai) =
r∑
j=1

w′j(nj,icr − nr,icj)

is nonvanishing. On the other hand, these coefficients are integers of size

O(NjNr) = O((#Q)2) = nO(C1n2).

Given the highly lacunary nature of the w′j , we conclude the nonvanishing

of v′i as claimed. �
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Applying (4.3), we conclude that

δ(v′1, . . . , v
′
n) ≥ 1

n
.

We now use Fourier-analytic techniques to “transfer” this bound to obtain
(4.2). By definition, there exists t0 ∈ R/Z such that

min
1≤i≤n

‖t0v′i‖R/Z ≥
1

n
.

On the other hand, from Corollary 2.3, the set of t ∈ R/Z for which

max
1≤i≤n

‖tv′i‖R/Z ≤
1

10n2

has measure � n−O(n). By the triangle inequality, and shifting the above
set by t0, we conclude that

(4.8) min
1≤i≤n

‖tv′i‖R/Z ≥
1

n
− 1

10n2

for all t in a subset of R/Z of measure � n−O(n).
We now need a certain smooth approximant to the indicator function

1‖x‖R/Z≤ 1
n+1

.

Lemma 4.3. There exists a trigonometric polynomial η : R/Z → R of the
form

(4.9) η(x) =
∑

m:|m|≤nC1n/10

bme
2πimx

for some complex coefficients bm, which takes values in [0, 1] and is such
that

(4.10) η(x)� 1

when ‖x‖R/Z ≥ 1
n −

1
10n2 and

(4.11) η(x)� n−100C1n

when ‖x‖R/Z ≥ 1
n+1 .

Proof. The function 1‖x‖R/Z≥ 1
n
− 1

5n2
has a Fourier expansion

1‖x‖R/Z≥ 1
n
− 1

5n2
=
∑
m∈Z

ame
2πimx

for some square-summable coefficients am (where the series convergence is
in the L2 sense). Let φ : R → R be a Schwartz class nonnegative function

supported on [−1, 1] with positive Fourier transform φ̂; we may normalise

φ(0) = 1, so that
∫
R φ̂(s) ds = 1. We define η to be the trigonometric

polynomial

η(x) :=
∑

m:|m|≤nC1n/10

φ
( m

nC1n/10

)
ame

2πimx.
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From the Fourier inversion formula, we can also write η as a convolution:

η(x) =

∫
R
φ̂(s)1‖x− s

nC1n/10
‖R/Z≥ 1

n
− 1

5n2
ds.

Since φ̂ is nonnegative and has total mass 1, we now see that η takes values
in [0, 1] as claimed. If ‖x‖R/Z ≥ 1

n+1 , then the constraint ‖x− s
nC1n/10 ‖R/Z ≥

1
n −

1
5n2 can only be satisfied if s is larger than nC1n/20 (say), so the claim

(4.11) follows from the rapid decrease of φ̂. Finally, if ‖x‖R/Z ≥ 1
n −

1
10n2 ,

then the constraint ‖x− s
nC1n/10 ‖R/Z ≥ 1

n −
1

5n2 is obeyed for all s ∈ [−1, 1],

giving (4.10). �

Let η be as in the above lemma. From (4.8), we have

η(tv′i)� 1

for all i = 1, . . . , n and all t in a subset of R/Z of measure � n−O(n).
Multiplying and integrating, we conclude that

(4.12)

∫
R/Z

n∏
i=1

η(tv′i) dt� n−O(n).

Now we come to the key Fourier-analytic comparison identity.

Lemma 4.4 (Comparison identity). Let D : R/Z→ C denote the Dirichlet
series

(4.13) D(x) :=
∑

m:|m|≤nC1n/2 Nr
|c′r |

e2πimx.

Then

(4.14)

∫
R/Z

n∏
i=1

η(tv′i) dt =

∫
R/Z

D(tφ(~c))

n∏
i=1

η(tvi) dt.

Proof. Using (4.9), (4.7), and the linearity of φ′, the left-hand side of (4.14)
may be expanded as ∑

m1,...,mn∈Z:φ′(m1a1+···+mnan)=0

bm1 . . . bmn

where we adopt the convention that bm vanishes when m > nC1n/10. Simi-
larly, by (4.9), (4.4), (4.13), the right-hand side may be expanded as∑

|m|≤nC1n/2 Nr
|cr |

∑
m1,...,mn∈Z:φ(m1a1+···+mnan+m~c)=0

bm1 . . . bmn .

Thus, to prove (4.14), it suffices to show that for any integers m1, . . . ,mn

with |mi| ≤ nC1n/10, one has

(4.15) φ′(m1a1 + · · ·+mnan) = 0
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if and only if

(4.16) φ(m1a1 + · · ·+mnan +m~c) = 0

for an integer m with |m| ≤ nC1n/2Nr/|cr|, and furthermore this choice of
m is unique.

For m1, . . . ,mn in the range |mi| ≤ nC1n/10, we can repeat the proof of
Lemma 4.2 to conclude that (4.15) holds if and only if m1a1 + · · ·+mnan is
a multiple of an− a1, or equivalently (by (4.5) and the fact that the cj have
no common factor) an integer multiple of ~c. Thus we have

m1a1 + · · ·+mnan +m~c = 0

(and hence (4.16)) for some integer m. Since the mi have magnitude at most

nC1n/10, each ai has the rth coefficient of magnitude at most Nr, we see (for

C1 large enough) that m has magnitude at most nC1n/2Nr/|cr|. Applying
φ, we see that (4.15) implies (4.16).

Conversely, suppose that m1, . . . ,mn are integers in the range |mi| ≤
nC1n/10 such that (4.16) holds for some integer m with |m| ≤ nC1n/2Nr/|cr|.
For j = 1, . . . , r, the jth coefficient of miai for i = 1, . . . , n has magnitude
at most nC1n/10Nj , while from (4.6), the corresponding coefficient of mc′

has magnitude at most nC1n/2Nj . Summing, we see that the jth coefficient
of m1a1 + · · · + mnan + m~c has magnitude at most nC1nNj if C1 is large
enough. As Q is nC1n-proper, we conclude from (4.16) that

(4.17) m1a1 + · · ·+mnan +m~c = 0.

Thus m1a1 + · · · + mnan is a multiple of an − a1, and on applying φ′ we
conclude (4.15). Note that the identity (4.17) also shows that the choice of
m is unique. �

Applying the above lemma to (4.12), we conclude that∫
R/Z

D(tφ(~c))
n∏
i=1

η(tvi) dt� n−O(n).

By Lemma 4.3 (and crudely bounding D by O(nC1n)), the contribution to
this integral of those t for which

min
1≤i≤n

‖tvi‖R/Z ≤
1

n+ 1

is O(n−99C1n). For C1 large enough, this implies that we must have

min
1≤i≤n

‖tvi‖R/Z >
1

n+ 1

for at least one value of t, and (4.2) follows.
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5. Velocities in a short progression

We now prove Propositions 1.6, 1.7.
The key lemma in proving Proposition 1.6 is the following.

Lemma 5.1. Let n, k ≥ 1 be natural numbers, and let v1, . . . , vn be positive
integers with vi ≤ kn for all i = 1, . . . , n, and such that δ(v1, . . . , vn) < 1

n+1 .

(i) If 1 ≤ j ≤ n + 1, then at least one of the v1, . . . , vn is a multiple of
j.

(ii) If 1 ≤ j ≤ n and a is coprime to j, then there exists vi, i = 1, . . . , n
such that either vi = cj for some c = 1, . . . , k − 1, or else vi = a
mod j and vi > k(n+ 1− j).

Proof. By hypothesis, for every t ∈ R/Z there exists 1 ≤ i ≤ n such that
‖tvi‖R/Z < 1

n+1 . Applying this claim with t := 1/j for some 1 ≤ j ≤ n+ 1,

we obtain (i).
Now we prove (ii). Since a is coprime to j, we can find an integer d

coprime to j such that ad = −1 mod j. We apply the hypothesis with
t := d

j + 1
kj(n+1) , and conclude that there exists vi, i = 1, . . . , n, such that∥∥∥∥vidj +

vi
kj(n+ 1)

∥∥∥∥
R/Z

<
1

n+ 1
.

We divide into cases depending on the residue class of vid modulo j. If vid =
0 mod j, then since vi

kj(n+1) is positive and bounded above by kn
kj(n+1) ≤

1− 1
n+1 , we have

vi
kj(n+ 1)

<
1

n+ 1

and hence vi < kj. On the other hand, as d is coprime to j and vid = 0
mod j, vi must be a multiple of j. Thus vi = cj for some c = 1, . . . , k − 1.
This already covers the j = 1 case, so we now may assume j > 1.

Now suppose that vid = −1 mod j. Then we must have

vi
kj(n+ 1)

>
1

j
− 1

n+ 1

and hence

vi > k(n+ 1− j);
also, since ad = −1 mod j, we must also have vi = a mod j.

Finally, suppose vid mod j is not equal to 0 or −1. Then we must have

vi
kj(n+ 1)

>
2

j
− 1

n+ 1

and hence

vi > k(2n+ 2− j) ≥ nk,
contradicting the hypothesis. �
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Now we can prove Proposition 1.6. Suppose for contradiction that we can
find n ≥ 1 and positive integers v1, . . . , vn ≤ 1.2n such that δ(v1, . . . , vn) <

1
n+1 . From Lemma 5.1(i) we see that for any 0.6n < j ≤ n+1, some multiple

of j must lie in {v1, . . . , vn}; since 2j > 1.2n, we conclude that

j ∈ {v1, . . . , vn}
whenever 0.6n < j ≤ n+ 1.

Next, suppose that 1 ≤ j ≤ 0.4n+ 1. Applying Lemma 5.1(ii) with k = 2
and a = 1, we see that there exists vi, i = 1, . . . , n which is either equal to
j, or is at least 2(n+ 1− j) ≥ 1.2n. The latter is impossible, hence we have

j ∈ {v1, . . . , vn}
whenever 1 ≤ j ≤ 0.4n+ 1.

Now suppose that n+1
2 < j ≤ 0.6n. We apply Lemma 5.1(ii) with k = 3

and a = 1 to conclude that there exists vi, i = 1, . . . , n which is either equal
to j or 2j, or is at least 3(n+ 1− j) > 1.2n. The latter case cannot occur,
and hence

j or 2j ∈ {v1, . . . , vn}
whenever n+1

2 < j ≤ 0.6n.

Finally, suppose that 0.4n+ 1 < j ≤ n+1
2 . We apply Lemma 5.1(ii) with

k = 2 and a = j − 1 to conclude that there exists vi, i = 1, . . . , n which
is either equal to j, or is at least 2(n + 1 − j) ≥ n + 1 and is equal to −1
mod j. Since 3j − 1 > 1.2n and j − 1, 2j − 1 < n+ 1, we thus have

j ∈ {v1, . . . , vn}
for 0.4n+ 1 < j ≤ n+1

2 .
Observe that each of the above conditions places exactly one element

(either j or 2j) in {v1, . . . , vn} for j = 1, . . . , n + 1, and these elements are
all distinct (if j lies in the range n+1

2 < j ≤ 0.6n, then 2j > n + 1 and
so this element does not collide with any of the others). We conclude that
{v1, . . . , vn} has cardinality at least n+ 1, which is absurd. This completes
the proof of Proposition 1.6.

Now we prove Proposition 1.7. We allow implied constants to depend
on C, thus vi = O(n) for all i = 1, . . . , n. We will adapt the arguments
following Proposition 3.3, except that we will use “small primes” rather
than “medium primes”.

We will need a small quantity 0 < ε < 1, depending only on C, to be
chosen later. Define a small prime to be a prime p between exp(1/ε) and
exp(1/ε2). The number of positive integers between 1 and Cn that are not
divisible by any small prime is

(1 + o(1))Cn
∏
p

(1− 1

p
)

where p ranges over small primes (and the o(1) notation is with respect
to the limit n → ∞, holding C and ε fixed); by Mertens’ theorem, this
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expression is O(εCn). Thus, if ε is small enough, we see that � n of the vi
will have at least one small prime factor.

Call an integer bad if it is divisible by the square of a small prime, or by
two small primes p, p′ with p < p′ ≤ (1 + ε2)p, and good otherwise. The
number of bad integers between 1 and Cn can be bounded by

� Cn
∑
p

∑
p≤p′≤(1+ε2)p

1

pp′
.

One can crudely bound the inner sum by O(ε2/p), and then by another
application of Mertens’ theorem, the total number of bad integers is O(εCn).
Thus, again if ε is small enough, we see that � n of the vi will be good and
have at least one small prime factor. Removing the integers of size εn, we
may thus locate a subset K of {1, . . . , n} of cardinality #K � n, such that
for each k ∈ K, vk is a good integer between εn and Cn with at least one
small prime factor.

For each k ∈ K, we may factor

vk = pkv
′
k

where pk is the minimal small prime dividing vk, thus all the small primes
dividing v′k are larger than (1+ε2)pk. For each vk, we associate the set S(vk)
of integers of the form p′kv

′
k, where p′k is a small prime between (1 + ε2)−1pk

and (1 + ε2)pk. Clearly p′k will be the minimal small prime dividing p′kv
′
k; in

particular, v′k can be determined from any element of S(vk). Thus, if S(vk)
and S(vk′) intersect, then we have v′k = v′k′ .

From the prime number theorem, we see that each set S(vk) has cardi-
nality � ε2pk/log pk � 1/ε. On the other hand, as each vk is of size at
most Cn, each element of S(vk) is of size O(Cn). We conclude that the
number of k for which S(vk) does not intersect any other S(vk′) cannot ex-
ceed O(εCn). For ε small enough, we thus can find a subset K ′ of K of
cardinality #K ′ � n, such that for each k ∈ K ′, there is another k′ ∈ K ′
such that S(vk) intersects S(vk′). By the preceding discussion, this implies
that v′k = v′k′ .

As in Section 3, we define the quantity A by requiring

δ(v1, . . . , vn) =
1

2n
+
A

n2

and introduce the multiplicity function

F :=
n∑
i=1

1B(vi,δn)(t).

By repeating the proof of (3.32), we have

(5.1)
2A

n
≥ 1

2

∫
R/Z

F (t)1F (t)≥2 dt
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and by repeating the proof of (3.33) we have∫
R/Z

F (t)1F (t)≥2 dt ≥
∑
k∈K′

m

B(vk; δn) ∩
⋃

l∈K′:l 6=k
B(vl; δn)

 .

For each k ∈ K ′, we see from previous discussion that there is an l ∈ K ′
distinct from k such that v′k = v′l, hence vk = pkv

′
k and vl = plv

′
k. Hence

B(vk, vl; δn, δn) ⊃ B
(
v′k,

δn
pkpl

)
and thus (by Corollary 2.3 or (1.5))

m

B(vk; δn) ∩
⋃

l∈K′:l 6=k
B(vl; δn)

� δn
pkpl

�ε
1

n
.

Since #K ′ � n, we conclude that∫
R/Z

F (t)1F (t)≥2 dt�ε 1

and hence by (5.1) we have A�ε n, and the claim follows.
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