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KIND OVER FINITE FIELDS, II

NERANGA FERNANDO

ABSTRACT. Let p be an odd prime. In this paper, we study the permuta-
tion behaviour of the reversed Dickson polynomials of the (k+1)th kind
D, (1, 2) whenn = p't 43, n = p't +p'2 49’3, and n = p't +p'2 p's 4pl,
where [1,l2, I3, and l4 are nonnegative integers. A generalization to
n=p"" +p2+... +p is also shown. We find some conditions under
which D, x(1,x) is not a permutation polynomial over finite fields for
certain values of n and k. We also present a generalization of a recent
result regarding D1 _; (1, ) and present some algebraic and arithmetic
properties of D, x(1,x).
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1. INTRODUCTION

Let p be an odd prime and ¢ = p®, where e is a positive integer. Let
F, be the finite field with ¢ elements. A polynomial f € F,[x] is called a
permutation polynomial (PP) of Fy if the associated mapping x — f(z) from
F, to [F, is a permutation of F,. Permutation polynomials over finite fields
have important applications in coding theory, cryptography, finite geometry,
combinatorics, and computer science, among other fields.

In the study of permutation polynomials, Dickson polynomials have played
a major role. The nth Dickson polynomial of the first kind D, (z,a) is de-
fined by

where a € I is a parameter.

The permutation property of the Dickson polynomials of the first kind is
completely known. When a = 0, D,(z,a) = 2", which is a PP over [, if
and only if (n,¢q—1) =1. When 0 # a € Fy, D,(z,a) is a PP over F, if and
only if (n,q? — 1) = 1; see [8, Theorem 7.16] or [9, Theorem 3.2].

The nth reversed Dickson polynomial of the first kind D, (a,z) was first
introduced by Hou, Mullen, Sellers and Yucas in [7| by reversing the roles
of the variable and the parameter in the nth Dickson polynomial of the
first kind D, (x,a). The nth reversed Dickson polynomial of the first kind
D, (a,z) is defined by

Do) =3 (") ey
i=0
where a € I, is a parameter.
In 2012, Wang and Yucas introduced the nth reversed Dickson polynomial
of the (k+1)th kind ([10]). Let k be an integer such that 0 < k < p—1. For
a € Fy, the nth reversed Dickson polynomial of the (k4 1)th kind D, 1 (a, z)
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is defined by

[5]
n—=ki/n—1 ) .
1.1 D = —z)'a"
( ) n,k(%x) v n—i ( i )( x) a )

and Do (a,z) =2 —k.

In [2], Hong, Qin, and Zhao studied reversed Dickson polynomials of
the second kind and presented several necessary conditions for the reversed
Dickson polynomial of the second kind to be a permutation of F,. In [6], the
author of the present paper explored reversed Dickson polynomials of the
third kind and found the necessary conditions for them to be a permutation
on [F,.

In [3], the author of this paper unified and generalized several recently
discovered results on reversed Dickson polynomials over finite fields. It was
shown in [3] that to discuss the permutation behaviour of reversed Dickson
polynomials of the (k + 1)th kind, one only has to consider a = 1. We
completely explained the permutation behaviour of the reversed Dickson
polynomials of the (k4 1)th kind D,, ;(1,x) over finite fields when n = P,
n=p' 41, and n = p' + 2, where p is an odd prime and [ > 0 is an integer,
in [3] and [5]. In the present paper, we explore the permutation behaviour
of Dy, (1, x) over finite fields when n is a sum of odd prime powers.

The observations in [3] and [5] led to the question “when is D, 1(1,z) a
PP of Fpe when n = pl 4+ 377, The case n = p! + 3 led us to consider the
cases n = plt + p2 +pB and n = pl* + p’2 4 p’3 + plt which eventually led to
a generalization, n = p'* 4+ p’ + ... 4+ pli. As a consequence, we explain the
permutation behaviour of Dpzl+p12’k(1, x).

|3

We would like to point out that the generalization to n = p't +pl2 4. . . 4ph
given in Section 6 paves the way to many combinatorial problems. It opens
the door to find explicit expressions for the polynomials D,, ;(1,z) when
n = rp 4+ s, where 7 > 1 and [, s > 0 are integers. This allows us to consider
two special cases, n = p' + s and n = rp!. As a consequence, we find
some conditions under which D, (1,2) does not permute F,.. We believe
that our results would be helpful for anyone interested in investigating the
permutation behaviour of reversed Dickson polynomials of the (k+1)th kind
over finite fields.

The paper is organized as follows.

In Section 2, we present some preliminaries. We explore the permutation
behaviour of D, ;(1,2) when n = pt+3, n=ph4+p24+ph and n =
plt + p2 4 pfs 4 pl in Sections 3, 4 and 5, respectively.

In Section 6, we present the generalization to n = p/t +p/2 + ... 4+ pli. In
Section 7, we consider the cases n = rp' + s, where r > 1 and I,5 > 0 are
integers. As a result, we study two special cases, n = p! + s and n = rpl.

In Section 8, we consider the case n = rp! — 1, which generalizes a pre-
vious result on reversed Dickson polynomials of the second kind obtained
in [2] by Hong, Qin, and Zhao. We also present a generalization of a result
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when p = 3 that appeared in [7]. Next, we show that the nth reversed
Dickson polynomial of the (k4 1)th kind D, (1, 2) can be written in terms
of Dp—21(1,2) and Dy (1,z). We also show that the nth reversed Dick-
son polynomial of the (k4 1)th kind D,, ;(1,x) can be written in terms of
D, —12(1,z) and Dy o(1,z). Motivated by a matrix representation of the
Dickson polynomials of the first kind that appeared in [9, Chapter 2], we
present a matrix representation of the nth reversed Dickson polynomial of
the (k + 1)th kind D, (1, x).

Throughout the paper, we denote D,, o(1,2) by Dy, (1,z) and we always
assume that p is odd unless otherwise specified. We would also like to point
out that some computations are omitted in this paper due to their length.
We refer the interested reader to [4] for detailed computation.

2. PRELIMINARIES

For a # 0, we write 2 = y(a —y) with an indeterminate y € F 2 such that
y # 5. Then we have

(2.1) D, y(a,z) =k yla— ZL_—ya(a —y)" + Dy(a, ),

where D, (a,x) denotes the nth reversed Dickson polynomial of the first
kind; see [3, Eq. 2.1].
Let a € . Then it follows from the definition that

x

Dy, i(a,x) = a" Dy, (1, ﬁ)

Hence D, ;(a,z) is a PP on F, if and only if D, ;(1,z) is a PP on F,.
Hereafter we always assume a = 1. Thus we can write (2.1) as follows.

y"(1—y) —y(l—y)"
29 — 1

(22)  Dus(Ly(l—y) =k | + Datt w1 = y)),

where y # %
When y = %, we have

I\ k(n—1)+2
(2‘3) Dn,k (17 Z) 27"’
see [3, Eq. 2.6].

Proposition 2.1 ([3, Proposition 2.6]). Let p be an odd prime and n be a
nonnegative integer. Then

Dox(l,2) =2 —k, Dy(1,z) =1, and

D, (1,2) = Dp_1 (1, 2) — 2 Dy (1, ), for n > 2.
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Now we list a few results that appeared in [3].
For all = € IF;, we have

k l k
(24) Dpljk(l,l’) = 5 (]_ — 45(;) 2 +1— 5’
1k ek plor 1
(25)  Dpxta)=(5-7)(1-42)F + (140" + 3,
and
1 plt1 k pl-1 k 1
(26) Dypp(la) =5 (1-42)"% +Sa(1—dn) - (1 - §>x+ 55

see [3, Eq. 2.7], [3, Eq. 2.9], and [3, Eq. 2.10], respectively.
Now we list a very well-known result on permutation monomials over
finite fields.

Lemma 2.2 ([8]). The monomial ™ is a PP of Fy if and only if (n,q—1) =
1.

The following result appeared in [7].

Lemma 2.3 ([7, Lemma 5.5])). Let | be a positive odd integer and let n =
%. Then in Fs[z],

Dy (1,1 — 2%) = =D, (z, 1).

3. THE CASE n=p' + 3
Let n = p' + 3. Then from (2.5), (2.6), and Proposition 2.1 we have

Dyiisp(l,2) =Dpiio i (1,2) — xDp k(1 95)

+ -1 k 1
(3.1) 2(1—49:) —x(1—4x) ; —(1—§>x+§
1 k P41 k pl-1 1

—(i—z)a}(l—élx) 2 —Zaz(l—lla:) o5t

Let w =1 —42. Then

Dyisr(l,2)
1 plvr k k 1
(3.2) 2" # 5( 4u>“ ’ ( 5( 1 )+§
1 k — Ly k — - 1/1—
*(5*1)( 4u)“p 1*1( 4 )“%1*5( 4u>
2K fua 3 sk g (3=k)  (k+1)
6 U —l—gu +1—6u2 + 3 U 3

This leads to the following immediate theorem.
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Theorem 3.1. D5 w(1,z) is a PP of Fpe if and only if the polynomial

pl l

l
2-k) 22 +62"2 +kz"z +2B3—k)z
is a PP of Fpe
Let
o3 Sl o1
(3.3) fl@)=02-k)z"2 +62"2 +ka'z +2B3—k)z

3.1. The case p = 3. Note that in this case £k =0, 1, or 2.

Theorem 3.2. Dy 5,(1,7) is a PP of Fye if and only ifgcd(g’lT*?’, 3¢—-1) =
1.
Proof. When k = 0, (3.3) becomes

3+3

f(o) = 22",

The rest is obvious. O
Theorem 3.3. D 3,(1,2) is not a PP of Fpe

Proof. When p =3 and k = 1, f(x) is a PP of Fse if and only if the trinomial

l

o2 L
ta' T = +x
is a PP of F3.. But
P43 pl-1
T 2?2 +r 2?2 +vzx
is clearly not a PP of Fge. (|
Theorem 3.4 ([5, Theorem 4.1]). Dgiy34(1,7) is a PP of Fye if and only

if
(i) 1=0, or
(ii) { = me + 1, where m is a nonnegative even integer.
3.2. The case p > 3. We have the following results in this case.
Remark: Let p > 5 and k = 2. If | = 0, then clearly D, 3 ,(1,7) is a PP of
Fpe since every liner polynomial is a PP.

Theorem 3.6. Let k =2 andp =1 (mod 4). Ifl # 0, then Dy 5 (1,7)
is not a PP of e

Proof. Let k = 2. Then D, ,(1, :):) is a PP of Fpe if and only if

l
f(z )—SZL‘ > +e T +x
is a PP of Fpe. Since p=1 (mod 4), (— ) is a quadratic residue modulo p.
The proof follows from the fact that f(0) =0 = f( - i) O

Remark: Let p > 7, k = 7. Then D, 5,(1,2) is not a PP of Fpe since
7(0) =0 = f(1)

Let p > 5, k=0, and —6 be a quadratic residue of p. Then D, 3 (1, )
is not a PP of e since f(0) =0 = f(—6).
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4. THE CASE n = ph +p12 +p13

In this section, we explain the case n = plt + p'2 + p!3, where 11, 1o, and I3
are nonnegative integers.
Let n = p't + p2 + p3 in (2.2) and (2.3). Then for all z € F,, we have

(4.1)

pliapl2 4pls 1
2

k
Dn,k(lv .’IJ) = §(1 - 4$)

2— l ! l ! 1 1
+( . k) [(1_4x)p142rp2 +(1_4$)p1;p3 +(1_4m)#

i = 2 o (2—k
™ ™ B,

see [4, Section 4] for detailed computation.
This leads to the following immediate theorem.

Theorem 4.1. Dpl1+plz+plg7k(1,93) is a PP of Fy if and only if the seven-
term polynomial

plipl24pl3 1 pl4pl2 pl1+p3 p'2+p'3
2

+Q2—-k)[z7 2 4=z 2z +z 2

P11 P21

X

is a PP of .
Let

pliapl24pla 1 plypl2 pl14p'3 pl24p'3
2

flx)=kz +2—-k)[z" 2 42z 4z 2

+ k[z' 2
4.1. The case p = 3. In this case, kK = 0,1, or 2.

Theorem 4.2. Let k=0, p =3, and n = p'* + p'2 + p!3, where 1,12, and
I3 are nonnegative integers. Then D,, ;(1,x) is not a PP of Fpe.
Proof.
CASE 1: [y =lp =13 =0. f(z) = 0 which is not a PP of Fze.
CASE 2: Exactly two of 1, 15,3 are zero.
Without loss of generality, let I; # 0 and ls = I3 = 0. Then f(z) is a PP

pll41 pl141

of Fse if and only if the trinomial z 2 4+x 2 4z is a PP of F3e. Clearly,

pl141 pll41

r 2 +x 2 4 xisnotaPP of Fge.
CaAsk 3: Exactly one of I, 15,13 is zero.

Without loss of generality, let 1 # 0, I3 # 0 and I3 = 0. Then f(z) is a
PP of Fge if and only if the trinomial

1 pl2-1 pl3—1
+z 2 4z 2z |

pl1ipl2 P41 p'241
2 + 2

x +x 2 T
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i l 1 !
is a PP of F3e. Clearly, z" 5 + 2" £a + 2" 5 is not a PP of Fge.
CASE 4: 11 #0,1l3 #0 and I3 # 0.
Then f(x) is a PP of Fse if and only if the trinomial

pl14pl2 p'14p!3 p'2+4p!3
xr 2 +x 2 +x 2

hple pl14p!3 p'24p'3

is a PP of Fge. Clearly,a;p12 4z 2 +4+x 2 isnotaPPofFz. O

Remark: The case in which exactly two of [1,lo and I3 are zero and the other
is equal to e, i.e. n = p°+ 2, is explained [7, Corollary 5.2]. It is shown that
Dpeta0(1,2) is a PP of Fpe if and only if p® =1 (mod 3).

Theorem 4.4. Let k = 1, p = 3, and n = p" + p2 + p'3. Assume that
exactly one of 11,12, 13 is zero. Then Dy, (1, x) is not a PP of Fpe.

Proof. Without loss of generality, let I; # 0, I3 # 0 and I3 = 0. Then f(x)
is a PP of Fje if and only if

pl14ph2 P41 pl2+1 pl1—1 pl2-1
glx)=2¢"2 4z 2 +x 2 4z 2z +ax 2
is a PP of Fpe. Clearly, g(z) is not a PP of Fe. O

Remark: Let k = 1 and p = 3. The cases in which [ =l = I3 = 0 and
exactly two of [y, l2,l3 are zero, are explained in [5, Theorem 4.1].

Theorem 4.6. Let k = 2, p = 3, and n = p!* + p2 + p3. Assume that
exactly one of l,l2,13 is zero. Then Dy, (1, z) is not a PP of Fpe.

Proof. Without loss of generality, let [; # 0, Iz # 0 and 3 = 0. Then f(x)
is a PP of [Fpe if and only if

pltypl2 pl1-1 pl2-1
g(x) = 2 +x 2 +x 2
is a PP of Fpe. Clearly, g(z) is not a PP of Fe. O

Remark: Let kK = 2 and p = 3. The cases in which [{ = Iy, = I3 = 0 and
exactly two of Iy, 12,3 are zero, are explained in [3, Theorem 2.15].

4.2. The case p > 3.
Theorem 4.8. Let p > 5 and k # 0,3. Assume that

(1) ezxactly two of 11,12, and l3 are nonzero, and
(2) ﬁ is a quadratic residue modulo p.

Then D,, (1, x) is not a PP of Fpe.

Proof. Since exactly two of [y, l2, and [3 are nonzero, we have f(0) = k. The
proof follows from the fact that

() =k = fO)
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Theorem 4.9. Let p > 5 and k # 0,3. Assume that

(1) 1,12, and I3 are all nonzero, and

(2) 2(2753) is a quadratic residue modulo p.

Then D,, (1, x) is not a PP of Fpe.
Proof. Since 11,1, and l3 are all nonzero, we have f(0) = 0. The proof
follows from the fact that
3k
— ) =0= f(0).
Hai—gy) =0 = 1O

O

Remark: The case in which exactly one of [1, l9, and /3 is nonzero is explained
in [3] and [5].

Remark: Let p > 3 and k = 3. Then Dy, 55 (1, 2) is not a PP of Fpe
for any 1,12, and I3 since f(a) =9 for any quadratic residue a of p.

5. THE CASE n = plt +p2 + pls 4 plt

In this section, we explain the case n = p't +p'2 4 p!s 4 pl4, where 13, ls, I3,
and [4 are nonnegative integers.
Let n = ph + p'2 4 p!3 4 pl4. Then for all z € F,, we have

(5.1)
Dmk(l,l')
2_k ! lo £} lg
_ (16)(1 —4:5)131“3#
+ Tké [(1 _ 4x)pll+pl22+pl3_1 + (1 B 4x)pll+pl22+pl4_1 + (1 _ 4x)pl1+pl32+pl4—1
k lo . lg
+T6(1_4$)p2+p32+p4 1
2_k l 1) l ! l !
( = T L S
2 _k 1 1 1 1 1 1
T R (T N
k‘ 11 _ ly I3 _ ly _
+r6[(1—4x)“z (1) (1—4n) T (1 da) T
(2—k)
+ 16

see [4, Section 5] for detailed computation.
This leads to the following immediate theorem.
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Thepl"lem 5.1. Dy 4oy pispla (1, @) is a PP of Fy if and only if the poly-
nomia

pliapl2 ypl3 pla
2

(2—k)x
pllipl24pl3 1 pllipl24pla 1 Plipl3ipla—1 pl24p!34pla—1
+k [x 2 +x 2 +x 2 +x 2
pll4pl2 plipls pl24p!3 pllypld pl24pld p'3+pl4
+2—-K)[z =2 4z 2=z +zx =z +x 2z +x 2z +x 2
pll_1 pl2 1 pl3_1 pla_1
+klz 2 422 +x 2 4z 2z |
is a PP of F,.
Let
h(z)
pl14pl24pl3 4 pla pll4pl24pl3 1 pllapl24pld 1 p14p!34pld 1
=2—-k)zx 2 +k [x 2 x 2 x 2
p24p!34pld 1
+ kz 2
pl14pl2 pl14p!3 p'24p!3 pll4pl4 pl24pla p'3+pl4
+2—-k)z" 2 422z 4z 2 4z 2 +x 2 +x 2
p1171 p1271 pl3*1 pl471
+klz 2 42z 2 +2 2 4z 2z |

Remark: The cases in which [y = Iy = I3 = 4 = 0 and exactly three of
l1,12,13, and l4 are zero, are completely covered in Section 3 of the present

paper.

5.1. The case p=3, k# 2,11 #0, ls #0, I3 =14 = 0. We first consider
the case in which exactly two of I, 19,13, and l4 are zero. Let’s consider the
case k = 0 first.

Theorem 5.3. Let k=0, p=3, and n = p" + p'2 + pb3 + pl1. Assume that
exactly two of l1,1s,l3, and Iy are zero and the two nonzero l; have the same
parity. Then Dy, (1, ) is not a PP of Fpe.

Proof. Without loss of generality, let Iy # 0, ls # 0 and I3 = 0 = l4. Since
k =0, note that D,, (1, ) is a PP of e if and only if

pl14p!2 +1 pllipl2 pli+1 p'2+1

glz) =a 2 +a 2 +2x 2z 42z 2 +=x

is a PP of Fpe.
Now we claim that g(z) is not a PP of F,.. Note that ¢(0) = 0 and
g(1) =1.
CASE 1: Both [; and Iy are even.
Since both [ and Iy are even, 3112‘*'1 and % are odd. Then g(—1) = 1.
CASE 2: Both [; and Iy are odd.
Since both [; and [y are odd, ?’“T“ and 312—2“ are even. Then g(—1) = 0.
This completes the proof.

O
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We have the following immediate theorem.

Theorem 5.4. Let k=0, p=3, and n = p" + p'2 + pb3 + pl1. Assume that
exactly two of ly,l2,13, and ly are zero and the two nonzero l; have different
parity. Then Dy, (1, ) is a PP of Fpe if and only if

pl14p!2 +1 pllipl2 P41 p'2+1

glz) =xa 2 +ax 2 +2x 2z 42z 2 +=x
is a PP of Fpe.

Now let’s consider the case where k = 1.

Theorem 5.5. Let k=1, p =3, and n = p!* +p'2 + p'3 + pl4. Assume that
exactly two of l1,ls,l3, and ly are zero and the two nonzero l; are both odd
or they have different parity. Then D, (1, ) is not a PP of Fpe.

Proof. Without loss of generality, let Iy # 0, ls # 0 and I3 = 0 = l4. Since
k =1, note that D,, (1, ) is a PP of e if and only if

Pl 4pl2 pl1—1 pl2-1

glz)y=x"2 T4z 2 42 2 +z
is a PP of Fpe.

Now we claim that g(z) is not a PP of Fpe. Note that ¢g(0) = 0 and
g(1) = 1. The proof follows from the fact that g(—1) = 1 when /; and Iy
have different parity, and when both [y and Iy are odd.

O

Theorem 5.6. Let k=1, p=3, and n = p" + p'2 + pl3 + pl4. Assume that
exactly two of ly,12,13, and l4 are zero and the two nonzero l; are both even.
Then Dy, 1(1,x) is a PP of Fpe if and only if

l1 4 pl2 l1 l2
pl+p pl-1 p2-—1
7 1

+2 7 4z z +z

g(x) ==
is a PP of Fpe.
5.2. Thecasep =3,k #2,11 #0, 1o #0, I3 #0, 4y =0. We now consider
the case in which exactly one of I1,1ls,l3, and l4 is zero. First, consider the
case where k = 0.

Theorem 5.7. Let k =0, p = 3, and n = p" + p2 + pB + p. Assume
that exactly one of ly,l2,13, and ly is zero. Assume that the nonzero l; are
all even or ezactly two are odd. Then Dy, 1 (1,z) is not a PP of Fpe.

Proof. Without loss of generality, let [y # 0, ls # 0, I3 # 0 and 4 = 0. Since
k =0, note that D,, (1, ) is a PP of e if and only if

pl4pl24p3 41 p'14p!2 pl1ip!s p'24p!3 pl141 pl241 pl341
2

+r 2 4x 2 +x 2 +x 2 +x 2 +4x 2

g(z) =z
is a PP of [Fpe.

Now we claim that g(z) is not a PP of Fpe. Note that ¢g(0) = 0 and
g(1) = 1. The proof follows from the fact that g(—1) = 1 when [;, I3, and

I3 are all even, and g(—1) = 0 when exactly two of 1, l2, and I3 are odd.
O
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Now let’s consider the case where k = 1.

Theorem 5.8. Let k=1, p=3, and n = p'* +p2 + pl3 +pl. Assume that
exactly one of l1,12,13, and ly is zero. Then D,, ;(1,x) is not a PP of Fpe.

Proof. Without loss of generality, let I; # 0, I3 # 0, I3 # 0 and I4 = 0. Since
k=1, Dyi(1,2) is a PP of Fpe if and only if

plpl24pl3 41
2

plpl24pla 1 pllpl2 9 pl4pls
2

g(x) == x 20 2 42z =2

pl24pl3 pll41 pl241 pl341 pll—1 pl2 -1 pl3—1
+2x 2 4z 2 +x 2 4+x 2 4+x 2 +x 2 4x 2

is a PP of [Fpe.

Now we claim that g(z) is not a PP of Fpe. Note that ¢g(0) = 0 and
g(1) =2.
CASE 1: [, l2, and I3 are all even. Then g(—1) = 0.
CASE 2: [, Iz, and I3 are all odd. Then g(—1) = 0.
CASE 3: Exactly one of l1,1l2, and I3 is odd. Then g(—1) = 2.
CASE 4: Exactly two of l1,ls, and I3 are odd. Then g(—1) = 2. This
completes the proof.

O

5.3. The case k # 2, lilslsly # 0. Now we consider the case in which
l1 #0,l3 #£ 0,13 # 0, and 4 # 0. First, consider the case where k = 0.

Theorem 5.9. Let k=0, p=3, and n = p!* +p2 4+ pi3 +pl. Assume that
ll 75 O,ZQ 75 O,lg 75 0, and l4 75 0. If

(1) allly,l2,13, and ly are odd,

(2) allly,ls,13, and ly are even, or

(3) exactly two of 11,1213, and ly are odd,
then Dy, (1, ) is not a PP of Fpe.

Proof. Assume that Iy # 0,13 # 0,13 # 0, and I # 0. Since k = 0, D,, 1(1, x)
is a PP of [Fpe if and only if

pl14pl24pl34pla pl14pl2 pl14p'3 pl24p'3 pll4pla p'24pld
2 + x 2 +x 2 + x 2 +x 2 +x 2

9(x) =z

pl3+pl4
2

+x

is a PP of [Fpe.
Now we claim that g(z) is not a PP of Fpe. Note that ¢g(0) = 0 and
g(1) =1
(1) I, la, I3, and 4 are all even. Then g(—1) = 1.
(2) I, la, I3, and 4 are all odd. Then g(—1) = 1.
(3) Exactly two of Iy, Iz, I3, and Iy are odd. Then g(—1) = 0.

This completes the proof.

Let’s consider the case where k = 1.
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Theorem 5.10. Let k = 1, p = 3, and n = p'* + p2 + pl8 + pla. If
li #0,l #0,13#0, and Iy # 0, then D,, ;(1,x) is not a PP of Fpe.

Proof. Assume that Iy # 0,13 # 0,13 # 0, and Iy # 0. Since k = 1, D,, ;(1, x)
is a PP of [Fje if and only if

pl14pl2 4 p!3 4 pla pli4pl24pla 1
2 x 2

pllapl24pla 1 pliapl4pld 1
2 2

x T

g(z) =z

pl2+p!34pld —1 plpl2 pl1+p'3 p'2+p'3 plipld pl2+pld
2 €T 2 +x 2 + x 2 +x 2 +x 2

pl34pla 14 pl2-1 l3a_ la 1

P po—1 P
e N R T
is a PP of Fpe. But, clearly g(x) is not a PP of Fpe since g(0) =0 =g(1). O

Let p > 3 and a be a quadratic residue of p. Then a = B2 for some
1 <8 <p-—1. We have
h(a) = h(8%) = (2 — k)B* +2(6 — k)B? + 4k = (2 — k)a® + 2(6 — k)a + 4k.
Then we have the following.

Theorem 5.11. Let p > 5, 0< k <p—1 with k # 2. Assume that
(1) ezxactly one of l1,12,13, and ly is nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 — k)a? + 2(6 —
k)a+ k = 0.
Then D,, (1, x) is not a PP of Fpe.

Proof. Since exactly one of Iy, 19,13, and Iy is nonzero, we have h(0) = 3k.
The proof follows from the fact that

h(a) = (2 — k)a® + 2(6 — k)a + 4k = 3k = h(0).

Theorem 5.12. Let p>5,0<k <p—1 with k # 2. Assume that
(1) ezactly two of ly,12,13, and ly are nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 — k)a® + 2(6 —
k)a + 2k = 0.
Then D,, (1, x) is not a PP of Fpe.

Proof. Since exactly two of 1, l3,13, and l4 are nonzero, we have h(0) = 2k.
The proof follows from the fact that

h(a) = (2 — k)a® + 2(6 — k)a + 4k = 2k = h(0).

Theorem 5.13. Let p>5,0<k <p—1 with k # 2. Assume that

(1) exactly three of l1,l2,13, and ly are nonzero, and
(2) a is a quadratic residue modulo p which satisfies (2 — k)a? + 2(6 —
k)a + 3k = 0.
Then Dy, (1, x) is not a PP of Fpe.
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Proof. Since exactly three of Iy, 12,13, and l4 are nonzero, we have h(0) = k.
The proof follows from the fact that

h(a) = (2 — k)a® +2(6 — k)a + 4k = k = h(0).

Theorem 5.14. Let p>5, 0 <k <p—1 with k # 2. Assume that

(1) ly,12,13, and ly are nonzero, and

(2) a is a quadratic residue modulo p which satisfies (2 — k)a® + 2(6 —

k)a + 4k = 0.
Then D,, (1, x) is not a PP of Fpe.
Proof. Since 1, 12,13, and Iy are all nonzero, we have h(0) = 0. Since a is a
quadratic residue modulo p such that the equation (2—k)a®+2(6—k)a+4k =
0 has a solution in ), the proof follows from the fact that
h(a) =0 = h(0).
[l

Theorem 5.15. Letp > 5, 0 < k < p—1 with k # 2. Assume that
li=Il=I3=14=0. Then D, ;(1,) is not a PP of Fpe.
Proof. Since Iy =ls =13 =14 = 0, we have
h(z) = (2 — k)x? + 2(6 — k)z + 4k.
If k # 6, the proof follows from the fact that
2(k—6
h(0) = 4k = h<((2k>))
If k = 6, the proof follows from the fact that h(z) = —42? + 24 is not a PP
of Fpe. (|
5.4. The case k = 2.

Theorem 5.16. Let p > 3 and k = 2. Assume that

(1) ezxactly two of 11,1213, and ly are nonzero, and

(2) (—3) is a quadratic reside modulo p.

Then D,, (1, x) is not a PP of Fpe.

Proof. Since exactly two of l1,19,l3, and Iy are nonzero, we have h(0) = 4.
The proof follows from the fact that

h(—1/2) = 4 = h(0).

Theorem 5.17. Let p > 5 and k = 2. Assume that

(1) ezxactly three of 11,1213, and ly are nonzero, and

(2) (—3) is a quadratic reside modulo p.

Then Dy, (1, x) is not a PP of Fpe.
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Proof. Since exactly three of Iy, 19,13, and l4 are nonzero, we have h(0) = 2.
The proof follows from the fact that

h(—3/4) = 2 = h(0).

Theorem 5.18. Let p > 5 and k = 2. Assume that

(1) 1y,12,13, and ly are all nonzero, and
(2) p=1 (mod 4).

Then Dy, (1, x) is not a PP of Fpe.
Proof. Since ly,l3,13, and l4 are all nonzero, we have h(0) = 0. The proof

follows from the fact that —1 is a quadratic residue modulo p whenever
p=1 (mod 4), and

h(~1) = 0 = h(0).

O

Remark The case in which exactly three of Iy, lo, I3, and [4 are nonzero
is explained in Section 3.

Remark: If k=2 and Iy =ly =3 =14 =0, then D1, oy 15, 0 1 (1,7)
is a PP of [Fpe.

6. A GENERALIZATION

In this section, we consider the case n = plt +p2 4+ . -4 pli, where Iy, ..., 1;
are nonnegative integers.
For any i € Z*, we have

(6.1)

(1wt Fr bt
— P P2l

+ E B A T Z P
Jug2sesfi-r€{lnlz, o li} Jug2€{lile, i}

+ Z upjl—i—l.

Jre{l,la,.. L}
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16
Let ¢ be odd. Then

(6.2)
(1

— PPl

>

J1sJ25dim1€{0,l2,0 000 }

Z upjl—i—l.

Jrefly,la,...,li}

1 lo | ..oals
_u)p1+p2+ +p

+ PP

...+pji—1

D

Jr,g2€{l1,l2,..,li}

+

Thus, we have the following when 7 is odd.

(14 Pt

2.

(6.3)
=2

+ (1 — PRt

B A

J1,925e0di—1€{101,02,.. i }

+2

2

j J2 4 ...1pJi—3
up71+p2+ +p’t 4.

J15J25di—3E€{l1,l2,0 00 }

D

42

uph +pi2 +9.

J.g2€{lila,li}

(6.4)  (14u)Pr P2t (g

— PPt g

— ) = (14 w)(L — )P P
upjl +pi2 4o ppli-141

2.

J1,925--di—1€{11,02,...,li}

>

J1sd2edi—2€{l1,02,li }

>

J1,02,di—3€{l1,l2,. li }

4...—9 Z

Jr,j2€{li,l2,...,li}

+2

-2

Now let ¢ be even. Then
(6.5) (1 Pl pl2 4oppli

— PPt

D

Jr,j2€{li,l2,..,li}

>

Jreflyla,..li}

— )

J1,J25e-
J1 pi2
up

T+

upjl +pi2 4o pli-2
’U,pjl +pi24etpli-3 41

1 4 j
uP PR 49 uP’!

>

Jre{l la,.. 1}

>

SJic1€{l,l,. 00}

uP"! +1.

Thus, we have the following when 7 is even.

L
WEIETeE

— 2u.

j J2 4 ... 1pdi—1
up11+p2+ +p’t 4.
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(14 u)P! P20 (1 Pt hp 2l

E FIELDS 17

_ 2upll+pl2+~~~+pli 19 Z up.7'1+p7'2+...+p7i—2

(66) J1,J2s-di—2€{l1,l2,... li}

T
Jr,g2€{li,l2,.. 1}

(6.7) (1+ u)pll+p12+..-+pli (=) — (1+w)(1— u)p11+p12+...+pzi

_ 2upll+pl2+~~-+pli+1 12 Z Upjl +pi2 4o ppli-1
J15J25-5Ji—1 €41, 12,01 }
_9 Z upj1+pj2+"~+pji*2+1
J15525di—2€{l1,l2,0 i }
J J2 4 ...1pJi—3
+2 E: uP’ P2+ tpt + ...

J1,52,-di—3€{l1,l2,. i }

-9 Z uP PR o Z

Jr,g2€{li 2, i} Jre{ly,la,... l;}

Let n=ph +p2 +---+ph and u = 2y — 1, where y #
we have

Dn,k(l? y(l - y))

J1
uP — 2u.

%. Then from (2.2)

! lo 4 oidpls
65) :k[<ugl)p1+p2+ +p (1_Tu>_

u

2
which can be written as

2

(6.9) an(l,y(l ~y))
(u 4 1P P2l (1 ) — (w4 1)(1

! ! L
<u+1><1_u)P1+P2+ i
2 2 j|

(u + 1)pl1+pl2+~--+pli N (1 - U)pl1+Pl2+"'+pli

_ u)pll +p!2 4 ppli

21+1 i

! ! l; 4 ! l;
|:U+]_ 1-|-p2-|— +p1+(1_u)p1+p2+ +pz )
1
27

When y = 3, from (2.3) we have
1 k(ph +p2+- +pli—1)+2  2—k
(6.10) Dy, 1 <17 Z) = P 1 pl2 4t = o

for any 7. Then we have the following:
CASE 1: Let i be odd and n = pht + p'2 + ... 4 pli.
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Since u? = 1 — 4z, it follows from (6.3), (6.4), (6.9) and (6.10) that for all
x € IFy, we have

(6.11)
k pliapl2 4 yplia
Dy i(1,z) = §(1—4x) 2
(2-k) P24zl
+ 2t Z (1 - 4$) 2
Jisg2sedim1€{0Ll2,. 00 }
k Il 4pI2 oegpli—2 1
+ 5 > (1 —4z) 2
J1,J2se-di—2€{l1,l2,.. 0 }
2—k 1 4pI2 4ogpli—3
+( 2i ) Z (1_4x)p +p +2+p +
J1,J2se-Ji—a€{lil2, .0l }
(2 - ]{7) pI14pi2
+ 2 Z (1 o 4x) :
Ji.g2€{l1,l2,....li }
k pll—1 (2 — ]C)
(6.12) + 5 Yoo -4n)TE o+ 5

Jgre{ly,lo,...,l;}

CASE 2: Let i be even and n = ph 4 p'2 4 - 4 phi.
Since u? = 1 — 4x, it follows from (6.6), (6.7), (6.9) and (6.10) that for all
x € Fy, we have

(6.13) Dy x(1,2)
(2—-k) papl2 e tpli
=" (1—4x) 2
k I 4pI2 4ooqpli—1_1
+ 5 > (1 - 4z) 2
J15J25e5Ji—1€411 12,013 }
(2-k) Plapl2 e dpliz2
+ 9i Z (1 —4x) 2
J1sd2sesJi—2€{05l2,0 0}
k I 4pI2 4o qpli—3 1
+ 5 > (1 — 4z) 2 o

J1,d2,di—3€{l1,l2,. L }

+ (2 — k) Z (1 . 4.’E) lev;pjz

2’L
Jrg2€{lnla,. 1}

k pll-1 (2 — k?)
]16{[1,12,...,li}

6.1. Permutation behaviour of D 1, .. ;. We consider the odd i
case and even 7 case separately.
CASE 1: Let i be odd and n = pht + p2 4 - - 4 phi.

Then
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Dy i pioyipti g(1,@) is a PP of Fpe if and only if h(z) is a PP of Fe,
where
(6.14)

pIl4pi2 4. 4pli—1
2

k U pl2 4o gpli— 2—k
h(x):?.ﬁp +p+2+p 1+(21‘ ) Z T

k
+§ Z x

J1sd2edi—2€{l,l2, li }

2—-k
2o S

J1,925-00i—3€{l1,l2,... . l;}

2 -k J1 4 pJ2 k J1—
+( ) Z x? ‘;p +§ Z prl.

i
Jr,g2€{lil2,.. .0} Jre{l la,... ) l;}

J1,J25-0dim1€{101 02, 13 }

pjl +p12 4ogpli—2 1
2

P 4pI2 4 gpli=3
2

CASE 2: Let i be even and n = plt + p2 4 -+ 4 phi.

Then
Dy i pioyipti (1) is a PP of Fpe if and only if g(z) is a PP of Fpe,
where
(6.15)
(2—Fk) patpl2t4pli k pIlapl2 g qpliz1 1

J15J25 i1 €402, 0l }

2—-k
AL S

J1,925di—2€{l1,l2,..,li}

pIlapl2 4. 4pli=2
2

k pjl +pj2 +“,+pji73_1
+ 5 > x 2 +oe

J1d2di—3€{ll2, 0l }

2k J1 4 pi2 k J1—
+( ) Z x%_ﬁ_g Z prl

i
J1.g2€{l1,l2,.. .13} J1€{ln,l2,. 15}

6.2. Permutation behaviour of D, i, ;. Let i =2 in (6.13). Then

Dpll +p12,k<17 .I')

(2 - k)
4

Thus, we have the following results.

hagde K hoyo k by (2—k
pl?p?+4(1—4x)”121+4(1—4x)”221+( . ).

(1 —4x)

Corollary 6.1. Let k =0. Then Dpzl+p127k(1,a:) is a PP of Fye if and only
if

gcd(pill'gpl2 ,p¢—1)=1.
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Corollary 6.2. Let p =3 and k = 2. Assume that both l1 and ly are odd.
Then . !

1-1 2-1
Dy piz (1, ) is a PP of Fye if and only if the binomial ™2 + 27T s
a PP of .

I 1 pl2

Remark: Let g(z) = 2" 2 +=x 271, p =3 and k = 2. When both /; and
ly are even, D, 1, (1,2) is not a PP of Fpe since g(1) = 2 = g(-1).
When Iy and I3 have different parity, D,y | (1, ) is not a PP of Fpe since
9(0) = 0 = g(—1).

Theorem 6.4. Let p > 3 and k = 2. Then Dy, |, (1,2) is not a PP of
Fe.

Proof. Assume that p > 3 and k = 2. Then D, 1, 1 (1,2) is a PP of Fpe if
and only if

pll_1 pl2-1

flx)y=a"72 +a >
is a PP of Fpe. Let a be a quadratic residue of p. Then a = B2 for some
1< B <p-1. Wehave f(a) =2 = f(1). Thus Dy, | s, ;(1,7) is not a PP
Of ]Fpe. O

Remark: Let k # 0,2 and p > 3. If [} =l = 0, then Dy, ,(1,2) is
clearly a PP of F,e since every linear polynomial is a PP.

Theorem 6.6. Let k # 0,2 and p > 3. Assume that % is a quadratic

residue of p. If l1 #0 and la # 0, then Dy 4, 1 (1,2) is not a PP of Fpe

Proof. Let k # 0,2 and p > 3. Then Dy, |, (1,7) is a PP of Fpe if and
only if
! ! I _ lo _
f(z) = (2—k)mp1;p2 Y katT d ket
is a PP of Fpe. Since l; and Iy are not both zero, we have f(0) = 0. The
proof follows from the fact that

() =0 = 10

7. MORE RESULTS

7.1. The polynomial D, ;(1,z). In this section, we consider the case
n = rpl + s where r > 1 and [, s > 0 are integers.

Proposition 7.1. Suppose that v+ s is even. Then D, (1, ) permutes
Fpe if and only if

g9(z)

_ (- k):rml;s k [(7")( S 1> xrleréH) N < r 1> <s) x(rl)pl;r(sl)]
r)\s— r— s
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o () (1))
< 2)() r2)p+s:|
[()(S 3>mw+(s 9 (r;)(s 2) s
( 2><s 1)95“ e (T_ (Z) o stem 1)]+
ol G0 G)GH
+k[<:> <;>x’3l21+<g (iﬂ +(2—k)

permutes Fpe.

Proof. Let n = ph +pl2 + -+ ph with i = r + s in (6.15). Then the proof
follows by letting [y = l =landl,y; =--- = l,+5s = 0 and by counting
the number of choices for Ji’s. O

Proposition 7.2. Suppose that r + s is odd. Then D, (1, x) permutes
Fpe if and only if

h(x)

_ kﬁrpl+£s_1) I (2 B k) r S m7“17l+;s—1) + T S x%
rJ\s—1 r—1)\s
N o +(s 3) (T s %
x
s — 2 r—1 s—1

re-h <>< > e <ri1><siz> g
(L) () “+(r ()]
ce-n (D)) ()6 () 6)r]
<;>x"*+<z; ()]

Proof. Let n = ph +p2 + ... + pl with i = r + s in (6.14) . Then the
proof follows by letting Iy =--- =1, =l and l,41 = --- = l,4s = 0 and by
counting the number of choices for j;’s. O

permutes IE‘pe
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7.2. The polynomial D, .(1,z). In this subsection, we consider the

case when n = p! + s where [, s > 0. We also explain a few cases in which
D, (1,7) is not a permutation polynomial of Fpe

Proposition 7.3. Let s be even. Then Dy (1,7) permutes Fye if and

only if |
) ::o st?l) o (s— (2Si+ 1)) 2= k)] P

+§:[<s—2z+1>k+ <s—821) (2_1“)} v

Proof. Let r =1 in Proposition 7.2. U

permutes Fpe.

Corollary 7.4. Let s be even with 257! = s+1 (mod p). Then Dy, (1, z)
is not a permutation polynomial of Fpe

Proof. Let k = 1. The proof follows from the fact that f(0) = s + 1,
f(1) =25%1 and 25+1 s+ 1 (mod p). O

Corollary 7.5. Let s be even with 2° = s (mod p). Then Dy (1,7) is
not a permutation polynomial of Fpe

Proof. Let k = 2. The proof follows from the fact that f(0) = 2s, f(1) =
25F1 "and 2° = s (mod p). O
x)

Corollary 7.6. Let s be even with s =0 (mod p —1). Then Dy (1,
is not a permutation polynomial of Fpe

Proof. Let k = 0. The proof follows from the fact that f(0) = 2, f(1) = 2571
and s =0 (mod p —1). O

Proposition 7.7. Let s be odd. Then D, (1, ) permutes Fpe if and only
if
s+1

) = .20 {(3—;—1—1)]{4_ <8—32i> (2—k)] e

(7.2) =

()t (cmha)en]

Proof. Let r =1 in Proposition 7.1. U

Corollary 7.8. Let s be odd with 2! = s+1 (mod p). Then Dy, (1, z)
is not a permutation polynomial of Fpe

permutes Fpe
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Proof. Let k = 1. The proof follows from the fact that h(0) = s + 1,
h(1) = 257! and 257! = s+ 1 (mod p). O

Corollary 7.9. Let s be odd with 2° = s (mod p). Then Dy 4(1,7) is
not a permutation polynomial of Fpe.

Proof. Let k = 2. The proof follows from the fact that h(0) = 2s, h(1)
25+l "and 2° = s (mod p).

O

7.3. The polynomial Drpl,k(L x). In this subsection, we consider the case

when n = rp! with r > 1 and [ > 0. We also explain a few cases in which
D, 1 (1,7) is not a permutation polynomial of Fe.

Proposition 7.10. Letr be odd. Then D, (1, 7) permutes Fpe if and only
if

(7.3)

rl— T— ! T— L
f*mkapTl—i—Q—k T x< 21>p Tk r x(@fpl
r—1 r—2

r—3)pl ! 1
L@k (ri3>x< 2 o4 (2-K) <;>x2§7—|—k<:>x”21

permutes [Fpe.

Proof. Let s = 0 in Proposition 7.2. Then we have

pl—1

1yl r2)pl
fl@) = kz™3 +(2—l<:)< " ):c( 7 +l<:< ’"2>x( =

r—1 T —

r—3)pl l 1_
+<2_k>(rj3>x<s>p+...+<2_k><;);5+k(;>;;

+ <g> (2 — k).

Corollary 7.11. Let r be odd withr =1 (mod p —1). Then D
not a permutation polynomial of Fpe.

O

ot 0(1, ) is

Proof. Let k = 0. We note that f*(0) = 0 and

=22+ 2+ (2o ()] o

Since r = 1 (mod p — 1), we conclude that f*(1) = 0 and thus D, ((1,7)
is not a permutation polynomial of [Fpe. (|
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Proposition 7.12. Let r be even. Then D, (1,z) permutes Fye if and
only if

Tl T— pl* T— pl
h*(:c):(2—k)x5+k:<ri1>x< 5 1+(2—k)< " >x< 2

r—2

T— - l :
+k(ri3>gg(3)2p1+'”+(2k) (;)x%+k<z>x7’21

permutes Fpe

Proof. Let s = 0 in Proposition 7.1. Then we have
h(z)

rpt r— l_ r— l
=(2—k)x§+k< i1>x(l)2pl+(2—k:)< ' >$()

r— — l 1
e, ) e (o) e (]) 0T
“(o)e-

Corollary 7.13. Let r be even with r =0 (mod p—1). Then D, ,(1,z)
is not a permutation polynomial of Fpe

O

Proof. Let k = 1. We note that h*(0) = 0 and

() (L) s (]2

Since 7 = 0 (mod p — 1), we have that h*(1) = 0 and thus D, (1,7) is
not a permutation polynomial of Fe. U

8. SOME GENERALIZATIONS, ARITHMETIC PROPERTIES AND MATRIX FORM

8.1. The polynomial D, ;(1,7). In this subsection, we present a gen-
eralization of the following result on reversed Dickson polynomials of the
second kind due to Hong, Qin and Zhao.

Proposition 8.1. [2, Proposition 2.3] Let | be a positive integer. Then

-1

Dy_y4(1,2) = (1—4z)"2

Proposition 8.2. Let r and | be positive integers with r # 0. Then

Drplfl k(l x)
ot k=1 rpt —1 i
rlZ() 1—4:5 2 _2r72 < j )(1—4$)2
1<j<r 0<j<rp'—

j—odd j—even
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Proof. When = = y(y — 1) with y # 1/2 and n = rp' — 1 with » > 1, we
obtain from (2.2) that

g7 - (1 -y

Drpl—l,k:(lvx) =k [ ] - (k? — 1)[yrplil + (1 — y)’“plfl].

29 — 1
Let u =2y — 1. Then
Drplfl,k(lﬂx)
(H_iu)rpl B (1_7,“)1"1)1 14w rpt—1 1—u rpl—1
=k 2 2 — (k-1
s e (50 (%)
Bl +u)? — (1 —u)™

27 U

] B k —_1 [(1 +u)7’pl—1 . u)?‘pl—l} )

For any r, we have that

—
—_
_|._
<
S~—
3
’E&.
|
—
—_
|
<
S~—
3
’E&.
Il
—
—
_|_
<
S|
N~—
3
|
—
—_
|
<
S|
~—
3

Il
S
N~
—
I
i
S~—
<
|
—~
|
I
i
N—
<

and

It follows that

k AN k—1 rpt =1\
Drpl_Lk(l,x) = 27’—1 Z <]) u]p 1 _ 27»-2 ( j ) u]

1<5<r 0<i<rpl —
j—odd _jj:;/];n
k T gyirt=1 k=1 rpt —1 o d
5 X () -gm X (7)) e
L<j<r 0<j<rp!—
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Since u? = 1 — 4z, we have

Drpl—l,k(Lm)
k T pl-r k=1 rpt —1 i
52 ((Ju-w - S (7)) u-wih
1<j<r 0<j<rp!'~
Jj—odd j—even
When y =1/2, i.e. x =1/4, we have
1 E(rp' —1—-1)42

Drpl—l,k <1, 4> = 2rpl—1

11—k

T or—2

k r ipt—1
= 2 () -y
1<5<r
j—odd
k-1 -1 j
- <Tp , )(1—435)%.
27“72 j
0<j<rp'—
j—even
This completes the proof. [l

Remark: Let r = 1. By Proposition 8.2, since (plj_l) =1 (mod p) for
even j, we get

L1
. p)

Dy (L) =k(1—42)"7 —2(k—1) Y (1 —4z)’
=0

S

<

for all z € Fpe. By considering k = 1, we immediately obtain Proposition 8.1.

8.2. Dy k(1,1 — 2?). In this subsection, we generalize a result in [7]. Let
1 # xo and consider

VT — 1Ty

(8.1) Dn7k(w1 +x9,x122) =k } + Dy (x1 + x2, z122).

Ty — X2

When 21 = y with y # % and zg = 1 — 1, we have (2.2).
Lemma 8.3. Letl be a positive odd integer and let n = % Then in Fs|x],

Dy 1(z, 1
Dj(1,1 - 22) = <§ _ 1) Da(z,1) + 7;‘;(96)

Proof. Let x = y? + y~2. Since n is even, we have
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Dy i(1,1 —2?)
= Dpn (1, (2 +2)(2 —2))
Wy )2y - ) - QY+ )y -y
=] = | - D)
(y+y )R- =) -2+ By —y )P
=k I 2(y2+y_2) ] —Dn(x,l)
~9,3t—1 —3+1 3143 —3!-3
_ 2y + 2y +y +y }—Dn(a:,l)
L 2(y2 +y72)
l_ _al ! _al
L 2 2 W) ) 3} Do)
L 2(y2 +y2) e
. -2(y2)n—1 + 2(y2)—(n—1) + (y2)n+1 + (yQ)—(n—i-l) D .
L 2(y2 +y?) } = Dl 1)
- _2Dn71(l‘7 1) + Dn+1(x7 1)
= k| DT } Dn(,1)
ok reDy(x,1) + Dy (2, 1)} Dy 1)
L 2
k k Dn_l(ﬁ, 1)
= (= -1 1) + o~ 2l 2
(2 )Dn(x, )+ 2 x

Remark: When k = 0, we have [7, Lemma 5.5].

8.3. Dpi(1,2), Dpo(l,2), Dpi(l,z), and D, 2(1,x). In this subsection,
we show that D,, (1, z) can be written in terms of D,_51(1,z) and
D, 0(1,2). We also show that D,, (1, ) can be written in terms of
Dy, —12(1,z) and Dy (1, z).
Recall

; y" (1 —y) —y(l—y)"
2y — 1

(82)  Dus(Ly(l—y)) = | + Dty = ),

where y # %
Equation (8.2) can be rewritten as

(8.3)

n—1 _ _ n—1
Dpi(Ly(1 —y)) =ky(l —y) [y St )

29 — 1

i| + Dn(la y(l - y))a

which gives the following result.
When y # %,
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yn-‘rl _ (1 _ y)n-i-l

Dn,l(l’ y(l - y)) =

2y — 1
and
y" - (1 —y)"
D 1,y(1 — = °7

are the functional expressions of the reversed Dickson polynomial of the
second kind and third kind, respectively.
Then from (8.3) we have

(8.4) D, y(1,2) =kxDyp_o:1(1,2) + Dy(1,2), n>2
and
(8.5) Dy i(l,z) =kxDyp_12(1,2) + Dy(1,2), n>1.

When y = %, ie x = %, we have

1 kEn—1)4+2 k(n—-1) 2 k 1 1
D, (1,-)= = - — = -D, 21(1,- D,(1,-).
n(1 1) on 1 oz Tgn = g Pr2a(b )+ Dalli )
and

1. k(n-1)+2 k2n-1) 2 &k 1 1
D,(1,-)= = - — = —D,_12(1,-)+D,(1, -).
n,k( 74) on 4 gn-1 =+ on 4 n 1,2( 74>+ n( 74)

Thus, for all x € F;, we have

(86) Dn,k(lax) = kan—Zl(lyx) + Dn(1>x)> n 2 2
and
(8.7) D, (1,2) =kaxDyp_12(1,2) + Dy(1,2), n>1.

8.4. A matrix form of D, ;(1,z). In this subsection, we give a matrix
representation of D,, ,(1,z). A similar matrix representation of the Dick-
son polynomials of the first kind appeared in [9, Chapter 2]. Using vector
notation and the recurrence relation in Proposition 2.1 we have

(Disrslla), Divzalla)) = (Dis(la), Disantr,) (7 )

0 —z\°
(Di+2,k(17x)7 Di+3,k(17$)) = (Di,k(l)x)7 Dz’—i—l,k(lvx)) (1 1 >

0 —z\"
(Di+n,k(1ax)a Di+n+1,k(1ax)) = (Din(l,l’), DH—Lk(l’:U)) ( 1:E)

—_
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Set 1 = 0.
0 —z\"
(Dn,k(lvx)a Dn+1,k(17m)) = (D()Jg(l,l’), Dl,k‘(]-?m)) <1 1 >

(Dng(1,2), Dni1x(l,2)) = (2—k, 1) <§) _196)”

00 ) 0)
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