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ALTERNATING SERIES OF APÉRY-TYPE

FOR THE RIEMANN ZETA FUNCTION

WENCHANG CHU

Abstract. By making use of a transformation formula for the non-
terminating well-poised 5F4-series, we investigate a class of alternating
series of Apéry-type and establish several identities for the Riemann zeta
function, including three identities conjectured by Sun (2015).

1. Introduction and Motivation

The Riemann zeta function is defined by the series

ζ(x) =

∞∑
n=1

1

nx
for <(x) > 1.

Euler discovered the well-known formula that this function at the even pos-
itive integers can be expressed in terms of π:

ζ(2n) = (−1)n−1 (2π)2n

(2n)!
B2n,

where the even index Bernoulli numbers B2n are defined by the generating
function:

y cot y =
∞∑
n=0

(−1)n
(2y)2n

(2n)!
B2n.

In his irrationality proof for ζ(2) and ζ(3), Apéry [3] (see also [19]) found
the following surprising infinite series identities:

ζ(2) =
∞∑
n=1

3

n2
(

2n
n

) and ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3
(

2n
n

) .
More formulae of Apéry-type involving central binomial coefficients can be
found in numerous articles, for example, [1,2,5,8,11,12,14,16,18,20,22], as
well as the monographs by Berndt [6, §9], Borwein and Borwein [7, §11] and
Comtet [15, p. 89].
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Define the generalized harmonic numbers of higher order by

H〈m〉n :=

n∑
k=1

1

km
with Hn := H〈1〉n .

The purpose of this paper is to investigate alternating series of Apéry-
type involving both harmonic numbers of higher order and central binomial
coefficients. According to Chu [10, 11] and Chu–Zhang [13], numerous π-
related series identities (such as Riemann zeta series, Apéry-type series, and
Ramanujan-like series) can be derived by examining classical hypergeometric
functions. By employing a transformation formula for the nonterminating
well-poised 5F4-series appearing in [13, Theorem 10], we shall establish sev-
eral further infinite series identities. For instance, we find two Apéry-like
series for ζ(4) (see Examples 3.2 and 3.3)

π4

30
=

∞∑
n=1

(−1)n−1 10nHn − 3

n4
(

2n
n

) ,(1.1)

2π4

75
=

∞∑
n=1

(−1)n−1H2n + 4Hn

n3
(

2n
n

) ;(1.2)

plus another series for ζ2(3) (see Example 3.11)

(1.3) 2ζ2(3) =
∞∑
n=1

(−1)n−1 1 + 5n3H〈3〉n

n6
(

2n
n

) .

They are among the list of the conjectured series detected experimentally
by Sun [21].

2. Hypergeometric Series transformation

Let N be the set of natural numbers. The shifted factorials are defined by

(x)0 ≡ 1 and (x)n = x(x+ 1) · · · (x+ n− 1) for n ∈ N.

In their derivation of Ramanujan’s π-formulae, Chu and Zhang [13, The-
orem 10] proved the following transformation.
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Lemma 2.1. For the five complex parameters {a, b, c, d, e} subject to the
convergence condition <(1 + 2a− b− c− d− e) > 0, the following transfor-
mation formula holds
∞∑
k=0

(a+ 2k)
(b)k(c)k(d)k(e)k

(1 + a− b)k(1 + a− c)k(1− a− d)k(1 + a− e)k

=

∞∑
n=0

(−1)n
(1 + a− b− c)n(1 + a− b− d)n(1 + a− b− e)n

(1 + 2a− b− c− d− e)2+2n

× (1 + a− c− d)n(1 + a− c− e)n(1 + a− d− e)n
(1 + a− b)n(1 + a− c)n(1 + a− d)n(1 + a− e)n

×
{

(1 + 2a− b− c− d+ 2n)(2 + 2a− b− c− d− e+ 2n)(a− e+ n)

+(1 + a− b− c+ n)(1 + a− b− d+ n)(1 + a− c− d+ n)

}
.

Letting e = a and then applying the summation theorem for the well-
poised 5F4-series due to Dougall (cf. Bailey [4, §4.4])

∞∑
k=0

(a+ 2k)
(b)k(c)k(d)k(e)k

(1 + a− b)k(1 + a− c)k(1− a− d)k(1 + a− e)k

=
Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− b− c− d)

Γ(a)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)

we can express the resulting equation, under the parameter replacements

a→ 1− ax, b→ 1− bx, c→ 1− cx, d→ 1− dx
as the following theorem involving the variable x and four parameters {a, b,
c, d}.

Theorem 2.2. For the five complex parameters {a, b, c, d, x} subject to the
condition that none of the linear combinations{

ax+ bx, ax+ cx, ax+ dx, ax+ bx+ cx+ dx
}

is a negative integer (so that the series is well-defined), the following sum-
mation formula holds

Γ(1 + ax+ bx)Γ(1 + ax+ cx)Γ(1 + ax+ dx)Γ(1 + ax+ bx+ cx+ dx)

Γ(1 + ax)Γ(1 + ax+ bx+ cx)Γ(1 + ax+ bx+ dx)Γ(1 + ax+ cx+ dx)

= 1 +
∞∑
n=1

(−1)n
bcdx3

n6
(

2n
n

)
×
{

(n+ ax+ bx+ cx)(n+ ax+ bx+ dx)(n+ ax+ cx+ dx)
+ n(2n+ 2ax+ bx+ cx+ dx)(2n+ ax+ bx+ cx+ dx)

}
×
(
n−1+bx
n−1

)(
n−1+cx
n−1

)(
n−1+dx
n−1

)(
n−1+ax+bx+cx

n−1

)(
n−1+ax+bx+dx

n−1

)(
n−1+ax+cx+dx

n−1

)(
n+ax+bx

n

)(
n+ax+cx

n

)(
n+ax+dx

n

)(
2n+ax+bx+cx+dx

2n

) .

By comparing the coefficients of x3 across the last identity, we recover
immediately the following important identity.
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Example 2.3 (Hjortnaes (1954: see also [8, 17,20])).

2

5
ζ(3) =

∞∑
n=1

(−1)n−1

n3
(

2n
n

) .
Throughout the paper, we shall utilize the modified harmonic numbers of

higher order, slightly different from the usual one, defined by

Hm(n) =
n∑
k=1

(n
k

)m
= nmH〈m〉n for m, n ∈ N.

The reason to introduce the above notation Hm(n), instead of H〈m〉n , is not
only for brevity to reduce lengthy and ugly expressions containing

Hλ
m(n) = nmλ

(
H〈m〉n

)λ
,

but also justified by another advantage that all the infinite series expressions
for Riemann zeta function in this paper have the form

ζ(m) =
∞∑
n=1

(−1)n−1

nm
(

2n
n

) × P for m ≥ 3,

where P is a multivariate polynomial of {Hk(n)}m−3
k=1 with each Hk(n) behav-

ing like a constant, as shown in Examples 3.5–3.7 for ζ(5) and Example 3.16
for ζ(7).

In order to derive further infinite series identities by extracting the coef-
ficients of higher powers of the variable x in Theorem 2.2, it is necessary to
record some basic facts about the Bell polynomials and generalized harmonic
numbers as well as power series expansions of the Γ-function.

For the indeterminates y = {yk}k∈N, we define the Bell polynomials Bm(y)
(cf. Comtet [15, §3.3]) by the generating function

(2.1)
∑
m≥0

Bm(y)xm = exp
{∑
k≥1

xk

k
yk

}
.

There is the following explicit expression

(2.2) Bm(y) = Bm(y1, y2, . . . , ym) =
∑
Ω(m)

m∏
k=1

y`kk
`k! k`k

where the multiple sum runs over Ω(m), the set of m-partitions represented
by m-tuples of (`1, `2, . . . , `m) ∈ Nm0 subject to the condition

∑m
k=1 k`k = m.

Let [xm]f(x) stand for the coefficient of xm in a formal power series f(x).
By means of the generating function method, it is not hard to show that
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(cf. Chen–Chu [9]) there hold the relations:

[xm]
(
n− λx
n

)
= Bm(u), uk := −

(λ
n

)k
Hk(n);(2.3)

[xm]
(
n− λx
n

)−1
= Bm(v), vk :=

(λ
n

)k
Hk(n);(2.4)

[xm]
(
n− 1− λx
n− 1

)
= Bm(w), wk :=

(λ
n

)k{
1−Hk(n)

}
.(2.5)

Then the Bell polynomials corresponding to (2.3), (2.4), and (2.5) can be
expressed as

Bm(u) =
λm

nm

∑
Ω(m)

m∏
k=1

{
−Hk(n)

}`k
`k! k`k

,(2.6)

Bm(v) =
λm

nm

∑
Ω(m)

m∏
k=1

H`k
k (n)

`k! k`k
,(2.7)

Bm(w) =
λm

nm

∑
Ω(m)

m∏
k=1

{
1−Hk(n)

}`k
`k! k`k

.(2.8)

They will be employed to compute coefficients of xm for m ∈ N from the
right hand side of the equation displayed in Theorem 2.2. Instead, for the left
hand side of the same equation, we shall utilize the power series expansions
of the Γ-function [10]

Γ(1− x) = exp
{∑
k≥1

σk
k
xk
}
,(2.9)

Γ(1
2 − x) =

√
π exp

{∑
k≥1

τk
k
xk
}

;(2.10)

where σk and τk are defined respectively by

σ1 = γ and σm = ζ(m) for m ≥ 2;

τ1 = γ + 2 ln 2 and τm = (2m − 1)ζ(m) for m ≥ 2;

with γ being the Euler–Mascheroni constant given by γ = limn→∞
(
Hn −

lnn
)
.

3. Alternating series of Apéry-type

In this section, we shall establish several alternating series identities of
Apéry-type for the Riemann zeta function by extracting coefficients of xm for
m ∈ N across the identity given in Theorem 2.2. Because the computations
are entirely routine, we highlight only the parameter settings in the example
headers, where for simplicity, we shall make use of the following three power
sums

ρ1 = b+ c+ d, ρ2 = b2 + c2 + d2, and ρ3 = b3 + c3 + d3.
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3.1. Infinite Series for ζ(4) from [x4] in Theorem 2.2.

Example 3.1 (ρ1 = 0).

2π4

15
=
∞∑
n=1

(−1)n−1 5H1
1(2n) + 12

n4
(

2n
n

) .

Example 3.2 (a = −ρ1).

π4

30
=
∞∑
n=1

(−1)n−1 10H1
1(n)− 3

n4
(

2n
n

) .

Example 3.3 (a = −3
2ρ1).

4π4

75
=

∞∑
n=1

(−1)n−1 H1
1(2n) + 8H1

1(n)

n4
(

2n
n

) .

The above two identities confirm the conjectured values detected experi-
mentally by Sun [21, Equations 3.13 and 3.14]. The next one follows from
the linear combination “2×E(3.1)− 5×E(3.3)”, where E(3.1) and E(3.3)
stand for the equations in Example 3.1 and Example 3.3, respectively.

Example 3.4 (a = −ρ1
2 ).

0 =
∞∑
n=1

(−1)n
5H1

1(2n)− 40H1
1(n) + 24

n4
(

2n
n

) .

3.2. Infinite series for ζ(5) from [x5] in Theorem 2.2. Koecher [17]
(see also [2, 5, 8, 19]) found the following infinite series identity

ζ(5) = 2

∞∑
n=1

(−1)n+1

n5
(

2n
n

) +
5

2

∞∑
n=1

(−1)n

n3
(

2n
n

) n−1∑
k=1

1

k2

which can be restated equivalently in the example below.

Example 3.5 (a = ρ1 = 0).

2ζ(5) =

∞∑
n=1

(−1)n
5H1

2(n)− 9

n5
(

2n
n

) .

Example 3.6 (a = −ρ1 and ρ2 = ρ2
1).

4ζ(5) =

∞∑
n=1

(−1)n
6H1

1(n)− 10H2
1(n)− 5

n5
(

2n
n

) .

Example 3.7 (ρ1 = ρ2 = 0).

96ζ(5) =

∞∑
n=1

(−1)n−1 24H1
1(2n) + 5H2

1(2n) + 5H1
2(2n) + 64

n5
(

2n
n

) .
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Example 3.8 (ρ1 = −2a
3 and ρ2 = −16a2

3 ).

0 =

∞∑
n=1

(−1)n

n5
(

2n
n

){ 320H2
1(n) + 5H2

1(2n) + 5H1
2(2n)− 1664

+1120H1
2(n) + 80H1

1(n)H1
1(2n)

}
.

As done for Example 3.4, the next two “redundant series” can also be
derived by combining the two equations displayed in Examples 3.5 and 3.6.

Example 3.9 (a = −ρ1 and ρ2 = −3ρ2
1).

0 =
∞∑
n=1

(−1)n
6H1

1(n)− 10H2
1(n)− 10H1

2(n) + 13

n5
(

2n
n

) .

Example 3.10 (a = −ρ1 and ρ2 = −2ρ21
9 ).

26ζ(5) =

∞∑
n=1

(−1)n
54H1

1(n)− 90H2
1(n)− 25H1

2(n)

n5
(

2n
n

) .

3.3. Infinite series for ζ(6) from [x6] in Theorem 2.2. Firstly, we
confirm the following identity conjectured experimentally by Sun [21, Equa-
tion 4.5].

Example 3.11 (a = ρ1 = 0).

2ζ2(3) =

∞∑
n=1

(−1)n−1 5H1
3(n) + 1

n6
(

2n
n

) .

Example 3.12 (ρ1 = −a, ρ2 = a2 and ρ3 = −a3).

π6

63
=

∞∑
n=1

(−1)n−1 30H1
1(n)− 18H2

1(n) + 20H3
1(n) + 10H1

3(n)− 9

n6
(

2n
n

) .

Example 3.13 (ρ1 = −a, ρ2 = a2 and ρ3 = −3a3).

π6

63
− 4ζ2(3) =

∞∑
n=1

(−1)n−1 30H1
1(n)− 18H2

1(n) + 20H3
1(n)− 11

n6
(

2n
n

) .

Example 3.14 (ρ1 = 0 and then [a]).

4π6

189
=

∞∑
n=1

(−1)n−1 40 + 9H1
1(2n)− 12H1

2(n)− 5H1
2(n)H1

1(2n)

n6
(

2n
n

) .

Example 3.15 (ρ1 = 0 and then [a3]).

64π6

63
=

∞∑
n=1

(−1)n−1

n6
(

2n
n

) { 480 + 192H1
1(2n) + 36H2

1(2n) + 36H1
2(2n)

+5H3
1(2n) + 15H1

1(2n)H1
2(2n) + 10H1

3(2n)

}
.
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3.4. Infinite series for ζ(7) from [x7] in Theorem 2.2.
Koecher [17] (cf. [8, Equation 9-3]) discovered also the following interest-

ing series for ζ(7).

Example 3.16 (a = ρ1 = 0).

4ζ(7) =
∞∑
n=1

(−1)n

n7
(

2n
n

){18H1
2(n)− 5H2

2(n) + 5H1
4(n)− 26

}
.

Example 3.17 (ρ1 = ρ2 = 0 and then [a]).

4π4

3
ζ(3) =

∞∑
n=1

(−1)n

n7
(

2n
n

){132− 300H4(n)−
{

1 + 5H3(n)
}{

12 + 5H1(2n)
}}
.

3.5. Infinite series for ζ(8) from [x8] in Theorem 2.2.

Example 3.18 (a = ρ1 = 0).

4ζ(3)ζ(5) =
∞∑
n=1

(−1)n−1

n8
(

2n
n

) {2−H1
2(n) + 9H1

3(n) + 5H1
5(n)− 5H1

2(n)H1
3(n)

}
.

Example 3.19 (ρ1 = ρ2 = 0 and then [a]).

4π8

675
=
∞∑
n=1

(−1)n−1

n8
(

2n
n

)
×
{

5H2
2(n)H1

1(2n)− 18H1
2(n)H1

1(2n)− 5H1
4(n)H1

1(2n)
+168− 80H1

2(n) + 12H2
2(n)− 12H1

4(n) + 26H1
1(2n)

}
.

3.6. Infinite series for ζ(9) from [x9] in Theorem 2.2.

Example 3.20 (a = ρ1 = ρ2 = 0).

4ζ(9)

3
+

8ζ3(3)

3
=

∞∑
n=1

(−1)n

n9
(

2n
n

){5H1
6(n)− 5H2

3(n)− 2H1
3(n)− 10

}
.

Example 3.21 (a = c = 0 and b = −d = 1).

12ζ(9) =

∞∑
n=1

(−1)n

n9
(

2n
n

){ 27H1
4(n) + 10H1

6(n)− 15H1
2(n)H1

4(n)
−102 + 78H1

2(n)− 27H2
2(n) + 5H3

2(n)

}
.

By carrying out the same procedure, it is possible to derive alternating
series expressions for ζ(m) with m > 9. However, we shall not produce them
further because the resulting series are too complicated.

Acknowledgement

The author expresses his sincere gratitude to an anonymous referee for the
careful reading, critical comments and valuable suggestions that improved
the manuscript.



116 WENCHANG CHU

References

1. J. Ablinger, Discovering and proving infinite binomial sums identities, Exper.
Math. 26:1 (2017), 62–71.

2. G. Almkvist and A. Granville, Borwein and Bradley’s Apéry–like formulae for ζ(4n+
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ζ(4n+ 3), Exper. Math. 6:3 (1997), 181–194.

9. X. Chen and W. Chu, Dixon’s 3F2(1)-series and identities involving harmonic numbers
and Riemann zeta function, Discrete Math. 310:1 (2010), 83–91.

10. W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith. 82:2
(1997), 103–118.
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