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COLORING PERMUTATION-GAIN GRAPHS

DANIEL SLILATY

Abstract. Correspondence colorings of graphs were introduced in 2018
by Dvořák and Postle as a generalization of list colorings of graphs
which generalizes ordinary graph coloring. Kim and Ozeki observed that
correspondence colorings generalize various notions of signed-graph col-
orings which again generalizes ordinary graph colorings. In this note
we state how correspondence colorings generalize Zaslavsky’s notion
of gain-graph colorings and then formulate a new coloring theory of
permutation-gain graphs that sits between gain-graph coloring and cor-
respondence colorings. Like Zaslavsky’s gain-graph coloring, our new
notion of coloring permutation-gain graphs has well defined chromatic
polynomials and lifts to colorings of the regular covering graph of a
permutation-gain graph.

1. Introduction

Dvořák and Postle very recently introduced [2] the concept of correspon-
dence colorings (also called DP -colorings) of graphs as a generalization of
list colorings of graphs which is a generalization of ordinary colorings of
graphs. A signed graph is a pair (G, σ) in which σ : E(G) → {+,−}. Za-
slavsky [7] defined two notions of coloring signed graphs: one has colors
corresponding to the elements of {0,±1, . . . ,±k} and the other with colors
corresponding to the elements of {±1, . . . ,±k} (also see Máčajová, Raspaud,
and Škoviera [6]). Call this notion of coloring signed graphs integer coloring
of signed graphs. Kang and Steffen explored [3, 4] the analogous notion of
coloring signed graphs with elements of the group Zk. We will call this mod-
ular coloring of signed graphs. The notions of modular coloring and integer
coloring of signed graphs correspond when the number of colors is odd but
not when the number of colors is even. Kim and Ozeki noted [5] that corre-
spondence colorings generalize both modular coloring and integer coloring
of signed graphs. Zaslavsky also developed [7, 9] a notion of gain-graph col-
orings which generalizes integer colorings of signed graphs. The purpose of
this note is to define a concept of coloring permutation-gain graphs which
generalizes gain-graph colorings and both notions of signed graph colorings
and which is in turn generalized by correspondence colorings (see Figure 1).
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Figure 1. A Hasse diagram depicting generalization rela-
tions between various coloring concepts.

The main focus of [9] is the development of a rich theory of chromatic
polynomials of gain graphs which are closely related to the very important
Tutte polynomials of different matroids associated with gain graphs (see
Theorems 5.1 and 5.2 in [9]). This connection with Tutte polynomials and
its associated matroid invariants is one of the main attractions of Zaslavsky’s
concept of gain-graph colorings. In this note, we give two consequences of
our definition of coloring permutation-gain graphs. In Section 3, we show
that there is a well-defined chromatic polynomial for a permutation-gain
graph along with a limited deletion-contraction relation. This chromatic
polynomial, however, is in general not an invariant of matroids normally
associated with the permutation-gain graph. In Section 4 we also show how
proper colorings of permutation-gain graphs lift to proper colorings of their
derived graphs (i.e., regular covering graphs). It is not clear whether or not
correspondence colorings have chromatic polynomials or associations with
colorings of covering graphs.

2. Formal Definitions

Graphs. In a graph G, an edge e with its ends on distinct endpoints is
called a link and an edge with its ends on the same vertex is called a loop.
An oriented edge is an edge e along with a choice of direction along e. We
usually use e to refer to an oriented edge whose underlying edge is e; it
usually causes no confusion. The reverse orientation of an oriented edge
e is denoted by e−1. The collection of oriented edges of G is denoted by
~E(G). The tail and head endpoints of an oriented edge e are sometimes
denoted, respectively, by t(e) and h(e). A walk w is a product of oriented
edges e1 · · · en for which h(ei) = t(ei+1) for each i ∈ {1, . . . , n − 1}. The
walk w = e1 · · · en is closed when h(en) = t(e1). The reverse walk of w is
w−1 = e−1n · · · e−11 .
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Correspondence Colorings. Given a graphG and a positive integer k, as-
sociate to each vertex v ∈ V (G) the set {1, . . . , k}×{v}. A k-correspondence
assignment is a function M assigning to each edge e ∈ E(G) a partial match-
ing Me between the sets {1, . . . , k}×{u} and {1, . . . , k}×{v} where u and v
are the endpoints of e. In the case that e is a loop, we can use two separate
copies of {1, . . . , k} × {v} for the matching Me. An M -coloring of G is a
k-coloring κ of G such that for each edge e with endpoints u and v, (κ(u), u)
and (κ(v), v) are not connected in the matching Me. Note that when the
matchings of M are all complete matchings of k edges, then M corresponds
to a gain function on G of some subgroup of the symmetric group Sk. This
observation lead the author to consider coloring permutation-gain graphs as
a special case of correspondence colorings.

Permutation-Gain Graphs. Let Γ be a subgroup of the symmetric group

Sk. We will be looking at functions π : ~E(G)→ Γ and η : V (G)→ Γ from G
to Γ which will always be denoted with lowercase Greek letters; furthermore,
the values of these functions at arguments e and v will be denoted by πe and
ηv rather than the far more common notation π(e) and η(v). The reason
for this is because we will also be considering the action of Γ ⊆ Sk on the
set {1, . . . , k} and denoting the action of πe ∈ Γ on i ∈ {1, . . . , k} by πe(i)
seems much more streamlined than writing π(e)(i) or π[e](i). Now, a Γ-gain

function on a graph G is a function π : ~E(G)→ Γ for which πe−1 = π−1e . A
Γ-gain graph is the pair (G, π). Since Γ is a subgroup of Sk, we also refer to
(G, π) a permutation-gain graph. Given a walk w = e1 · · · en, define π on w
by πw = πe1 · · ·πen . Note that πw−1 = π−1w .

A switching function on (G, π) is a function η : V (G)→ Γ. The switched
Γ-gain function πη is defined by πηe = ηt(e)πeη

−1
h(e). For a walk w = e1 . . . en

we therefore get that πηw = ηt(e1)πwη
−1
h(en)

. Hence if w is a closed walk

(including a loop), then πηw is a conjugate of πw in the group Γ.
Again, let Γ be a subgroup of the symmetric group Sl and consider its

associated action on {1, . . . , l}. For each non-identity element π ∈ Γ let
fix(π) ⊆ {1, . . . , l} denote the set of fixed points of π ∈ Γ, that is, fix(π) =
{i : π(i) = i}. Now for any positive integer t, consider the canonical fixed-
point free action of Γ on the set Γ×{1, . . . , t} defined by right multiplication
on the Γ-coordinate of each pair. Recall that all fixed-point free actions of
Γ on a finite set are essentially of this type. So for each positive integer t,
there is an isomorphic copy of Γ, again call it Γ, in the symmetric group
Sk where k = l + t|Γ| for which: the symbols 1, . . . , l are as before, the
action of Γ on {1, . . . , l} is as before, and the action of Γ on the remaining
t|Γ| elements is free. Thus fix(π) is the same subset of {1, . . . , l} no matter
which k = l + t|Γ| we consider.

A k-coloring of (G, π) (again where k = l+ t|Γ|) is a function κ : V (G)→
{1, . . . , k}. The k-coloring κ is proper when for each oriented edge e (in-
cluding loops) with tail endpoint u and head endpoint v we have that
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κ(u) 6= πeκ(v). Note that e satisfies the propriety condition if and only if e−1

does as well because κ(u) 6= πeκ(v) if and only if πe−1κ(u) 6= κ(v). We now
see how k-colorings of permutation-graph graphs generalizes proper-coloring
concepts of gain graphs and signed graphs in [3, 4, 7, 9]. In gain-graph col-
orings and integer signed-graph colorings, the action of Γ either: acts freely
on a color set of size t|Γ| or acts freely on a color set of size t|Γ|+ 1 save at
one color which is fixed by all of the elements of Γ. In modular signed-graph
colorings with even color set Z2k, the action of Γ = {+,−} fixes 0 and k and
acts freely on Z2k − {0, k}.

If κ is a k-coloring of (G, π) and η switching function, then define the
k-coloring ηκ by ηκ(v) = ηvκ(v). Note that ηκ(u) 6= πηeηκ(v) if and only if
ηuκ(u) 6= ηuπeη

−1
v ηvκ(v) if and only if κ(u) 6= πeκ(v). This yields Proposi-

tion 2.1.

Proposition 2.1. If η : V (G) → Γ is a switching function and κ is a k-
coloring of (G, π), then κ is a proper k-coloring of (G, π) if and only if ηκ
is a proper k-coloring of (G, πη). Furthermore, κ 7→ ηκ defines a bijection
between the proper k-colorings of (G, π) and (G, πη).

3. A chromatic polynomial

In this section we show that there is a well-defined chromatic polynomial
p(G, π, k) for (G, π) where the value of p(G, π, k) at any k = l + t|Γ| is the
number of proper k-colorings of (G, π). For example, if (G, π) is a graph in
which every edge is a loop, then for each v ∈ V (G) let fix(v) ⊆ {1, . . . , l}
denote the union of all fix(e) in which e is a loop incident to v. We now get
that

p(G, π, k) =
∏

vj∈V (G)

(k − |fix(vj)|)

This example is interesting in that it shows that the chromatic polynomial
of a permutation-gain graph is dependent on the structure of fixed points
in {1, . . . , l} ⊆ {1, . . . , k} under the action of Γ. As such, this chromatic
polynomial is not an invariant of any of the matroids normally associated
with (G, π): the frame matroid, lift matroid, and complete lift matroid (see,
for example, [8]).

Theorem 3.1. Let p(G, π, k) be the number of proper k-colorings of (G, π)
for any k = l + t|Γ|.

(1) If e is any link in G and η a switching function such that πη(e) = 1
(here 1 is the identity permutation) then p(G, π, k) = p(G, πη, k) =
p(G\e, πη, k)− p(G/e, πη, k).

(2) If (G, π) has no balanced loops (i.e., a loop e for which πe = 1), then
p(G, π, k) is a well-defined, monic polynomial in k of degree |V (G)|.

Proof. (1) By Proposition 2.1, the proper k-colorings of (G, π) correspond to
the proper k-colorings of (G, πη) by κ 7→ ηκ. Say that e has endpoints u and
v. If κ is any proper k-coloring of (G\e, πη), then κ is a proper k-coloring of
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(G, πη) if and only if κ(u) 6= κ(v). Those proper colorings of (G\e, πη) with
κ(u) = κ(v) correspond precisely to the proper colorings of (G/e, πη).

(2) Repeatedly applying the deletion-contraction identity in (1) reduces
p(G, π, k) to

p(G, π, k) =
∑
i

(−1)|V (G)|−|V (Gi)|p(Gi, πi, k)

where each (Gi, πi) is a linkless graph (that is, any edge of Gi is a loop)
with |V (Gi)| ≤ |V (G)| and exactly one such term having |V (Gi)| = |V (G)|,
that is, G with all of its links deleted, call it (G0, π0). Since (G, π) has no
balanced loops, our calculation using Part (1) yields a polynomial in k of
degree |V (G)|.

This polynomial is well-defined despite different ways of using part (1) to
calculate it. The reason for this is as follows. The resulting polynomial of
degree |V (G)| counts the number of proper k-colorings for any k = l + t|Γ|
despite the way in which it is calculated. Now using polynomial interpolation
over |V (G)|+ 1 distinct values for k = l+ t|Γ| implies the uniqueness of the
polynomial. �

4. Lifting colorings to covering graphs

Given a Γ-gain graph (G, π), its derived graph Gπ is an ordinary graph

defined as follows: V (Gπ) = V (G) × Γ and ~E(Gπ) = ~E(G) × Γ in which
t(e, γ) = (t(e), γ) and h(e, γ) = (h(e), γπe). The derived graph Gπ is known
as a regular covering graph of the ordinary graph G. Now if κ is a proper
k-coloring of (G, π), then κ induces a k-coloring, also call it κ, on Gπ by
κ(v, γ) = γκ(v).

Theorem 4.1. If κ is a proper k-coloring of (G, π), then the k-coloring on
the derived graph Gπ induced by κ is a proper k-coloring of Gπ.

Proof. Given an oriented edge e (a link or a loop) in (G, π) we have κ(t(e)) 6=
πeκ(h(e)). Now for any γ ∈ Γ we also have γκ(t(e)) 6= γπeκ(h(e)). Also,
κ(t(e, γ)) = κ(t(e), γ) = γκ(t(e)) and κ(h(e, γ)) = κ(h(e), γπe) = γπeκ(
h(e)) which implies our result. �
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