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REVERSED DICKSON POLYNOMIALS OF THE (k + 1)-TH

KIND OVER FINITE FIELDS, II

NERANGA FERNANDO

Abstract. Let p be an odd prime. In this paper, we study the permuta-
tion behaviour of the reversed Dickson polynomials of the (k+1)th kind
Dn,k(1, x) when n = pl1+3, n = pl1+pl2+pl3 , and n = pl1+pl2+pl3+pl4 ,
where l1, l2, l3, and l4 are nonnegative integers. A generalization to
n = pl1 + pl2 + · · · + pli is also shown. We find some conditions under
which Dn,k(1, x) is not a permutation polynomial over finite fields for
certain values of n and k. We also present a generalization of a recent
result regarding Dpl−1,1(1, x) and present some algebraic and arithmetic
properties of Dn,k(1, x).
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1. Introduction

Let p be an odd prime and q = pe, where e is a positive integer. Let
Fq be the finite field with q elements. A polynomial f ∈ Fq[x] is called a
permutation polynomial (PP) of Fq if the associated mapping x 7→ f(x) from
Fq to Fq is a permutation of Fq. Permutation polynomials over finite fields
have important applications in coding theory, cryptography, finite geometry,
combinatorics, and computer science, among other fields.

In the study of permutation polynomials, Dickson polynomials have played
a major role. The nth Dickson polynomial of the first kind Dn(x, a) is de-
fined by

Dn(x, a) =

⌊n
2
⌋∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i,

where a ∈ Fq is a parameter.
The permutation property of the Dickson polynomials of the first kind is

completely known. When a = 0, Dn(x, a) = xn, which is a PP over Fq if
and only if (n, q− 1) = 1. When 0 ̸= a ∈ Fq, Dn(x, a) is a PP over Fq if and
only if (n, q2 − 1) = 1; see [8, Theorem 7.16] or [9, Theorem 3.2].

The nth reversed Dickson polynomial of the first kind Dn(a, x) was first
introduced by Hou, Mullen, Sellers and Yucas in [7] by reversing the roles
of the variable and the parameter in the nth Dickson polynomial of the
first kind Dn(x, a). The nth reversed Dickson polynomial of the first kind
Dn(a, x) is defined by

Dn(a, x) =

⌊n
2
⌋∑

i=0

n

n− i

(
n− i

i

)
(−x)ian−2i,

where a ∈ Fq is a parameter.
In 2012, Wang and Yucas introduced the nth reversed Dickson polynomial

of the (k+1)th kind ([10]). Let k be an integer such that 0 ≤ k ≤ p−1. For
a ∈ Fq, the nth reversed Dickson polynomial of the (k+1)th kind Dn,k(a, x)
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is defined by

(1.1) Dn,k(a, x) =

⌊n
2
⌋∑

i=0

n− ki

n− i

(
n− i

i

)
(−x)ian−2i,

and D0,k(a, x) = 2− k.
In [2], Hong, Qin, and Zhao studied reversed Dickson polynomials of

the second kind and presented several necessary conditions for the reversed
Dickson polynomial of the second kind to be a permutation of Fq. In [6], the
author of the present paper explored reversed Dickson polynomials of the
third kind and found the necessary conditions for them to be a permutation
on Fq.

In [3], the author of this paper unified and generalized several recently
discovered results on reversed Dickson polynomials over finite fields. It was
shown in [3] that to discuss the permutation behaviour of reversed Dickson
polynomials of the (k + 1)th kind, one only has to consider a = 1. We
completely explained the permutation behaviour of the reversed Dickson
polynomials of the (k + 1)th kind Dn,k(1, x) over finite fields when n = pl,

n = pl + 1, and n = pl + 2, where p is an odd prime and l ≥ 0 is an integer,
in [3] and [5]. In the present paper, we explore the permutation behaviour
of Dn,k(1, x) over finite fields when n is a sum of odd prime powers.

The observations in [3] and [5] led to the question “when is Dn,k(1, x) a

PP of Fpe when n = pl + 3?”. The case n = pl + 3 led us to consider the

cases n = pl1 + pl2 + pl3 and n = pl1 + pl2 + pl3 + pl4 which eventually led to
a generalization, n = pl1 + pl2 + · · ·+ pli . As a consequence, we explain the
permutation behaviour of Dpl1+pl2 ,k(1, x).

We would like to point out that the generalization to n = pl1+pl2+· · ·+pli

given in Section 6 paves the way to many combinatorial problems. It opens
the door to find explicit expressions for the polynomials Dn,k(1, x) when

n = rpl+s, where r ≥ 1 and l, s ≥ 0 are integers. This allows us to consider
two special cases, n = pl + s and n = rpl. As a consequence, we find
some conditions under which Dn,k(1, x) does not permute Fpe . We believe
that our results would be helpful for anyone interested in investigating the
permutation behaviour of reversed Dickson polynomials of the (k+1)th kind
over finite fields.

The paper is organized as follows.
In Section 2, we present some preliminaries. We explore the permutation

behaviour of Dn,k(1, x) when n = pl + 3, n = pl1 + pl2 + pl3 , and n =

pl1 + pl2 + pl3 + pl4 in Sections 3, 4 and 5, respectively.
In Section 6, we present the generalization to n = pl1 + pl2 + · · ·+ pli . In

Section 7, we consider the cases n = rpl + s, where r ≥ 1 and l, s ≥ 0 are
integers. As a result, we study two special cases, n = pl + s and n = rpl.

In Section 8, we consider the case n = rpl − 1, which generalizes a pre-
vious result on reversed Dickson polynomials of the second kind obtained
in [2] by Hong, Qin, and Zhao. We also present a generalization of a result
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when p = 3 that appeared in [7]. Next, we show that the nth reversed
Dickson polynomial of the (k+1)th kind Dn,k(1, x) can be written in terms
of Dn−2,1(1, x) and Dn,0(1, x). We also show that the nth reversed Dick-
son polynomial of the (k + 1)th kind Dn,k(1, x) can be written in terms of
Dn−1,2(1, x) and Dn,0(1, x). Motivated by a matrix representation of the
Dickson polynomials of the first kind that appeared in [9, Chapter 2], we
present a matrix representation of the nth reversed Dickson polynomial of
the (k + 1)th kind Dn,k(1, x).

Throughout the paper, we denote Dn,0(1, x) by Dn(1, x) and we always
assume that p is odd unless otherwise specified. We would also like to point
out that some computations are omitted in this paper due to their length.
We refer the interested reader to [4] for detailed computation.

2. Preliminaries

For a ̸= 0, we write x = y(a− y) with an indeterminate y ∈ Fq2 such that
y ̸= a

2 . Then we have

Dn,k(a, x) = k
[yn(a− y)− y(a− y)n

2y − a

]
+Dn(a, x),(2.1)

where Dn(a, x) denotes the nth reversed Dickson polynomial of the first
kind; see [3, Eq. 2.1].

Let a ∈ F∗
q . Then it follows from the definition that

Dn,k(a, x) = anDn,k(1,
x

a2
).

Hence Dn,k(a, x) is a PP on Fq if and only if Dn,k(1, x) is a PP on Fq.
Hereafter we always assume a = 1. Thus we can write (2.1) as follows.

Dn,k(1, y(1− y)) = k
[yn(1− y)− y(1− y)n

2y − 1

]
+Dn(1, y(1− y)),(2.2)

where y ̸= 1
2 .

When y = 1
2 , we have

(2.3) Dn,k

(
1,

1

4

)
=

k(n− 1) + 2

2n
;

see [3, Eq. 2.6].

Proposition 2.1 ([3, Proposition 2.6]). Let p be an odd prime and n be a
nonnegative integer. Then

D0,k(1, x) = 2− k, D1,k(1, x) = 1, and

Dn,k(1, x) = Dn−1,k(1, x)− xDn−2,k(1, x), for n ≥ 2.
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Now we list a few results that appeared in [3].
For all x ∈ Fq, we have

Dpl,k(1, x) =
k

2
(1− 4x)

pl−1
2 + 1− k

2
,(2.4)

Dpl+1,k(1, x) =
(1
2
− k

4

)
(1− 4x)

pl+1
2 +

k

4
(1− 4x)

pl−1
2 +

1

2
,(2.5)

and

Dpl+2,k(1, x) =
1

2
(1− 4x)

pl+1
2 +

k

2
x (1− 4x)

pl−1
2 −

(
1− k

2

)
x+

1

2
;(2.6)

see [3, Eq. 2.7], [3, Eq. 2.9], and [3, Eq. 2.10], respectively.
Now we list a very well-known result on permutation monomials over

finite fields.

Lemma 2.2 ([8]). The monomial xn is a PP of Fq if and only if (n, q−1) =
1.

The following result appeared in [7].

Lemma 2.3 ([7, Lemma 5.5])). Let l be a positive odd integer and let n =
3l+1
2 . Then in F3[x],

Dn(1, 1− x2) = −Dn(x, 1).

3. The case n = pl + 3

Let n = pl + 3. Then from (2.5), (2.6), and Proposition 2.1 we have

Dpl+3,k(1, x) =Dpl+2,k(1, x)− xDpl+1,k(1, x)

=
1

2
(1− 4x)

pl+1
2 +

k

2
x (1− 4x)

pl−1
2 −

(
1− k

2

)
x+

1

2

−
(1
2
− k

4

)
x (1− 4x)

pl+1
2 − k

4
x (1− 4x)

pl−1
2 − 1

2
x.

(3.1)

Let u = 1− 4x. Then

Dpl+3,k(1, x)

=
1

2
u

pl+1
2 +

k

2

(1− u

4

)
u

pl−1
2 −

(
1− k

2

)(1− u

4

)
+

1

2

−
(1
2
− k

4

)(1− u

4

)
u

pl+1
2 − k

4

(1− u

4

)
u

pl−1
2 − 1

2

(1− u

4

)
=
(2− k)

16
u

pl+3
2 +

3

8
u

pl+1
2 +

k

16
u

pl−1
2 +

(3− k)

8
u+

(k + 1)

8
.

(3.2)

This leads to the following immediate theorem.
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Theorem 3.1. Dpl+3,k(1, x) is a PP of Fpe if and only if the polynomial

(2− k)x
pl+3

2 + 6x
pl+1

2 + k x
pl−1

2 + 2(3− k)x

is a PP of Fpe.

Let

(3.3) f(x) = (2− k)x
pl+3

2 + 6x
pl+1

2 + k x
pl−1

2 + 2(3− k)x.

3.1. The case p = 3. Note that in this case k = 0, 1, or 2.

Theorem 3.2. D3l+3,0(1, x) is a PP of Fpe if and only if gcd(3
l+3
2 , 3e−1) =

1.

Proof. When k = 0, (3.3) becomes

f(x) = 2x
3l+3

2 .

The rest is obvious. □

Theorem 3.3. D3l+3,1(1, x) is not a PP of Fpe.

Proof. When p = 3 and k = 1, f(x) is a PP of F3e if and only if the trinomial

x
pl+3

2 + x
pl−1

2 + x

is a PP of F3e . But

x
pl+3

2 + x
pl−1

2 + x

is clearly not a PP of F3e . □

Theorem 3.4 ([5, Theorem 4.1]). D3l+3,2(1, x) is a PP of Fpe if and only
if

(i) l = 0, or
(ii) l = me+ 1, where m is a nonnegative even integer.

3.2. The case p > 3. We have the following results in this case.

Remark: Let p ≥ 5 and k = 2. If l = 0, then clearly Dpl+3,k(1, x) is a PP of
Fpe since every liner polynomial is a PP.

Theorem 3.6. Let k = 2 and p ≡ 1 (mod 4). If l ̸= 0, then Dpl+3,k(1, x)
is not a PP of Fpe.

Proof. Let k = 2. Then Dpl+3,k(1, x) is a PP of Fpe if and only if

f(x) = 3x
pl+1

2 + x
pl−1

2 + x

is a PP of Fpe . Since p ≡ 1 (mod 4), (−1
4) is a quadratic residue modulo p.

The proof follows from the fact that f(0) = 0 = f
(
− 1

4

)
. □

Remark: Let p > 7, k = 7. Then Dpl+3,k(1, x) is not a PP of Fpe since
f(0) = 0 = f(1).

Let p > 5, k = 0, and −6 be a quadratic residue of p. Then Dpl+3,k(1, x)
is not a PP of Fpe since f(0) = 0 = f(−6).
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4. The case n = pl1 + pl2 + pl3

In this section, we explain the case n = pl1 + pl2 + pl3 , where l1, l2, and l3
are nonnegative integers.

Let n = pl1 + pl2 + pl3 in (2.2) and (2.3). Then for all x ∈ Fq, we have

Dn,k(1, x) =
k

8
(1− 4x)

pl1+pl2+pl3−1
2

(4.1)

+
(2− k)

8
[(1− 4x)

pl1+pl2

2 + (1− 4x)
pl1+pl3

2 + (1− 4x)
pl2+pl3

2 ]

+
k

8
[(1− 4x)

pl1−1
2 + (1− 4x)

pl2−1
2 + (1− 4x)

pl3−1
2 ] +

(2− k)

8
;

see [4, Section 4] for detailed computation.
This leads to the following immediate theorem.

Theorem 4.1. Dpl1+pl2+pl3 ,k(1, x) is a PP of Fq if and only if the seven-
term polynomial

kx
pl1+pl2+pl3−1

2 + (2− k) [x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 ]

+k[x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2 ]

is a PP of Fq.

Let

f(x) = k x
pl1+pl2+pl3−1

2 + (2− k) [x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 ]

+ k[x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2 ].

4.1. The case p = 3. In this case, k = 0, 1, or 2.

Theorem 4.2. Let k = 0, p = 3, and n = pl1 + pl2 + pl3, where l1, l2, and
l3 are nonnegative integers. Then Dn,k(1, x) is not a PP of Fpe.
Proof.

Case 1: l1 = l2 = l3 = 0. f(x) = 0 which is not a PP of F3e .
Case 2: Exactly two of l1, l2, l3 are zero.

Without loss of generality, let l1 ̸= 0 and l2 = l3 = 0. Then f(x) is a PP

of F3e if and only if the trinomial x
pl1+1

2 +x
pl1+1

2 +x is a PP of F3e . Clearly,

x
pl1+1

2 + x
pl1+1

2 + x is not a PP of F3e .
Case 3: Exactly one of l1, l2, l3 is zero.

Without loss of generality, let l1 ̸= 0, l2 ̸= 0 and l3 = 0. Then f(x) is a
PP of F3e if and only if the trinomial

x
pl1+pl2

2 + x
pl1+1

2 + x
pl2+1

2
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is a PP of F3e . Clearly, x
pl1+pl2

2 + x
pl1+1

2 + x
pl2+1

2 is not a PP of F3e .
Case 4: l1 ̸= 0, l2 ̸= 0 and l3 ̸= 0.

Then f(x) is a PP of F3e if and only if the trinomial

x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2

is a PP of F3e . Clearly, x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 is not a PP of F3e . □

Remark: The case in which exactly two of l1, l2 and l3 are zero and the other
is equal to e, i.e. n = pe+2, is explained [7, Corollary 5.2]. It is shown that
Dpe+2,0(1, x) is a PP of Fpe if and only if pe ≡ 1 (mod 3).

Theorem 4.4. Let k = 1, p = 3, and n = pl1 + pl2 + pl3. Assume that
exactly one of l1, l2, l3 is zero. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0 and l3 = 0. Then f(x)
is a PP of Fpe if and only if

g(x) = 2x
pl1+pl2

2 + x
pl1+1

2 + x
pl2+1

2 + x
pl1−1

2 + x
pl2−1

2

is a PP of Fpe . Clearly, g(x) is not a PP of Fpe . □

Remark: Let k = 1 and p = 3. The cases in which l1 = l2 = l3 = 0 and
exactly two of l1, l2, l3 are zero, are explained in [5, Theorem 4.1].

Theorem 4.6. Let k = 2, p = 3, and n = pl1 + pl2 + pl3. Assume that
exactly one of l1, l2, l3 is zero. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0 and l3 = 0. Then f(x)
is a PP of Fpe if and only if

g(x) = x
pl1+pl2

2 + x
pl1−1

2 + x
pl2−1

2

is a PP of Fpe . Clearly, g(x) is not a PP of Fpe . □

Remark: Let k = 2 and p = 3. The cases in which l1 = l2 = l3 = 0 and
exactly two of l1, l2, l3 are zero, are explained in [3, Theorem 2.15].

4.2. The case p > 3.

Theorem 4.8. Let p ≥ 5 and k ̸= 0, 3. Assume that

(1) exactly two of l1, l2, and l3 are nonzero, and
(2) k

(k−3) is a quadratic residue modulo p.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since exactly two of l1, l2, and l3 are nonzero, we have f(0) = k. The
proof follows from the fact that

f
( k

(k − 3)

)
= k = f(0).

□
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Theorem 4.9. Let p ≥ 5 and k ̸= 0, 3. Assume that

(1) l1, l2, and l3 are all nonzero, and
(2) 3k

2(k−3) is a quadratic residue modulo p.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since l1, l2, and l3 are all nonzero, we have f(0) = 0. The proof
follows from the fact that

f
( 3k

2(k − 3)

)
= 0 = f(0).

□

Remark: The case in which exactly one of l1, l2, and l3 is nonzero is explained
in [3] and [5].

Remark: Let p > 3 and k = 3. Then Dpl1+pl2+pl3 ,k(1, x) is not a PP of Fpe

for any l1, l2, and l3 since f(a) = 9 for any quadratic residue a of p.

5. The case n = pl1 + pl2 + pl3 + pl4

In this section, we explain the case n = pl1 +pl2 +pl3 +pl4 , where l1, l2, l3,
and l4 are nonnegative integers.

Let n = pl1 + pl2 + pl3 + pl4 . Then for all x ∈ Fq, we have

Dn,k(1, x)

(5.1)

=
(2− k)

16
(1− 4x)

pl1+pl2+pl3+pl4

2

+
k

16
[(1− 4x)

pl1+pl2+pl3−1
2 + (1− 4x)

pl1+pl2+pl4−1
2 + (1− 4x)

pl1+pl3+pl4−1
2 ]

+
k

16
(1− 4x)

pl2+pl3+pl4−1
2

+
(2− k)

16
[(1− 4x)

pl1+pl2

2 + (1− 4x)
pl1+pl3

2 + (1− 4x)
pl2+pl3

2 ]

+
(2− k)

16
[(1− 4x)

pl1+pl4

2 + (1− 4x)
pl2+pl4

2 + (1− 4x)
pl3+pl4

2 ]

+
k

16
[(1− 4x)

pl1−1
2 + (1− 4x)

pl2−1
2 + (1− 4x)

pl3−1
2 + (1− 4x)

pl4−1
2 ]

+
(2− k)

16
;

see [4, Section 5] for detailed computation.
This leads to the following immediate theorem.
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Theorem 5.1. Dpl1+pl2+pl3+pl4 ,k(1, x) is a PP of Fq if and only if the poly-
nomial

(2− k)x
pl1+pl2+pl3+pl4

2

+k [x
pl1+pl2+pl3−1

2 + x
pl1+pl2+pl4−1

2 + x
pl1+pl3+pl4−1

2 + x
pl2+pl3+pl4−1

2 ]

+(2− k) [x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 + x
pl1+pl4

2 + x
pl2+pl4

2 + x
pl3+pl4

2 ]

+k [x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2 + x
pl4−1

2 ]

is a PP of Fq.

Let

h(x)

= (2− k)x
pl1+pl2+pl3+pl4

2 + k [x
pl1+pl2+pl3−1

2 + x
pl1+pl2+pl4−1

2 + x
pl1+pl3+pl4−1

2 ]

+ kx
pl2+pl3+pl4−1

2

+ (2− k) [x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 + x
pl1+pl4

2 + x
pl2+pl4

2 + x
pl3+pl4

2 ]

+ k [x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2 + x
pl4−1

2 ].

Remark: The cases in which l1 = l2 = l3 = l4 = 0 and exactly three of
l1, l2, l3, and l4 are zero, are completely covered in Section 3 of the present
paper.

5.1. The case p = 3, k ̸= 2, l1 ̸= 0, l2 ̸= 0, l3 = l4 = 0. We first consider
the case in which exactly two of l1, l2, l3, and l4 are zero. Let’s consider the
case k = 0 first.

Theorem 5.3. Let k = 0, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
exactly two of l1, l2, l3, and l4 are zero and the two nonzero li have the same
parity. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0 and l3 = 0 = l4. Since
k = 0, note that Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2

2
+1 + x

pl1+pl2

2 + 2x
pl1+1

2 + 2x
pl2+1

2 + x

is a PP of Fpe .
Now we claim that g(x) is not a PP of Fpe . Note that g(0) = 0 and

g(1) = 1.
Case 1: Both l1 and l2 are even.

Since both l1 and l2 are even, 3l1+1
2 and 3l2+1

2 are odd. Then g(−1) = 1.
Case 2: Both l1 and l2 are odd.

Since both l1 and l2 are odd, 3l1+1
2 and 3l2+1

2 are even. Then g(−1) = 0.
This completes the proof.

□
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We have the following immediate theorem.

Theorem 5.4. Let k = 0, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
exactly two of l1, l2, l3, and l4 are zero and the two nonzero li have different
parity. Then Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2

2
+1 + x

pl1+pl2

2 + 2x
pl1+1

2 + 2x
pl2+1

2 + x

is a PP of Fpe.

Now let’s consider the case where k = 1.

Theorem 5.5. Let k = 1, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
exactly two of l1, l2, l3, and l4 are zero and the two nonzero li are both odd
or they have different parity. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0 and l3 = 0 = l4. Since
k = 1, note that Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2

2
+1 + x

pl1−1
2 + x

pl2−1
2 + x

is a PP of Fpe .
Now we claim that g(x) is not a PP of Fpe . Note that g(0) = 0 and

g(1) = 1. The proof follows from the fact that g(−1) = 1 when l1 and l2
have different parity, and when both l1 and l2 are odd.

□

Theorem 5.6. Let k = 1, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
exactly two of l1, l2, l3, and l4 are zero and the two nonzero li are both even.
Then Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2

2
+1 + x

pl1−1
2 + x

pl2−1
2 + x

is a PP of Fpe.

5.2. The case p = 3, k ̸= 2, l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, l4 = 0. We now consider
the case in which exactly one of l1, l2, l3, and l4 is zero. First, consider the
case where k = 0.

Theorem 5.7. Let k = 0, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume
that exactly one of l1, l2, l3, and l4 is zero. Assume that the nonzero li are
all even or exactly two are odd. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0, l3 ̸= 0 and l4 = 0. Since
k = 0, note that Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2+pl3+1

2 +x
pl1+pl2

2 +x
pl1+pl3

2 +x
pl2+pl3

2 +x
pl1+1

2 +x
pl2+1

2 +x
pl3+1

2

is a PP of Fpe .
Now we claim that g(x) is not a PP of Fpe . Note that g(0) = 0 and

g(1) = 1. The proof follows from the fact that g(−1) = 1 when l1, l2, and
l3 are all even, and g(−1) = 0 when exactly two of l1, l2, and l3 are odd.

□
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Now let’s consider the case where k = 1.

Theorem 5.8. Let k = 1, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
exactly one of l1, l2, l3, and l4 is zero. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Without loss of generality, let l1 ̸= 0, l2 ̸= 0, l3 ̸= 0 and l4 = 0. Since
k = 1, Dn,k(1, x) is a PP of Fpe if and only if

g(x) = x
pl1+pl2+pl3+1

2 + x
pl1+pl2+pl3−1

2 + 2x
pl1+pl2

2 + 2x
pl1+pl3

2

+ 2x
pl2+pl3

2 + x
pl1+1

2 + x
pl2+1

2 + x
pl3+1

2 + x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2

is a PP of Fpe .
Now we claim that g(x) is not a PP of Fpe . Note that g(0) = 0 and

g(1) = 2.
Case 1: l1, l2, and l3 are all even. Then g(−1) = 0.
Case 2: l1, l2, and l3 are all odd. Then g(−1) = 0.
Case 3: Exactly one of l1, l2, and l3 is odd. Then g(−1) = 2.
Case 4: Exactly two of l1, l2, and l3 are odd. Then g(−1) = 2. This
completes the proof.

□

5.3. The case k ̸= 2, l1l2l3l4 ̸= 0. Now we consider the case in which
l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, and l4 ̸= 0. First, consider the case where k = 0.

Theorem 5.9. Let k = 0, p = 3, and n = pl1 + pl2 + pl3 + pl4. Assume that
l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, and l4 ̸= 0. If

(1) all l1, l2, l3, and l4 are odd,
(2) all l1, l2, l3, and l4 are even, or
(3) exactly two of l1, l2, l3, and l4 are odd,

then Dn,k(1, x) is not a PP of Fpe.

Proof. Assume that l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, and l4 ̸= 0. Since k = 0, Dn,k(1, x)
is a PP of Fpe if and only if

g(x) =x
pl1+pl2+pl3+pl4

2 + x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 + x
pl1+pl4

2 + x
pl2+pl4

2

+ x
pl3+pl4

2

is a PP of Fpe .
Now we claim that g(x) is not a PP of Fpe . Note that g(0) = 0 and

g(1) = 1.

(1) l1, l2, l3, and l4 are all even. Then g(−1) = 1.
(2) l1, l2, l3, and l4 are all odd. Then g(−1) = 1.
(3) Exactly two of l1, l2, l3, and l4 are odd. Then g(−1) = 0.

This completes the proof.
□

Let’s consider the case where k = 1.
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Theorem 5.10. Let k = 1, p = 3, and n = pl1 + pl2 + pl3 + pl4. If
l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, and l4 ̸= 0, then Dn,k(1, x) is not a PP of Fpe.

Proof. Assume that l1 ̸= 0, l2 ̸= 0, l3 ̸= 0, and l4 ̸= 0. Since k = 1, Dn,k(1, x)
is a PP of Fpe if and only if

g(x) = x
pl1+pl2+pl3+pl4

2 + x
pl1+pl2+pl3−1

2 + x
pl1+pl2+pl4−1

2 + x
pl1+pl3+pl4−1

2

+ x
pl2+pl3+pl4−1

2 + x
pl1+pl2

2 + x
pl1+pl3

2 + x
pl2+pl3

2 + x
pl1+pl4

2 + x
pl2+pl4

2

+ x
pl3+pl4

2 + x
pl1−1

2 + x
pl2−1

2 + x
pl3−1

2 + x
pl4−1

2

is a PP of Fpe . But, clearly g(x) is not a PP of Fpe since g(0) = 0 = g(1). □

Let p > 3 and a be a quadratic residue of p. Then a = β2 for some
1 ≤ β ≤ p− 1. We have

h(a) = h(β2) = (2− k)β4 + 2(6− k)β2 + 4k = (2− k)a2 + 2(6− k)a+ 4k.

Then we have the following.

Theorem 5.11. Let p ≥ 5, 0 ≤ k ≤ p− 1 with k ̸= 2. Assume that

(1) exactly one of l1, l2, l3, and l4 is nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 − k)a2 + 2(6 −

k)a+ k = 0.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since exactly one of l1, l2, l3, and l4 is nonzero, we have h(0) = 3k.
The proof follows from the fact that

h(a) = (2− k)a2 + 2(6− k)a+ 4k = 3k = h(0).

□

Theorem 5.12. Let p ≥ 5, 0 ≤ k ≤ p− 1 with k ̸= 2. Assume that

(1) exactly two of l1, l2, l3, and l4 are nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 − k)a2 + 2(6 −

k)a+ 2k = 0.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since exactly two of l1, l2, l3, and l4 are nonzero, we have h(0) = 2k.
The proof follows from the fact that

h(a) = (2− k)a2 + 2(6− k)a+ 4k = 2k = h(0).

□

Theorem 5.13. Let p ≥ 5, 0 ≤ k ≤ p− 1 with k ̸= 2. Assume that

(1) exactly three of l1, l2, l3, and l4 are nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 − k)a2 + 2(6 −

k)a+ 3k = 0.

Then Dn,k(1, x) is not a PP of Fpe.
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Proof. Since exactly three of l1, l2, l3, and l4 are nonzero, we have h(0) = k.
The proof follows from the fact that

h(a) = (2− k)a2 + 2(6− k)a+ 4k = k = h(0).

□

Theorem 5.14. Let p ≥ 5, 0 ≤ k ≤ p− 1 with k ̸= 2. Assume that

(1) l1, l2, l3, and l4 are nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 − k)a2 + 2(6 −

k)a+ 4k = 0.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since l1, l2, l3, and l4 are all nonzero, we have h(0) = 0. Since a is a
quadratic residue modulo p such that the equation (2−k)a2+2(6−k)a+4k =
0 has a solution in Fp, the proof follows from the fact that

h(a) = 0 = h(0).

□

Theorem 5.15. Let p ≥ 5, 0 ≤ k ≤ p − 1 with k ̸= 2. Assume that
l1 = l2 = l3 = l4 = 0. Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since l1 = l2 = l3 = l4 = 0, we have

h(x) = (2− k)x2 + 2(6− k)x+ 4k.

If k ̸= 6, the proof follows from the fact that

h(0) = 4k = h
(2(k − 6)

(2− k)

)
.

If k = 6, the proof follows from the fact that h(x) = −4x2 + 24 is not a PP
of Fpe . □

5.4. The case k = 2.

Theorem 5.16. Let p ≥ 3 and k = 2. Assume that

(1) exactly two of l1, l2, l3, and l4 are nonzero, and
(2) (−1

2) is a quadratic reside modulo p.

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since exactly two of l1, l2, l3, and l4 are nonzero, we have h(0) = 4.
The proof follows from the fact that

h(−1/2) = 4 = h(0).

□

Theorem 5.17. Let p ≥ 5 and k = 2. Assume that

(1) exactly three of l1, l2, l3, and l4 are nonzero, and
(2) (−3

4) is a quadratic reside modulo p.

Then Dn,k(1, x) is not a PP of Fpe.
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Proof. Since exactly three of l1, l2, l3, and l4 are nonzero, we have h(0) = 2.
The proof follows from the fact that

h(−3/4) = 2 = h(0).

□

Theorem 5.18. Let p ≥ 5 and k = 2. Assume that

(1) l1, l2, l3, and l4 are all nonzero, and
(2) p ≡ 1 (mod 4).

Then Dn,k(1, x) is not a PP of Fpe.

Proof. Since l1, l2, l3, and l4 are all nonzero, we have h(0) = 0. The proof
follows from the fact that −1 is a quadratic residue modulo p whenever
p ≡ 1 (mod 4), and

h(−1) = 0 = h(0).

□

Remark The case in which exactly three of l1, l2, l3, and l4 are nonzero
is explained in Section 3.

Remark: If k = 2 and l1 = l2 = l3 = l4 = 0, then Dpl1+pl2+pl3+pl4 ,k(1, x)
is a PP of Fpe .

6. A generalization

In this section, we consider the case n = pl1+pl2+· · ·+pli , where l1, . . . , li
are nonnegative integers.

For any i ∈ Z+, we have

(1 + u)p
l1+pl2+···+pli

(6.1)

= up
l1+pl2+···+pli

+
∑

j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1

+ · · ·+
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2

+
∑

j1∈{l1,l2,...,li}

up
j1
+ 1.
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Let i be odd. Then

(1− u)p
l1+pl2+···+pli

(6.2)

=− up
l1+pl2+···+pli

+
∑

j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1 − · · ·+

∑
j1,j2∈{l1,l2,...,li}

up
j1+pj2

−
∑

j1∈{l1,l2,...,li}

up
j1
+ 1.

Thus, we have the following when i is odd.

(1 + u)p
l1+pl2+···+pli + (1− u)p

l1+pl2+···+pli(6.3)

= 2
∑

j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1

+ 2
∑

j1,j2,...,ji−3∈{l1,l2,...,li}

up
j1+pj2+···+pji−3

+ · · ·

· · ·+ 2
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2 + 2.

(1 + u)p
l1+pl2+···+pli (1− u)− (1 + u)(1− u)p

l1+pl2+···+pli(6.4)

= 2up
l1+pl2+···+pli − 2

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1+1

+ 2
∑

j1,j2,...,ji−2∈{l1,l2,...,li}

up
j1+pj2+···+pji−2

− 2
∑

j1,j2,...,ji−3∈{l1,l2,...,li}

up
j1+pj2+···+pji−3+1

+ · · · − 2
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2+1 + 2

∑
j1∈{l1,l2,...,li}

up
j1 − 2u.

Now let i be even. Then

(1− u)p
l1+pl2+···+pli(6.5)

= up
l1+pl2+···+pli −

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1

+ · · ·

· · ·+
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2

−
∑

j1∈{l1,l2,...,li}

up
j1
+ 1.

Thus, we have the following when i is even.
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(1 + u)p
l1+pl2+···+pli + (1− u)p

l1+pl2+···+pli

= 2up
l1+pl2+···+pli + 2

∑
j1,j2,...,ji−2∈{l1,l2,...,li}

up
j1+pj2+···+pji−2

+ · · ·+ 2
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2 + 2.

(6.6)

(1 + u)p
l1+pl2+···+pli (1− u)− (1 + u)(1− u)p

l1+pl2+···+pli(6.7)

=− 2up
l1+pl2+···+pli+1 + 2

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

up
j1+pj2+···+pji−1

− 2
∑

j1,j2,...,ji−2∈{l1,l2,...,li}

up
j1+pj2+···+pji−2+1

+ 2
∑

j1,j2,...,ji−3∈{l1,l2,...,li}

up
j1+pj2+···+pji−3

+ · · ·

− 2
∑

j1,j2∈{l1,l2,...,li}

up
j1+pj2+1 + 2

∑
j1∈{l1,l2,...,li}

up
j1 − 2u.

Let n = pl1 +pl2 + · · ·+ pli and u = 2y− 1, where y ̸= 1
2 . Then from (2.2)

we have

Dn,k(1, y(1− y))

= k
[(u+1

2

)pl1+pl2+···+pli(
1−u
2

)
−
(
u+1
2

)(
1−u
2

)pl1+pl2+···+pli

u

]
+
(u+ 1

2

)pl1+pl2+···+pli

+
(1− u

2

)pl1+pl2+···+pli

(6.8)

which can be written as

Dn,k(1, y(1− y))(6.9)

=
k

2i+1

[(u+ 1)p
l1+pl2+···+pli (1− u)− (u+ 1)(1− u)p

l1+pl2+···+pli

u

]
+

1

2i

[
(u+ 1)p

l1+pl2+···+pli + (1− u)p
l1+pl2+···+pli

]
.

When y = 1
2 , from (2.3) we have

(6.10) Dn,k

(
1,

1

4

)
=

k(pl1 + pl2 + · · ·+ pli − 1) + 2

2p
l1+pl2+···+pli

=
2− k

2i

for any i. Then we have the following:
Case 1: Let i be odd and n = pl1 + pl2 + · · ·+ pli .
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Since u2 = 1− 4x, it follows from (6.3), (6.4), (6.9) and (6.10) that for all
x ∈ Fq, we have

Dn,k(1, x) =
k

2i
(1− 4x)

pl1+pl2+···+pli−1
2

(6.11)

+
(2− k)

2i

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−1

2

+
k

2i

∑
j1,j2,...,ji−2∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−2−1
2

+
(2− k)

2i

∑
j1,j2,...,ji−3∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−3

2 + · · ·

+
(2− k)

2i

∑
j1,j2∈{l1,l2,...,li}

(1− 4x)
pj1+pj2

2

+
k

2i

∑
j1∈{l1,l2,...,li}

(1− 4x)
pj1−1

2 +
(2− k)

2i
.(6.12)

Case 2: Let i be even and n = pl1 + pl2 + · · ·+ pli .
Since u2 = 1− 4x, it follows from (6.6), (6.7), (6.9) and (6.10) that for all

x ∈ Fq, we have

Dn,k(1, x)(6.13)

=
(2− k)

2i
(1− 4x)

pl1+pl2+···+pli
2

+
k

2i

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−1−1
2

+
(2− k)

2i

∑
j1,j2,...,ji−2∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−2

2

+
k

2i

∑
j1,j2,...,ji−3∈{l1,l2,...,li}

(1− 4x)
pj1+pj2+···+p

ji−3−1
2 + · · ·

+
(2− k)

2i

∑
j1,j2∈{l1,l2,...,li}

(1− 4x)
pj1+pj2

2

+
k

2i

∑
j1∈{l1,l2,...,li}

(1− 4x)
pj1−1

2 +
(2− k)

2i
.

6.1. Permutation behaviour of Dpl1+pl2+···+pli ,k. We consider the odd i
case and even i case separately.
Case 1: Let i be odd and n = pl1 + pl2 + · · ·+ pli .

Then
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Dpl1+pl2+···+pli ,k(1, x) is a PP of Fpe if and only if h(x) is a PP of Fpe ,
where

h(x) =
k

2i
x

pl1+pl2+···+pli−1
2 +

(2− k)

2i

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−1

2

+
k

2i

∑
j1,j2,...,ji−2∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−2−1
2

+
(2− k)

2i

∑
j1,j2,...,ji−3∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−3

2 + · · ·

+
(2− k)

2i

∑
j1,j2∈{l1,l2,...,li}

x
pj1+pj2

2 +
k

2i

∑
j1∈{l1,l2,...,li}

x
pj1−1

2 .

(6.14)

Case 2: Let i be even and n = pl1 + pl2 + · · ·+ pli .
Then
Dpl1+pl2+···+pli ,k(1, x) is a PP of Fpe if and only if g(x) is a PP of Fpe ,

where

g(x) =
(2− k)

2i
x

pl1+pl2+···+pli
2 +

k

2i

∑
j1,j2,...,ji−1∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−1−1
2

+
(2− k)

2i

∑
j1,j2,...,ji−2∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−2

2

+
k

2i

∑
j1,j2,...,ji−3∈{l1,l2,...,li}

x
pj1+pj2+···+p

ji−3−1
2 + · · ·

+
(2− k)

2i

∑
j1,j2∈{l1,l2,...,li}

x
pj1+pj2

2 +
k

2i

∑
j1∈{l1,l2,...,li}

x
pj1−1

2 .

(6.15)

6.2. Permutation behaviour of Dpl1+pl2 ,k. Let i = 2 in (6.13). Then

Dpl1+pl2 ,k(1, x)

=
(2− k)

4
(1− 4x)

pl1+pl2

2 +
k

4
(1− 4x)

pl1−1
2 +

k

4
(1− 4x)

pl2−1
2 +

(2− k)

4
.

Thus, we have the following results.

Corollary 6.1. Let k = 0. Then Dpl1+pl2 ,k(1, x) is a PP of Fpe if and only
if

gcd(p
l1+pl2

2 , pe − 1) = 1.
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Corollary 6.2. Let p = 3 and k = 2. Assume that both l1 and l2 are odd.
Then

Dpl1+pl2 ,k(1, x) is a PP of Fpe if and only if the binomial x
pl1−1

2 + x
pl2−1

2 is
a PP of Fq.

Remark: Let g(x) = x
pl1−1

2 + x
pl2−1

2 , p = 3 and k = 2. When both l1 and
l2 are even, Dpl1+pl2 ,k(1, x) is not a PP of Fpe since g(1) = 2 = g(−1).

When l1 and l2 have different parity, Dpl1+pl2 ,k(1, x) is not a PP of Fpe since

g(0) = 0 = g(−1).

Theorem 6.4. Let p > 3 and k = 2. Then Dpl1+pl2 ,k(1, x) is not a PP of
Fpe.

Proof. Assume that p > 3 and k = 2. Then Dpl1+pl2 ,k(1, x) is a PP of Fpe if
and only if

f(x) = x
pl1−1

2 + x
pl2−1

2

is a PP of Fpe . Let a be a quadratic residue of p. Then a = β2 for some
1 ≤ β ≤ p− 1. We have f(a) = 2 = f(1). Thus Dpl1+pl2 ,k(1, x) is not a PP
of Fpe . □

Remark: Let k ̸= 0, 2 and p > 3. If l1 = l2 = 0, then Dpl1+pl2 ,k(1, x) is
clearly a PP of Fpe since every linear polynomial is a PP.

Theorem 6.6. Let k ̸= 0, 2 and p > 3. Assume that 2k
(k−2) is a quadratic

residue of p. If l1 ̸= 0 and l2 ̸= 0, then Dpl1+pl2 ,k(1, x) is not a PP of Fpe

Proof. Let k ̸= 0, 2 and p > 3. Then Dpl1+pl2 ,k(1, x) is a PP of Fpe if and
only if

f(x) = (2− k)x
pl1+pl2

2 + k x
pl1−1

2 + k x
pl2−1

2

is a PP of Fpe . Since l1 and l2 are not both zero, we have f(0) = 0. The
proof follows from the fact that

f
( 2k

(k − 2)

)
= 0 = f(0).

□

7. More results

7.1. The polynomial Drpl+s,k(1, x). In this section, we consider the case

n = rpl + s where r ≥ 1 and l, s ≥ 0 are integers.

Proposition 7.1. Suppose that r+ s is even. Then Drpl+s,k(1, x) permutes
Fpe if and only if

g(x)

= (2− k)x
rpl+s

2 + k

[(
r

r

)(
s

s− 1

)
x

rpl+(s−2)
2 +

(
r

r − 1

)(
s

s

)
x

(r−1)pl+(s−1)
2

]
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+ (2− k)

[(
r

r

)(
s

s− 2

)
x

rpl+(s−2)
2 +

(
r

r − 1

)(
s

s− 1

)
x

(r−1)pl+(s−1)
2

+

(
r

r − 2

)(
s

s

)
x

(r−2)pl+s
2

]
+ k

[(
r

r

)(
s

s− 3

)
x

rpl+(s−4)
2 +

(
r

r − 1

)(
s

s− 2

)
x

(r−1)pl+(s−3)
2

+

(
r

r − 2

)(
s

s− 1

)
x

(r−2)pl+(s−2)
2 +

(
r

r − 3

)(
s

s

)
x

(r−3)pl+(s−1)
2

]
+ · · ·

+ (2− k)

[(
r

1

)(
s

1

)
x

pl+1
2 +

(
r

2

)(
s

0

)
xp

l
+

(
r

0

)(
s

2

)
x

]
+ k

[(
r

1

)(
s

0

)
x

pl−1
2 +

(
r

0

)(
s

1

)]
+ (2− k)

permutes Fpe.

Proof. Let n = pl1 + pl2 + · · ·+ pli with i = r + s in (6.15). Then the proof
follows by letting l1 = · · · = lr = l and lr+1 = · · · = lr+s = 0 and by counting
the number of choices for ji’s. □

Proposition 7.2. Suppose that r + s is odd. Then Drpl+s,k(1, x) permutes
Fpe if and only if

h(x)

= kx
rpl+(s−1)

2 + (2− k)

[(
r

r

)(
s

s− 1

)
x

rpl+(s−1)
2 +

(
r

r − 1

)(
s

s

)
x

(r−1)pl+s
2

]
+ k

[(
r

r

)(
s

s− 2

)
x

rpl+(s−3)
2 +

(
r

r − 1

)(
s

s− 1

)
x

(r−1)pl+(s−2)
2

+

(
r

r − 2

)(
s

s

)
x

(r−2)pl+(s−1)
2

]
+ (2− k)

[(
r

r

)(
s

s− 3

)
x

rpl+(s−3)
2 +

(
r

r − 1

)(
s

s− 2

)
x

(r−1)pl+(s−2)
2

+

(
r

r − 2

)(
s

s− 1

)
x

(r−2)pl+(s−1)
2 +

(
r

r − 3

)(
s

s

)
x

(r−3)pl+s
2

]
+ · · ·

+ (2− k)

[(
r

1

)(
s

1

)
x

pl+1
2 +

(
r

2

)(
s

0

)
xp

l
+

(
r

0

)(
s

2

)
x

]
+ k

[(
r

1

)(
s

0

)
x

pl−1
2 +

(
r

0

)(
s

1

)]
+ (2− k)

permutes Fpe.

Proof. Let n = pl1 + pl2 + · · · + pli with i = r + s in (6.14) . Then the
proof follows by letting l1 = · · · = lr = l and lr+1 = · · · = lr+s = 0 and by
counting the number of choices for ji’s. □
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7.2. The polynomial Dpl+s,k(1, x). In this subsection, we consider the

case when n = pl + s where l, s ≥ 0. We also explain a few cases in which
Dpl+s,k(1, x) is not a permutation polynomial of Fpe .

Proposition 7.3. Let s be even. Then Dpl+s,k(1, x) permutes Fpe if and
only if

f(x) =

s
2∑

i=0

[(
s

s− 2i

)
k +

(
s

s− (2i+ 1)

)
(2− k)

]
x

pl+s−2i−1
2

+

s
2∑

i=0

[(
s

s− 2i+ 1

)
k +

(
s

s− 2i

)
(2− k)

]
x

s−2i
2

(7.1)

permutes Fpe.

Proof. Let r = 1 in Proposition 7.2. □

Corollary 7.4. Let s be even with 2s+1 ≡ s+1 (mod p). Then Dpl+s,1(1, x)
is not a permutation polynomial of Fpe.

Proof. Let k = 1. The proof follows from the fact that f(0) = s + 1,
f(1) = 2s+1, and 2s+1 ≡ s+ 1 (mod p). □

Corollary 7.5. Let s be even with 2s ≡ s (mod p). Then Dpl+s,2(1, x) is
not a permutation polynomial of Fpe.

Proof. Let k = 2. The proof follows from the fact that f(0) = 2s, f(1) =
2s+1, and 2s ≡ s (mod p). □

Corollary 7.6. Let s be even with s ≡ 0 (mod p− 1). Then Dpl+s,0(1, x)
is not a permutation polynomial of Fpe.

Proof. Let k = 0. The proof follows from the fact that f(0) = 2, f(1) = 2s+1,
and s ≡ 0 (mod p− 1). □

Proposition 7.7. Let s be odd. Then Dpl+s,k(1, x) permutes Fpe if and only
if

h(x) =

s+1
2∑

i=0

[(
s

s− 2i+ 1

)
k +

(
s

s− 2i

)
(2− k)

]
x

pl+s−2i
2

+

s+1
2∑

i=0

[(
s

s− 2i

)
k +

(
s

s− (2i+ 1)

)
(2− k)

]
x

s−2i−1
2

(7.2)

permutes Fpe.

Proof. Let r = 1 in Proposition 7.1. □

Corollary 7.8. Let s be odd with 2s+1 ≡ s+1 (mod p). Then Dpl+s,1(1, x)
is not a permutation polynomial of Fpe.
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Proof. Let k = 1. The proof follows from the fact that h(0) = s + 1,
h(1) = 2s+1, and 2s+1 ≡ s+ 1 (mod p). □

Corollary 7.9. Let s be odd with 2s ≡ s (mod p). Then Dpl+s,2(1, x) is
not a permutation polynomial of Fpe.

Proof. Let k = 2. The proof follows from the fact that h(0) = 2s, h(1) =
2s+1, and 2s ≡ s (mod p). □

7.3. The polynomial Drpl,k(1, x). In this subsection, we consider the case

when n = rpl with r ≥ 1 and l ≥ 0. We also explain a few cases in which
Drpl,k(1, x) is not a permutation polynomial of Fpe .

Proposition 7.10. Let r be odd. Then Drpl,k(1, x) permutes Fpe if and only
if

f∗(x) = k x
rpl−1

2 + (2− k)

(
r

r − 1

)
x

(r−1)pl

2 + k

(
r

r − 2

)
x

(r−2)pl−1
2

(7.3)

+ (2− k)

(
r

r − 3

)
x

(r−3)pl

2 + · · ·+ (2− k)

(
r

2

)
x

2pl

2 + k

(
r

1

)
x

pl−1
2

permutes Fpe.

Proof. Let s = 0 in Proposition 7.2. Then we have

f(x) = k x
rpl−1

2 + (2− k)

(
r

r − 1

)
x

(r−1)pl

2 + k

(
r

r − 2

)
x

(r−2)pl−1
2

+ (2− k)

(
r

r − 3

)
x

(r−3)pl

2 + · · ·+ (2− k)

(
r

2

)
x

2pl

2 + k

(
r

1

)
x

pl−1
2

+

(
r

0

)
(2− k).

□

Corollary 7.11. Let r be odd with r ≡ 1 (mod p− 1). Then Drpl,0(1, x) is
not a permutation polynomial of Fpe.

Proof. Let k = 0. We note that f∗(0) = 0 and

f∗(1) = 2

[(
r

r − 1

)
+

(
r

r − 3

)
+

(
r

r − 5

)
+ · · ·+

(
r

2

)]
= 2(2r−1 − 1).

Since r ≡ 1 (mod p− 1), we conclude that f∗(1) = 0 and thus Drpl,0(1, x)
is not a permutation polynomial of Fpe . □
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Proposition 7.12. Let r be even. Then Drpl,k(1, x) permutes Fpe if and
only if

h∗(x) = (2− k)x
rpl

2 + k

(
r

r − 1

)
x

(r−1)pl−1
2 + (2− k)

(
r

r − 2

)
x

(r−2)pl

2

+ k

(
r

r − 3

)
x

(r−3)pl−1
2 + · · ·+ (2− k)

(
r

2

)
x

2pl

2 + k

(
r

1

)
x

pl−1
2

permutes Fpe.

Proof. Let s = 0 in Proposition 7.1. Then we have

h(x)

= (2− k)x
rpl

2 + k

(
r

r − 1

)
x

(r−1)pl−1
2 + (2− k)

(
r

r − 2

)
x

(r−2)pl

2

+ k

(
r

r − 3

)
x

(r−3)pl−1
2 + · · ·+ (2− k)

(
r

2

)
x

2pl

2 + k

(
r

1

)
x

pl−1
2

+

(
r

0

)
(2− k).

□

Corollary 7.13. Let r be even with r ≡ 0 (mod p− 1). Then Drpl,1(1, x)
is not a permutation polynomial of Fpe.

Proof. Let k = 1. We note that h∗(0) = 0 and

h∗(1) = 2

[(
r

r

)
+

(
r

r − 1

)
+ · · ·+

(
r

1

)]
= 2(2r − 1).

Since r ≡ 0 (mod p− 1), we have that h∗(1) = 0 and thus Drpl,1(1, x) is
not a permutation polynomial of Fpe . □

8. Some generalizations, arithmetic properties and matrix form

8.1. The polynomial Drpl−1,k(1, x). In this subsection, we present a gen-
eralization of the following result on reversed Dickson polynomials of the
second kind due to Hong, Qin and Zhao.

Proposition 8.1. [2, Proposition 2.3] Let l be a positive integer. Then

Dpl−1,1(1, x) = (1− 4x)
pl−1

2 .

Proposition 8.2. Let r and l be positive integers with r ̸= 0. Then

Drpl−1,k(1, x)

=
k

2r−1

∑
1≤j≤r
j−odd

(
r

j

)
(1− 4x)

jpl−1
2 − k − 1

2r−2

∑
0≤j≤rpl−1

j−even

(
rpl − 1

j

)
(1− 4x)

j
2 .
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Proof. When x = y(y − 1) with y ̸= 1/2 and n = rpl − 1 with r ≥ 1, we
obtain from (2.2) that

Drpl−1,k(1, x) = k

[
yrp

l − (1− y)rp
l

2y − 1

]
− (k − 1)[yrp

l−1 + (1− y)rp
l−1].

Let u = 2y − 1. Then

Drpl−1,k(1, x)

=k

(
1+u
2

)rpl − (
1−u
2

)rpl
u

− (k − 1)

[(
1 + u

2

)rpl−1

+

(
1− u

2

)rpl−1
]

=
k

2r

[
(1 + u)rp

l − (1− u)rp
l

u

]
− k − 1

2r−1

[
(1 + u)rp

l−1 + (1− u)rp
l−1

]
.

For any r, we have that

(1 + u)rp
l − (1− u)rp

l
= (1 + up

l
)r − (1− up

l
)r

=

r∑
j=0

(
r

j

)
[(up

l
)j − (−up

l
)j ]

= 2
∑

1≤j≤r
j−odd

(
r

j

)
ujp

l

and

(1 + u)rp
l−1 + (1− u)rp

l−1 =

rpl−1∑
j=0

(
rpl − 1

j

)
[uj + (−u)j ]

= 2
∑

0≤j≤rpl−1
j−even

(
rpl − 1

j

)
uj .

It follows that

Drpl−1,k(1, x) =
k

2r−1

∑
1≤j≤r
j−odd

(
r

j

)
ujp

l−1 − k − 1

2r−2

∑
0≤j≤rpl−1

j−even

(
rpl − 1

j

)
uj

=
k

2r−1

∑
1≤j≤r
j−odd

(
r

j

)
(u2)

jpl−1
2 − k − 1

2r−2

∑
0≤j≤rpl−1

j−even

(
rpl − 1

j

)
(u2)

j
2 .
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Since u2 = 1− 4x, we have

Drpl−1,k(1, x)

=
k

2r−1

∑
1≤j≤r
j−odd

(
r

j

)
(1− 4x)

jpl−1
2 − k − 1

2r−2

∑
0≤j≤rpl−1

j−even

(
rpl − 1

j

)
(1− 4x)

j
2 .

When y = 1/2, i.e. x = 1/4, we have

Drpl−1,k

(
1,

1

4

)
=
k(rpl − 1− 1) + 2

2rpl−1

=
1− k

2r−2

=
k

2r−1

∑
1≤j≤r
j−odd

(
r

j

)
(1− 4x)

jpl−1
2

− k − 1

2r−2

∑
0≤j≤rpl−1

j−even

(
rpl − 1

j

)
(1− 4x)

j
2 .

This completes the proof. □

Remark: Let r = 1. By Proposition 8.2, since
(
pl−1
j

)
≡ 1 (mod p) for

even j, we get

Dpl−1,k(1, x) = k (1− 4x)
pl−1

2 − 2(k − 1)

pl−1
2∑

j=0

(1− 4x)j

for all x ∈ Fpe . By considering k = 1, we immediately obtain Proposition 8.1.

8.2. Dn,k(1, 1 − x2). In this subsection, we generalize a result in [7]. Let
x1 ̸= x2 and consider

Dn,k(x1 + x2, x1x2) = k
[xn1x2 − x1x

n
2

x1 − x2

]
+Dn(x1 + x2, x1x2).(8.1)

When x1 = y with y ̸= 1
2 and x2 = 1− x1, we have (2.2).

Lemma 8.3. Let l be a positive odd integer and let n = 3l+1
2 . Then in F3[x],

Dn,k(1, 1− x2) =
(k
2
− 1

)
Dn(x, 1) +

k

2

Dn−1(x, 1)

x
.

Proof. Let x = y2 + y−2. Since n is even, we have
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Dn,k(1, 1− x2)

= Dn,k(1, (2 + x)(2− x))

= k
[(y + y−1)2n(2− y2 − 1

y2
)− (2 + y2 + 1

y2
)(y − y−1)2n

2(y2 + y−2)

]
−Dn(x, 1)

= k
[(y + y−1)3

l+1(2− y2 − 1
y2
)− (2 + y2 + 1

y2
)(y − y−1)3

l+1

2(y2 + y−2)

]
−Dn(x, 1)

= k
[2y3l−1 + 2y−3l+1 + y3

l+3 + y−3l−3

2(y2 + y−2)

]
−Dn(x, 1)

=]k
[2(y2) 3l−1

2 + 2(y2)
−3l+1

2 + (y2)
3l+3

2 + (y2)
−3l−3

2

2(y2 + y−2)

]
−Dn(x, 1)

= k
[2(y2)n−1 + 2(y2)−(n−1) + (y2)n+1 + (y2)−(n+1)

2(y2 + y−2)

]
−Dn(x, 1)

= k
[2Dn−1(x, 1) +Dn+1(x, 1)

2D1(x, 1)

]
−Dn(x, 1)

= k
[xDn(x, 1) +Dn−1(x, 1)

2x

]
−Dn(x, 1)

=
(k
2
− 1

)
Dn(x, 1) +

k

2

Dn−1(x, 1)

x
.

□

Remark: When k = 0, we have [7, Lemma 5.5].

8.3. Dn,k(1, x), Dn,0(1, x), Dn,1(1, x), and Dn,2(1, x). In this subsection,
we show that Dn,k(1, x) can be written in terms of Dn−2,1(1, x) and
Dn,0(1, x). We also show that Dn,k(1, x) can be written in terms of
Dn−1,2(1, x) and Dn,0(1, x).

Recall

Dn,k(1, y(1− y)) = k
[yn(1− y)− y(1− y)n

2y − 1

]
+Dn(1, y(1− y)),(8.2)

where y ̸= 1
2 .

Equation (8.2) can be rewritten as

Dn,k(1, y(1− y)) = k y(1− y)
[yn−1 − (1− y)n−1

2y − 1

]
+Dn(1, y(1− y)),

(8.3)

which gives the following result.
When y ̸= 1

2 ,
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Dn,1(1, y(1− y)) =
yn+1 − (1− y)n+1

2y − 1

and

Dn,2(1, y(1− y)) =
yn − (1− y)n

2y − 1

are the functional expressions of the reversed Dickson polynomial of the
second kind and third kind, respectively.

Then from (8.3) we have

Dn,k(1, x) = k xDn−2,1(1, x) +Dn(1, x), n ≥ 2(8.4)

and

Dn,k(1, x) = k xDn−1,2(1, x) +Dn(1, x), n ≥ 1.(8.5)

When y = 1
2 , i.e. x = 1

4 , we have

Dn,k(1,
1

4
) =

k(n− 1) + 2

2n
=

k

4

(n− 1)

2n−2
+

2

2n
=

k

4
Dn−2,1(1,

1

4
) +Dn(1,

1

4
).

and

Dn,k(1,
1

4
) =

k(n− 1) + 2

2n
=

k

4

2(n− 1)

2n−1
+

2

2n
=

k

4
Dn−1,2(1,

1

4
)+Dn(1,

1

4
).

Thus, for all x ∈ Fq we have

Dn,k(1, x) = k xDn−2,1(1, x) +Dn(1, x), n ≥ 2(8.6)

and

Dn,k(1, x) = k xDn−1,2(1, x) +Dn(1, x), n ≥ 1.(8.7)

8.4. A matrix form of Dn,k(1, x). In this subsection, we give a matrix
representation of Dn,k(1, x). A similar matrix representation of the Dick-
son polynomials of the first kind appeared in [9, Chapter 2]. Using vector
notation and the recurrence relation in Proposition 2.1 we have(

Di+1,k(1, x), Di+2,k(1, x)
)
=

(
Di,k(1, x), Di+1,k(1, x)

)(0 −x
1 1

)
(
Di+2,k(1, x), Di+3,k(1, x)

)
=

(
Di,k(1, x), Di+1,k(1, x)

)(0 −x
1 1

)2

· · · = · · ·(
Di+n,k(1, x), Di+n+1,k(1, x)

)
=

(
Di,k(1, x), Di+1,k(1, x)

)(0 −x
1 1

)n



REVERSED DICKSON POLYNOMIALS OVER FINITE FIELDS 29

Set i = 0.(
Dn,k(1, x), Dn+1,k(1, x)

)
=

(
D0,k(1, x), D1,k(1, x)

)(0 −x
1 1

)n

(
Dn,k(1, x), Dn+1,k(1, x)

)
=

(
2− k, 1

)(0 −x
1 1

)n

Dn,k(1, x) =
(
2− k, 1

)(0 −x
1 1

)n(
1
0

)
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