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AN ELEMENTARY, GEOMETRIC PROOF OF THE
NONEXISTENCE OF A PROJECTIVE PLANE OF ORDER

6.

MARCIN DUMNICKI, JANUSZ GWOŹDZIEWICZ, AND JUSTYNA SZPOND

Abstract. We present a fairly elementary, self-contained proof of the
nonexistence of a finite projective plane of order 6. Our approach is
motivated by theory of binary codes but does not appeal to it directly.

1. Introduction

We begin with a definition of the protagonist of this note.

Definition 1.1 (Finite Projective Plane). A finite projective plane (FPP
for short) is a triple (P,L, I) consisting of a finite set P, whose elements
are called points, a set L ⊂ 2Pof subsets of P, whose elements are called
lines and a relation I ⊆ P × L, called the incidence relation, subject to the
following axioms:

A1) for a pair of distinct points P,Q ∈ P there is a unique line l such
that (P, l), (Q, l) ∈ I;

A2) for a pair of distinct lines l,m ∈ L, there is a unique point P such
that (P, l), (P,m) ∈ I;

A3) there is a set of 4 points, no 3 of which are collinear.

It is easy to check (see Lemma 2.1) that there exists a number s such that
each line l ∈ L contains s+1 points and there are s+1 lines through every
point P ∈ P. This number s is called the order of the FPP.

The following question motivated considerable amount of research in com-
binatorics in recent decades.

Problem 1.2 (The Existence Problem). Determine all integers s such that
there exists a FPP of order s.

It is well-known that if s = pr is a power of a prime number p, then an FPP
of order s exists. The standard construction of P2(F), as a projectivization
of the vector space F3, where F is a finite field, works in this case.
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Remark. There are FPP’s of order pr, which are not constructed out of
finite fields, see [5].

It is expected that there are no FPP’s of order s different from a power
of a prime. Important evidence towards this statement is provided by the
following result due to Bruck and Ryser, see [2].

Theorem 1.3 (Bruck, Ryser [2]). If s ≡ 1 or 2 (mod 4) and the square-free
part of s contains at least one prime p ≡ 3 (mod 4), then there does not
exist a FPP of order s.

Thus there are no FPPs of order

6, 14, 21, 22, 30, 33, 38, 42, 46, 54.

The first ten integers which are not powers of primes and are not covered
by Theorem 1.3 are

10, 12, 15, 18, 20, 24, 26, 28, 34, 35.

The purpose of this note is to give a self-contained, relatively elementary
proof of the following theorem.

Theorem 1.4. There is no FPP of order 6.

This result is not new. It has been anticipated by Euler in 1782 (see [4]).
The first proof, using the concept of orthogonal latin squares, was given by
Tarry in 1900 (see [7]). The result also follows from Theorem 1.3. In 1949
Bruck and Ryser proved the more general Theorem 1.4 using arithmetic
properties of quadratic forms.. A graph-theoretic proof has been recently
(2011) given by Burger, Kidd and van Vuuren [3]. Other proofs can be found
in [1] and [6]. The reason for this note is to provide a streamlined proof,
which starts from first principles and is self-contained.

2. Preliminaries

We begin by establishing the existence of an order of a finite projective
plane.

Lemma 2.1. Let (P,L, I) be a finite projective plane. Then there is a
number s such that each line contains exactly (s+ 1) points.

Proof. We begin by the observation that for a point P not contained in a
line l, the number of lines passing through P is equal to the number of points
on l. Indeed, it follows from A1) that the number of lines through P is at
least the number of points on l, whereas the opposite inequality follows from
A2).

Let P,Q,R, S be points satisfying A3). Then it follows from the above
observation that the number of points on each line QR, QS, and RS is equal
to the number of lines through P . Then this holds for an arbitrary point T
since T is not contained in one of these lines. But then the same holds for
any line as not all points are collinear. �
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Now we proceed to a general construction on sets. Let X be an arbitrary
set. For any subsets A, B ⊂ X we define the symmetric difference A⊕B =
(A∪B)\(B∩A). This operation is associative and commutative. Moreover,
if X is a finite set, then |A⊕B| = |A|+|B|−2|A∩B|. This gives a congruence
|A⊕B| ≡ |A|+ |B| (mod 2) which easily generalizes to

(2.1) |A1 ⊕ · · · ⊕An| ≡ |A1|+ · · ·+ |Am| (mod 2) .

Note that for arbitrary subsets A,B,C,D ⊂ X we have the implication

(2.2) A = B ⊕ C =⇒ A ∩D = (B ∩D)⊕ (C ∩D).

3. Proof of Theorem 1.4

Our proof is strongly motivated by binary code theory but does not di-
rectly appeal to this concept. We assume to the contrary that there exists
an FPP P = (P,L, I) of order 6. Let C be a family of subsets of P which
are of the form

l1 ⊕ · · · ⊕ lm,

where li are lines in P. Every set of this family will be called a configuration.
A point P belongs to l1⊕· · ·⊕ lm if and only if P belongs to the odd number
li’s.

We have the following parity Lemma.

Lemma 3.1. Let A = l1⊕· · ·⊕ lm be a configuration and l ∈ L a line. Then

(3.1) |A ∩ l| ≡ |A| (mod 2) .

Proof. By (2.2) we have

A ∩ l = (l1 ∩ l)⊕ . . .⊕ (lm ∩ l).

Since |m ∩ l| ≡ |m| (mod 2) for any m, l ∈ L, then claim follows from (2.1)
and (2.2). �

Let A be a configuration. If l is a line and B = A ⊕ l then A = B ⊕ l.
The sets A∩ l, B ∩ l form a partition of l and A \ (A∩ l)=B \ (B ∩ l). This
gives the equalities

(3.2) |A ∩ l|+ |B ∩ l| = 7,

(3.3) |A| − |A ∩ l| = |B| − |B ∩ l|.
Given a configuration A of n points, denote by bi the number of lines

that intersect A at exactly i points. Simple counting yields the following
equalities:

(3.4)
7∑

i=0

bi = 43,

(3.5)
7∑

i=2

(
i

2

)
bi =

(
n

2

)
,
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(3.6)
7∑

i=0

(7− i)bi = 7(43− n).

In (3.4) we count the total number of lines. In (3.5) we count the number
of pairs ({P,Q}, l), where l is a line and P,Q ∈ l ∩ A, P 6= Q. In (3.6) we
count the number of pairs (P, l), where l is a line and P ∈ l \A.

It follows from (3.1) that for any configuration A with n points: If n is
even, then b1 = b3 = b5 = b7 = 0 and (3.4)–(3.6) becomes:

(3.7)

b0 + b2 + b4 + b6 = 43,

b2 + 6b4 + 15b6 =
(
n
2

)
,

7b0 + 5b2 + 3b4 + b6 = 7(43− n).

If n is odd, then b0 = b2 = b4 = b6 = 0 and (3.4)–(3.6) becomes:

(3.8)

b1 + b3 + b5 + b7 = 43,

3b3 + 10b5 + 21b7 =
(
n
2

)
,

6b1 + 4b3 + 2b5 = 7(43− n).

In the sequel we will work with configurations of n points for

n ∈ {7, 8, 11, 12, 15, 20}.
Then (3.7) resp. (3.8) have the following one parameter families of solutions:

(b1, b3, b5, b7) = (43− t,−3 + 3t, 3− 3t, t) if n = 7,(3.9)

(b0, b2, b4, b6) = (15− t, 28 + 3t,−3t, t) if n = 8,(3.10)

(b1, b3, b5, b7) = (27− t, 15 + 3t, 1− 3t, t) if n = 11,(3.11)

(b0, b2, b4, b6) = (7− t, 30 + 3t, 6− 3t, t) if n = 12,(3.12)

(b1, b3, b5, b7) = (15− t, 25 + 3t, 3− 3t, t) if n = 15,(3.13)

(b0, b2, b4, b6) = (3− t, 10 + 3t, 30− 3t, t) if n = 20.(3.14)

3.1. Properties of configurations in the plane of order 6.

Property 3.2. Every nonempty configuration has at least 7 points.

Proof. Let A be a nonempty configuration. Assume first that |A| is odd. If
A = P, then we are done, otherwise take any point P outside A and consider
7 lines passing through P . By (3.1) each of these lines intersects A. Hence
|A| ≥ 7. Now assume that |A| is even. Take any point P ∈ A and consider
7 lines passing through P . By (3.1) each of these lines passes through some
point of A different from P . In this case |A| ≥ 8. �

Property 3.3. Every configuration with exactly 7 points is a line.

Proof. Let A be a configuration such that |A| = 7. The only solution of (3.9)
in the nonnegative integers is (b1, b3, b5, b7) = (42, 0, 0, 1). In particular
b7 = 1, hence A contains some line l. It follows that A = l. �

Property 3.4. There is no configuration with 8 points.
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Figure 1. A configuration of 12 points

Proof. Assume that there exists a configuration A with 8 points. The only
solution of (3.10) in the nonnegative integers is (b0, b2, b4, b6) = (15, 28, 0, 0).
Recall that b1 = b3 = b5 = b7 = 0. This means that every line that intersects
A passes through exactly 2 points of A. In view of combinatorial Lemma 4.1
this is impossible. �

Property 3.5. There is no configuration with 11 points.

Proof. Assume that there exists a configuration A with 11 points. The only
solution of (3.11) in the nonnegative integers is (b1, b3, b5, b7) = (27, 15, 1, 0),
hence there exists a line l such that |A∩ l| = 5. Then the configuration A⊕ l
has 11− 5 + 2 = 8 points which is impossible. �

Property 3.6. Every configuration with 12 points is a symmetric difference
l1 ⊕ l2 of two distinct lines.

Proof. Assume that |A| = 12. If there exists a line l such that |A ∩ l| = 4
then by (3.3) the configuration A ⊕ l has 11 points which is impossible.
Hence b4 = 0. By (3.12) one gets b6 = 2. Let k be a line passing through 6
points of A and let B = A⊕ k. Then the configuration B has 12− 6+1 = 7
points and by Property 3.3 B is a line. Thus A = B ⊕ k is a symmetric
difference of two lines. �

Figure 1 indicates a configuration of 12 points.

Property 3.7. Every configuration with 15 points is a symmetric difference
l1 ⊕ l2 ⊕ l3 of three distinct lines sharing no common point.

Proof. Assume that |A| = 15. If there exists a line l such that |A∩l| = 7 then
by (3.3) the configuration A ⊕ l has 15 − 7 = 8 points which is impossible.
Hence b7 = 0. By (3.13) one gets (b1, b3, b5, b7) = (15, 25, 3, 0). In particular
b5 6= 0. Let k be a line passing through 5 points of A and let B = A ⊕ k.
By (3.3) the configuration B has 12 points and by (3.2) |B ∩ k| = 2. Thus
A = B ⊕ k is a symmetric difference of three lines that form a triangle. �
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Figure 2. A configuration of 15 points

Figure 3. A configuration of 20 points

Figure 2 indicates a configuration of 15 points.
Now we turn our attention to configuration with 20 points. Such config-

urations exist, an example is indicated in Figure 3.

Property 3.8. For every configuration of 20 points either b0 = 0 or b0 = 3.

Proof. Assume that |A| = 20 and there exists a line l such that |A ∩ l| =
6. Then B = A ⊕ l is a configuration of 15 points and |B ∩ l| = 1. By
Property 3.7, B = l1⊕l2⊕l3, where l1 l2, l3 form a triangle. Since |B∩l| = 1,
the line l passes through a vertex of this triangle. Without loss of generality
we may assume that l passes through the intersection point of l1 and l2.
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Then |A ∩ l| = |A ∩ l1| = |A ∩ l2| = 6 which shows that b6 ≥ 3. On the
other hand we get by (3.14) that b6 ≤ 3 this implies that for |A| = 20, either
b6 = 0 or b6 = 3. By (3.14) b0 + b6 = 3, which completes the proof. �

Property 3.9. There exists a configuration of 20 points with b0 > 0.

Proof. Take 4 lines l1, l2, l3, l4 that pass through a given point P and 2
lines l5, l6 that pass through a point Q /∈ (l1 ∪ l2 ∪ l3 ∪ l4) and do not pass
through P . Let A = l1 ⊕ · · · ⊕ l6. Every intersection point of the lines l1,
. . . , l6 belongs to even number of these lines. Hence the intersection points
do not belong to A. Let Z be the set of all intersection points li ∩ lj for
1 ≤ i < j ≤ 6. Every line li for 1 ≤ i ≤ 4 has 3 points in Z and 4 remaining
points and every line li for 5 ≤ i ≤ 6 has 5 points in Z and 2 remaining
points. Thus A has 20 points. It is clear that the line PQ does not intersect
A, hence b0 > 0. �

Theorem 3.10. The projective plane of rank 6 does not exist.

Proof. Suppose that the projective plane P of rank 6 exists. Let A be a
configuration of 20 points with b0 > 0 (by Property 3.9 such an A exists).
By Property 3.8 there are 3 lines which do not intersect A. Denote these lines
by k1, k2, k3 and let B = k1⊕ k2⊕ k3. If the lines k1, k2, k3 form a triangle
then |B| = 15, otherwise |B| = 19. Hence the configuration C = A⊕B has
35 or 39 points. The complementary configuration C ′ = C ⊕ P has 8 or 4
points. This contradicts Properties 3.2 and 3.4 and completes the proof. �

4. A combinatorial result

Lemma 4.1. A subset A of 8 points of the projective plane of rank 6 with
the following property “Every line that has a nonempty intersection with A
intersects A at exactly 2 points” does not exist.

Proof. Suppose that A = {P1, . . . , P8} has this property. Take any point Q
from the complement of A and consider the set of lines that pass through Q
and have nonempty intersection with A. Since every such a line intersects
A at 2 points this set consists of 4 lines. These lines induce a partition
WQ = {{Pn1 , Pn2}, {Pn3 , Pn4}, {Pn5 , Pn6}, {Pn7 , Pn8}} of A. Now, let Q1,
Q2 be two distinct points in the complement of A. Then |WQ1 ∩WQ2 | ≤ 1
because two distinct lines intersect at exactly one point. Thus we obtain a
familyW of partitions of A into two-element sets WQ satisfying the following
property:

For every pairwise different elements n1, n2, n3, n4 of {1, 2, 3, 4, 5, 6, 7, 8}
there exists exactly one W ∈ W such that {{n1, n2}, {n3, n4}} ⊂W .

Note that in order to alleviate notation, we write i instead of Pi for
i = 1, . . . , 8. Without the loss of generality we may assume that

W1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
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is a partition inW. Let W2 be the partition containing {{1, 2}, {3, 5}}. Then
W2 = {{1, 2}, {3, 5}, {4, 6}, {7, 8}}, W2 = {{1, 2}, {3, 5}, {4, 7}, {6, 8}}, or
W2 = {{1, 2}, {3, 5}, {4, 8}, {6, 7}}. The first possibility is excluded because
in this case W1 and W2 have two pairs in common. Without loss of generality
we may assume, switching the places of 7 and 8 if necessary, that

W2 = {{1, 2}, {3, 5}, {4, 7}, {6, 8}}.
Take the partition W3 such that {{1, 2}, {3, 6}} ⊂ W3. Then W3 = {{1, 2},
{3, 6}, {4, 5}, {7, 8}}, W3 = {{1, 2}, {3, 6}, {4, 7}, {5, 8}}, or W3 = {{1, 2},
{3, 6}, {4, 8}, {5, 7}}.

In the first case |W3 ∩W1| = 2 and in the second case |W3 ∩W2| = 2.
Hence

W3 = {{1, 2}, {3, 6}, {4, 8}, {5, 7}}.
Proceeding in this way and assuming {{1, 2}, {3, 7}} ⊂W4, {{1, 2}, {3, 8}} ⊂
W5 we get

W4 = {{1, 2}, {3, 7}, {4, 6}, {5, 8}},
W5 = {{1, 2}, {3, 8}, {4, 5}, {6, 7}}.

Now, assume that {{1, 3}, {2, 4}} ⊂W6. Then W6 = {{1, 3}, {2, 4}, {5, 6},
{7, 8}}, W6 = {1, 3}, {2, 4}, {5, 7}, {6, 8}}, or W6 = {{1, 3}, {2, 4}, {5, 8},
{6, 7}}. The first case is impossible since W6 and W1 would have two com-
mon pairs. Assume that we are in the second case, i.e.,

W6 = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}.
Then assuming that {{1, 3}, {2, 5}} ⊂W7 and {{1, 3}, {2, 6}} ⊂W8 we get

W7 = {{1, 3}, {2, 5}, {4, 6}, {7, 8}},
W8 = {{1, 3}, {2, 6}, {4, 7}, {5, 8}}.

Finally, take the partition W9 such that {{1, 3}, {2, 8}} ⊂ W9. Then W9 =
{{1, 3}, {2, 8}, {4, 5}, {6, 7}}, W9 = {{1, 3}, {2, 8}, {4, 6}, {5, 7}}, or W9 =
{{1, 3}, {2, 8}, {4, 7}, {5, 6}}.

In the first case |W9 ∩W5| = 2, in the second case |W9 ∩W7| = 2, and in
the third case |W9 ∩W8| = 2 hence we arrive at contradiction in each case.

The case W6 = {{1, 3}, {2, 4}, {5, 8}, {6, 7}} is analogous and is left to the
reader. �
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