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LATIN SQUARES AND THEIR BRUHAT ORDER

ROSÁRIO FERNANDES, HENRIQUE F. DA CRUZ, AND DOMINGOS SALOMÃO

Abstract. In this paper we investigate the Bruhat order on the class
of Latin squares. We study its cover relation and minimal elements. We
prove that the class of Latin squares of order n, with n 6∈ {1, 2, 4}, has
at least two minimal elements, and we present a process to construct
some minimal Latin squares for this relation.

1. Introduction

Let R = (r1, . . . , rm) and S = (s1, . . . , sn) be two nonincreasing positive
integral vectors such that

r1 + . . .+ rm = s1 + . . .+ sn.

The conjugate vector of R is the nonincreasing positive integral vector R∗

defined by
r∗j = |{i : m ≥ i ≥ 1, ri ≥ j}|.

The vector S is dominated or majorized by the vector R∗, denoted by S � R∗,
when

s1 + . . .+ si ≤ r∗1 + . . .+ r∗i ,

for 1 ≤ i ≤ min{r1, n}. As usual, A(R,S) denotes the class of all (0, 1)-
matrices whose row-sum sequence is R and column-sum sequence is S. If
R = (k, . . . , k), then the class A(R,R) is denoted by A(n, k). By the Gale–
Ryser theorem (see [1, 2, 12, 13]) we know that the classA(R,S) is nonempty
if and only if S � R∗.

An important property of A(R,S) is due to Ryser [13], and states that if
A1, A2 ∈ A(R,S), then A1 can be transformed into A2 by a finite sequence
of interchanges

L2 =

[
0 1
1 0

]
↔ I2 =

[
1 0
0 1

]
,

where each interchange replaces a submatrix of A1 equal to L2 with I2, or
the other way around. Note that such a sequence of interchanges applied to
a matrix of A(R,S) always results in a matrix of A(R,S).
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Let Sn be the symmetric group of degree n. If σ ∈ Sn, then we can
represent σ as a word by σ = σ1 . . . σn, with σ(i) = σi, for i = 1, . . . , n. A
pair (i, j), 1 ≤ i, j ≤ n, is called an inversion of σ if i < j, and σi > σj . The
Bruhat order, �B, on Sn, states that σ �B τ if σ can be gotten from τ by
a sequence of transformations of the form:

τ1 . . . τi . . . τj . . . τn replaced by τ1 . . . τj . . . τi . . . τn,

where (i, j) is an inversion of τ .
The elements of Sn can be represented permutation matrices of order n.

In fact, if σ ∈ Sn, then σ can be represented by the permutation matrix
P = [pi,j ], where pi,j = 1 if and only if j = σ(i). Let P and Q be two
permutation matrices of order n corresponding to permutations π and τ .
We write P �B Q whenever π �B τ . So, for permutation matrices, the
Bruhat order is interpreted as a sequence of one sided interchanges

L2 =

[
0 1
1 0

]
→ I2 =

[
1 0
0 1

]
.

There is another way to define the Bruhat order on the class of permu-
tation matrices. For an m × n matrix A = [ai,j ], let ΣA denote the m × n
matrix whose (r, s)-entry is

σr,s(A) =
r∑
i=1

s∑
j=1

aij , 1 ≤ r ≤ m, 1 ≤ s ≤ n.

For permutation matrices P and Q of order n, we say P �B Q if and only
if ΣP ≥ ΣQ by the entrywise order.

In 2004, Brualdi and Hwang in [7] extended the Bruhat order from per-
mutations matrices, matrices in the class A(n, 1), to more general nonempty
classes, the classes A(R,S). They do it in two different ways. For A1, A2 ∈
A(R,S), they defined:

(1) A1 �B A2 (the Bruhat order), if by the entrywise order, ΣA1 ≥ ΣA2 .
(2) A1 �B̂ A2 (the Secondary Bruhat order), if A1 can be obtained from

A2 by a sequence of one sided interchanges L2 → I2.

They noted that the Bruhat order and the Secondary Bruhat order are
different on A(R,S). Moreover, in [4], Brualdi and Deatt proved that the
Bruhat order and the Secondary Bruhat order coincide in A(n, 2), as it
happens in A(n, 1), but do not coincide in A(n, 3) (see [11]). However, it is
straightforward to verify that if A1 �B̂ A2, then A1 �B A2. So the Bruhat
order is a refinement of the Secondary Bruhat order.

In the recent years, several authors extended the Bruhat order to other
classes of matrices: Brualdi and Fritscher [6] studied the Bruhat order on
the class of tournament matrices with a given score vector, Brualdi and
Schroeder [8] on the class of alternating sign matrices, Brualdi and Dahl
[3] on the class of doubly stochastic matrices, Fernandes, da Cruz, and
Furtado [9] on the class of symmetric matrices, and Furtado [5] on the class
of symmetric matrices with zero trace .
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The aim of this paper is to investigate the Bruhat order on a new class
of matrices: the class of Latin squares of order n.

A Latin square of order n is an n × n grid filled with n symbols so that
each symbol appears once in each row and in each column. We use the
integers 1, . . . , n for these symbols. Latin squares have a long history, and
its applications can be found in many areas. For instance, the multiplica-
tion table of a finite group or the multiplication table of a quasigroup are
Latin squares. Sudoku puzzles are 9× 9 Latin squares with some additional
constraints (see [10]).

The Bruhat order on the class of Latin squares of order n is defined
similarly as in other classes of matrices. If A and C are Latin squares of
order n, then we say that A �B C whenever ΣA ≥ ΣC by the entrywise
order.

Let Jn be the n × n matrix with all positions equal to 1. The notion of
Latin square is closely related to permutations and, of course, with permuta-
tion matrices. If A is a Latin square of order n, then there are n permutation
matrices P1, . . . , Pn such that Jn = P1 + P2 + · · ·+ Pn, and

A = 1P1 + 2P2 + · · ·+ nPn.

Conversely, if P (ρ1), P (ρ2), . . . , P (ρn), are n permutation matrices of order
n such that P (ρ1) +P (ρ2) + · · ·+P (ρn) = Jn, then 1P (ρ1) + 2P (ρ2) + · · ·+
nP (ρn) is a Latin square of order n. This implies that if A = [aij ] is a Latin
square of order n, and g ∈ {1, . . . , n}, then there is a permutation of Sn, ρg,
such that ai,ρg(i) = g for i = 1, . . . , n. For instance, if

A =


1 2 3 4
4 3 1 2
2 1 4 3
3 4 2 1

 ,
then the integer 3 is associated with the permutation ρ3 = 3241 ∈ S4.

The paper is organized as follows: Section 2 studies the cover relation
between two Latin squares for the Bruhat order. In Section 3, we present
results that will be useful in the rest of the paper. In Section 4, we describe
the classes of Latin squares that have a unique minimal element for the
Bruhat order. A process to construct some minimal matrices for this relation
is presented in Section 5.

2. The Cover Relation

Given a matrix A, we denote by A[{i1, . . . , it}|{j1, . . . , jl}] the submtrix
of A that lies in the rows i1, . . . , it, and in columns j1, . . . , jl.

Let (X,�) be a finite partially order set and a, b ∈ X. If a 6= b and a � b,
then we write a ≺ b. We say that b covers a if a ≺ b, and there does not exist
c ∈ X such that a ≺ c ≺ b. Since the Latin squares of order n are related to
the permutation matrices, we start by reviewing the cover relation for the
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Bruhat order on the class of permutation matrices (see [4]). Let P and Q
be permutation matrices of order n corresponding to permutations

π = π1 . . . πi−1πiπi+1 . . . πj−1πjπj+1 . . . πn

and

τ = τ1 . . . τi−1τiτi+1 . . . τj−1τjτj+1 . . . τn,

respectively, where τk = πk, whenever k ∈ {1, . . . , n}\{i, j}, τi = πj , τj = πi
and (i, j) is an inversion of π. Thus, the permutation τ is obtained from π
by interchanging πi and πj . Then P covers Q in the Bruhat order if and
only if

P [{i, j}, {πj , πi}] =

[
0 1
1 0

]
, P [{i+ 1, . . . , j − 1}, {πj + 1, . . . , πi − 1}]

is the null matrix, and the corresponding submatrices of Q are I2 and the
null matrix.

The cover relation for the Bruhat order on the class of Latin squares of
order n is more complicated, and before we present some results on this
matter, we consider an example:

Let

A =


1 2 3 4
4 3 1 2
3 4 2 1
2 1 4 3

 and C =


2 1 3 4
4 3 1 2
3 4 2 1
1 2 4 3


be Latin squares of order 4. So,

A = 1


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

+ 2


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0



+ 3


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

+ 4


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


and

C = 1


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

+ 2


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



+ 3


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

+ 4


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .



106 ROSÁRIO FERNANDES, HENRIQUE F. DA CRUZ, AND DOMINGOS SALOMÃO

We have

P1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 covers Q1 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


and

Q2 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 covers P2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
Note that P1 and P2 appear in the decomposition of C associated with the
integers 1 and 2, respectively, and Q1 and Q2 appear in the decomposition of
A associated with the integers 1 and 2, respectively. Although C is obtained
from A by permuting the symbols 1 and 2 just in the four marked positions,
if we consider the Latin square

D =


2 1 3 4
3 4 1 2
4 3 2 1
1 2 4 3

 ,
then C ≺B D ≺B A. In fact,

ΣC =


2 3 6 10
6 10 14 20
9 17 23 30
10 20 30 40

 ≥ ΣD =


2 3 6 10
5 10 14 20
9 17 23 30
10 20 30 40


and

ΣD =


2 3 6 10
5 10 14 20
9 17 23 30
10 20 30 40

 ≥ ΣA =


1 3 6 10
5 10 14 20
9 17 23 30
10 20 30 40

 .
Proposition 1. Let A and C be Latin squares of order n. Let p, v, l, t be
integers with 1 ≤ p < v ≤ n and 1 ≤ l < t ≤ n. If

(C −A)[{p, v}, {l, t}] =

[
a −a
−a a

]
,

with a ∈ N, and the other entries of C −A are zero, then C �B A.

Proof. Using the hypothesis, we have

σrs(C −A) =

{
a, if (r, s) ∈ {p, . . . , v − 1} × {l, . . . , t− 1}
0, otherwise.

Since σrs(C −A) = σrs(C)− σrs(A) then C �B A. �

Remark 2. If A and C are Latin squares of order n such that σrs(A) =
σrs(C), for all (r, s) ∈ {1, . . . , n} × {1, . . . , n} then A = C.
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Theorem 3. Let A and C be Latin squares of order n. Let p, v, l, t be
integers with 1 ≤ p < v ≤ p+ 2 ≤ n and 1 ≤ l < t ≤ l + 2 ≤ n. If

(C −A)[{p, v}, {l, t}] =

[
1 −1
−1 1

]
,

and the other entries of C − A are zero, then A covers C in the Bruhat
order.

Proof. Using Lemma 1, C �B A.
If D = [dij ] is a Latin square of order n such that C �B D �B A,

then σrs(C − D) and σrs(D − A) are nonnegative integers, for all (r, s) ∈
{1, . . . , n}×{1, . . . , n}. Moreover, since σrs(D−A)+σrs(C−D) = σrs(C−A)
then

σrs(D −A) + σrs(C −D) =

{
1, if (r, s) ∈ {p, . . . , v − 1} × {l, . . . , t− 1}
0, otherwise.

Hence, σrs(D−A) = σrs(C−D) = 0 if (r, s) 6∈ {p, . . . , v−1}×{l, . . . , t−1}.
If v = p+1 and t = l+1, then by Remark 2, D = A or C = D. Therefore,

A covers C.
If v = p+ 1 and t = l+ 2, then σrs(C−A) 6= 0 if and only if (r, s) = (p, l)

or (r, s) = (p, l + 1). We assume that A = [aij ] and C = [cij ].
Using Remark 2 we can suppose that σpl(C−D) = 0, and σp,l+1(C−D) =

1. The case σpl(C −D) = 1 and σp,l+1(C −D) = 0 is analogous. Then

cpl = dpl, cp,l+1 = dp,l+1 + 1, apl = dpl − 1, ap,l+1 = dp,l+1 + 1.

Recall that σp,l+2(C −D) = 0 = σp,l+2(D −A). So,

cp,l+2 = dp,l+2 − 1 and ap,l+2 = dp,l+2.

Since A, C and D are Latin squares then

{apl, ap,l+1, ap,l+2} = {cpl, cp,l+1, cp,l+2} = {dpl, dp,l+1, dp,l+2}.
This implies that

{apl, ap,l+1, ap,l+2} = {apl+1, ap,l+1, ap,l+2−1} = {apl+1, ap,l+1−1, ap,l+2}.
Therefore, ap,l+2 = apl + 1 = ap,l+1. This is impossible. So, A covers C.

With a similar proof we get that A covers C if v = p+ 2 and t = l + 1.
If v = p + 2 and t = l + 2, then σrs(C − A) 6= 0 if and only if (r, s) ∈

{p, p+1}×{l, l+1}. Suppose that σpl(C−D) = 1. Using similar arguments
as before, we have σp,l+1(C −D) = 1 and σp+1,l(C −D) = 1. Then,

cpl = dpl + 1, cp,l+1 = dp,l+1, cp+1,l = dp+1,l.

By Remark 2, we can assume that σp+1,l+1(C −D) = 0. Then

cp+1,l+1 = dp+1,l+1 − 1.

Since σp,l+2(C−D) = σp+1,l+2(C−D) = σp+2,l(C−D) = 0, and σp+2,l+1(C−
D) = σp+2,l+2(C −D) = 0, then

cp,l+2 = dp,l+2 − 1, cp+1,l+2 = dp+1,l+2 + 1,
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cp+2,l = dp+2,l − 1, cp+2,l+1 = dp+2,l+1 + 1, cp+2,l+2 = dp+2,l+2.

Using similar arguments we get,

ap+2,l = dp+2,l, ap+2,l+1 = dp+2,l+1 + 1, ap+2,l+2 = dp+2,l+2 − 1.

Since A, C, and D are Latin squares we have

{ap+2,l, ap+2,l+1, ap+2,l+2} = {cp+2,l, cp+2,l+1, cp+2,l+2},
and

{ap+2,l, ap+2,l+1, ap+2,l+2} = {dp+2,l, dp+2,l+1, dp+2,l+2}.
This implies that

{ap+2,l, ap+2,l+1, ap+2,l+2} = {ap+2,l − 1, ap+2,l+1, ap+2,l+2 + 1},
and

{ap+2,l, ap+2,l+1, ap+2,l+2} = {ap+2,l, ap+2,l+1 − 1, ap+2,l+2 + 1}.
Therefore, ap+2,l+2 = ap+2,l − 1 = ap+2,l+1 − 1. This is impossible. So,
σp+1,l+1(C −D) = 1, and D = A. Consequently, A covers C. �

The converse of the last theorem does not hold.

Example 4. Let

A =

 1 2 3
3 1 2
2 3 1

 and C =

 2 1 3
3 2 1
1 3 2


be Latin squares of order 3. Although

(C −A) =

 1 −1 0
0 1 −1
−1 0 1

 ,
by direct calculations we conclude that A covers C.

In the next results we use the decomposition of a Latin square in a sum
of permutation matrices.

Proposition 5. Let A and C be Latin squares of order n such that (C−A) =
(α − β)(Pi − Pj) with Pi, Pj permutation matrices and α, β ∈ {1, . . . , n},
α 6= β. Then

1. If Pi ≺B Pj and α > β, then C ≺B A.
2. If Pi ≺B Pj and β > α, then A ≺B C.
3. If Pi 6≺B Pj, then C 6≺B A.

Proof.

(1) Using the hypothesis, σrs(Pi − Pj) ≥ 0, for all (r, s) ∈ {1, . . . , n} ×
{1, . . . , n}. If α > β then σrs((α − β)(Pi − Pj)) ≥ 0, for all (r, s) ∈
{1, . . . , n} × {1, . . . , n}. Thus, C ≺B A.

(2) The proof is similar to (1).
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(3) If Pi 6≺B Pj , then there are (r, s), (p, l) ∈ {1, . . . , n}×{1, . . . , n} such
that σrs(Pi−Pj) > 0, and σpl(Pi−Pj) < 0. So, σrs((α−β)(Pi−Pj))
and σpl((α− β)(Pi − Pj)) have different signal. Then C 6≺B A.

�

Proposition 6. Let A and C be Latin squares of order n such that C =∑n
i=1 iPi and A =

∑n
i=1 iTi with permutation matrices Pi and Ti, i =

1, . . . , n. If Pi �B Ti, for i = 2, . . . , n, then C �B A.

Proof. Since
∑n

i=1 Pi = Jn =
∑n

i=1 Ti then

P1 = Jn −
n∑
i=2

Pi and T1 = Jn −
n∑
i=2

Ti.

Consequently,

C −A =

n∑
i=2

(i− 1)(Pi − Ti).

As Pi �B Ti, for i = 2, . . . , n, then σrs(C−A) ≥ 0, for all (r, s) ∈ {1, . . . , n}×
{1, . . . , n}. Thus, C �B A. �

3. Minimal Latin Squares

In this section, we present some results that we will use in the next sec-
tions. In addition we describe two processes to obtain minimal matrices for
the Bruhat order, from a previous minimal matrix.

Remark 7. Let A be a Latin square of order n. Then

• σn,r(A) = σr,n(A) = r (n+1)n
2 , for r = 1, . . . , n.

• σnn(A) = n2(n+1)
2 .

As usual we denote by Ln the anti-identity matrix of order n. This matrix
has in position (i, j) the element 1 if j = n+1− i and 0 otherwise. Let A be
an n×m matrix. The reverse of A, denoted by AR, is the matrix LnALm.

Remark 8. If A is an n×m matrix, then

• (AR)R = A.
• (AR)ij =

∑n
k=1

∑m
s=1(Ln)ikAks(Lm)sj = An+1−i,m+1−j.

• (AR)11 = Anm.

Proposition 9. Let A = [akl] be an n × m matrix, i ∈ {1, . . . , n}, and
j ∈ {1, . . . ,m}. Then

σij(A
R) = σnm(A)− σn−i,m(A)− σn,m−j(A) + σn−i,m−j(A).
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Proof. By definition,

σij(A
R) =

i∑
l=1

j∑
k=1

an+1−l,m+1−k =
n∑

t=n+1−i

m∑
p=m+1−j

atp

=

n∑
t=1

m∑
p=1

atp −
n∑
t=1

m−j∑
p=1

atp −
n−i∑
t=1

m∑
p=1

atp +

n−i∑
t=1

m−j∑
p=1

atp

= σnm(A)− σn−i,m(A)− σn,m−j(A) + σn−i,m−j(A).

�

Proposition 10. Let A be a Latin square of order n. If A is a minimal
matrix for the Bruhat order, �B, then AR is a minimal matrix for �B.

Proof. Suppose that AR is not a minimal matrix for �B. Then there is a
Latin square of order n, D, such that D 6= AR and D �B AR. Therefore,
there are i, j ∈ {1, . . . , n} with σij(D) > σij(A

R). By Proposition 9,

σnn(DR)− σn−i,n(DR)− σn,n−j(DR) + σn−i,n−j(D
R)

> σnn(A)− σn−i,n(A)− σn,n−j(A) + σn−i,n−j(A).

By Remark 7 we have

σnn(DR) = σnn(A), σn−i,n(DR) = σn−i,n(A), σn,n−j(D
R) = σn,n−j(A).

So,

σn−i,n−j(D
R) > σn−i,n−j(A).

This is impossible because A is minimal. �

Let AT be the transpose of the n×m matrix A. It is easy to check that

σij(A
T ) = σji(A), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

In general it is not possible to compare A and AT by the Bruhat order unless
n = m.

Proposition 11. Let A be a minimal matrix for the Bruhat order, �B, on
a subset S of the class of matrices of order n. Then AT is a minimal matrix
for �B on S.

Proof. Suppose that AT is not a minimal matrix for �B on S. Then there
is C ∈ S such that C 6= AT and C �B AT . This implies that there are
i, j ∈ {1, . . . , n} with σij(C) > σij(A

T ). Since σij(C) = σji(C
T ), σij(A

T ) =
σji(A), then σji(C

T ) > σji(A). This is impossible because A is minimal. �

Remark 12. From a minimal Latin square we can easily construct a max-
imal Latin square for the Bruhat order. In fact, if A = [ai,j ] is a min-
imal Latin square of order n for the Bruhat order, then the Latin square
A′ = [n− ai,j + 1] is a maximal Latin square of this order.
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4. Classes With Minimum Element

In this section we investigate the possible integers n for which the class of
Latin squares of order n has a unique minimal matrix for the Bruhat order.

If n = 1, then the class of Latin squares of order 1 has a unique matrix,
the matrix

[
1
]
. Consequently, there is a unique minimal matrix for the

Bruhat order.
If n = 2, then the class of Latin squares of order 2 has two matrices, the

matrices

A1 =

[
1 2
2 1

]
and A2 =

[
2 1
1 2

]
.

By direct calculations we get its Hasse diagram, see Figure 1.
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Figure 1. The Hasse diagram for Latin squares of order 2

So, A2 is the unique minimal matrix of this class.
If n = 3, then the class of Latin squares of order 3 has twelve matrices,

the matrices are:

C1 =

 1 2 3
2 3 1
3 1 2

 , C2 =

 1 2 3
3 1 2
2 3 1

 , C3 =

 1 3 2
2 1 3
3 2 1

 ,
C4 =

 2 1 3
1 3 2
3 2 1

 , C5 =

 1 3 2
3 2 1
2 1 3

 , C6 =

 2 1 3
3 2 1
1 3 2

 ,
C7 =

 2 3 1
1 2 3
3 1 2

 , C8 =

 3 1 2
1 2 3
2 3 1

 , C9 =

 3 1 2
2 3 1
1 2 3

 ,
C10 =

 3 2 1
1 3 2
2 1 3

 , C11 =

 2 3 1
3 1 2
1 2 3

 , C12 =

 3 2 1
2 1 3
1 3 2

 .
By direct calculations we get the Hasse diagram for �B, see Figure 2.

Then, there are four minimal matrices for the Bruhat order.
If n = 4, then we can prove the next result.

Proposition 13. The matrix

A =


4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4
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Figure 2. The Hasse diagram for Latin squares of order 3

is the unique minimal matrix for the Bruhat order on the class of Latin
squares of order 4.

Proof. Suppose that there is a Latin square of order 4, C, such that A 6= C
and C is a minimal matrix for the Bruhat order. So, there are integers
i, j ∈ {1, 2, 3, 4} such that σij(C) > σij(A). Since the vector (4, 3, 2, 1)
appears in the first row and in the first column of A, the vector (3, 4, 1, 2)
appears in the second row and in the second column of A. Using Remark 7,
we conclude that the pair (i, j) is (2, 3), (3, 2), or (3, 3).

Suppose that (i, j) = (2, 3). Because a1,4 = 1, a2,4 = 2 and C is a
Latin square of order 4, then by Remark 7, σ2,3(C) ≤ 18 = σ2,3(A). Thus,
(i, j) 6= (2, 3).

Using similar arguments we prove that (i, j) 6= (3, 2) and (i, j) 6= (3, 3).
�

As we will see there is no n > 4 such that the class of Latin squares of
order n has a unique minimal element for the Bruhat order.

Proposition 14. If n is an odd positive integer, and n 6= 1, then the class
of Latin squares of order n has at least two minimal elements for the Bruhat
order.

Proof. Suppose that there is an odd positive integer n, n 6= 1, such that
the class of Latin squares of order n has a unique minimal element for the
Bruhat order. By Proposition 11, if A is a minimal element for �B, then
AT is also a minimal element for �B. Therefore, if the class of Latin squares
has a unique minimal element A, then A = AT , and then A is a symmetric
matrix. So, if g is an integer, 1 ≤ g ≤ n, and the entry (i, j) of A has the
element g, then the entry (j, i) of A also has the element g. Consequently,
if ρg is the permutation associated with g in A, then ρg is a product of
disjoint transpositions. Since n is odd, then there is an integer k such that
ρg(k) = k. This implies that all integers between 1 and n appear in the
main diagonal of A. Moreover, each integer between 1 and n appears only
once in the main diagonal of A because A is a matrix of order n.

On the other hand, by Proposition 11, LnALn is minimal for the Bruhat
order. So, LnALn = A. But the entry (1, 1) of LnALn is the entry (n, n) of



LATIN SQUARES AND THEIR BRUHAT ORDER 113

A. Then A has, at least, two equal elements in the main diagonal. This is
impossible and the result follows. �

Theorem 15. Let n be an even positive integer, and A,C,E, F be minimal
Latin squares of order n/2 for the Bruhat order. Then the matrix

D =


A+ n

2Jn
2

C

E F + n
2Jn

2

 ,

is a minimal Latin square of order n for the Bruhat order.

Proof. Let P be a Latin square of order n such that P �B D, and

P =

[
P1 P2

P3 P4

]
,

where P1, P2, P3, P4 are matrices of order n/2.
Since A is a Latin square of order n/2, then A+(n/2)Jn/2 has all integers

k with (n/2) + 1 ≤ k ≤ n. Moreover, each integer appears once in each
column and in each row. So,

σn
2
,n
2
(D) ≥ σn

2
,n
2
(P ).

But P �B D, consequently, σn/2,n/2(D) = σn/2,n/2(P ). This implies that in
each row and in each column of P1, the integer l appears with (n/2) + 1 ≤
l ≤ n, and P1 − (n/2)Jn/2 is a Latin square of order n/2. Since P �B D
and A is minimal for the Bruhat order, then

σij(A) ≥ σij(P1 −
n

2
Jn

2
), for all i, j ∈

{
1, . . . ,

n

2

}
.

Therefore,

σi,j(D) = σi,j(A+
n

2
Jn

2
) ≥ σi,j(P1) = σi,j(P ), for all i, j ∈

{
1, . . . ,

n

2

}
.

Since P �B D, we conclude that A+ (n/2)Jn/2 = P1. This implies that P2

is a Latin square of order n/2. Since C is minimal for the Bruhat order,

σi,j(C) ≥ σi,j(P2), for all i, j ∈
{

1, . . . ,
n

2

}
.

If l ∈ {1, . . . , n/2} and k ∈ {(n/2) + 1, . . . , p}, then

σl,k(D) = σln
2
(A+

n

2
Jn

2
) + σl,k−n

2
(C) ≥ σln

2
(P1) + σl,k−n

2
(P2) = σlk(P ).

Since P �B D, we conclude that C = P2. Using a similar argument we have
E = P3. By the previous equalities we get P4 − (n/2)Jn/2 is a Latin square
of order n/2. Since F is minimal for the Bruhat order then

σi,j(F ) ≥ σi,j(P4 −
n

2
Jn

2
), for all i, j ∈

{
1, . . . ,

n

2

}
.
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Consequently,

σh,v(D) = σn
2
,n
2
(A+

n

2
Jn

2
) + σn

2
,v−n

2
(C) + σh−n

2
,n
2
(E)

+ σh−n
2
,v−n

2
(F +

n

2
Jn

2
)

≥ σn
2
,n
2
(P1) + σn

2
,v−n

2
(P2) + σh−n

2
,n
2
(P3) + σh−n

2
,v−n

2
(P4) = σhv(P ),

for all h, v ∈ {n/2, . . . , n} . Since P �B D and by the previous equalities,
we conclude that F + (n/2)Jn/2 = P4. Thus, D = P and D is minimal. �

The next result is used in Section 5, where we present a process to con-
struct minimal Latin squares of order n, when n is odd, and n = 2k−1 with
k ≥ 2.

Corollary 16. Let n be a positive integer with n = 2k, k ≥ 1. There exists
a Latin square of order n, which is minimal for the Bruhat order, whose
last row is [1, 2, . . . , n], the last column is [1, 2, . . . , n]T , and it has n in all
entries of the main diagonal.

Proof. The result is true if n = 2 or n = 4. Let k ≥ 2, and assume that
the corollary holds for n = 2k. Now we prove that the result holds for
n = 2k+1. Let A0 be a minimal Latin square of order 2k in the conditions
of the corollary, and let

A1 = A0 + 2k J2k .

Then, A1 is a Latin square in the integers 2k + 1, . . . , 2k+1, with 2k+1 in the
main diagonal. The last row of A1 is [2k + 1, . . . , 2k+1], and the last column
is [2k + 1, . . . , 2k+1]T . Let

A =

[
A1 A0

A0 A1

]
.

Then, A is a Latin square in the integers 1, . . . , 2k, 2k + 1, . . . , 2k+1. The
last row of A is [1, . . . 2k, 2k + 1, . . . , 2k+1], the last column is [1, . . . 2k, 2k +
1, . . . , 2k+1]T , and all the entries in the main diagonal A are equal to 2k+1.
By Theorem 15, A is minimal for the Bruhat order and the proof is complete.

�

Proposition 17. The class of Latin squares of order 8 has at least two
minimal elements for the Bruhat order.

Proof. By Proposition 13, the matrix

A =


4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4


is a minimal Latin square of order 4 for the Bruhat order. Then, using the
previous theorem, we get that the matrix

P =

[
A+ 4J4 A

A A+ 4J4

]
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is minimal for the Bruhat order.
Let

H =



8 7 6 5 4 3 2 1
6 8 7 3 5 4 1 2
7 6 8 2 1 5 4 3
1 4 2 8 7 6 3 5
3 2 1 6 8 7 5 4
2 1 5 4 3 8 6 7
5 3 4 7 2 1 8 6
4 5 3 1 6 2 7 8


be a Latin square of order 8. Since σ2,3(H) = 42 > 41 = σ2,3(P ), we
conclude that there is a Latin square of order 8, K, which is minimal for
the Bruhat order, K �B H, and K is not related to P by the Bruhat order.
Therefore, the result follows. �

Proposition 18. Let n be an even positive integer, n 6= 2 and n 6= 4. Then
the class of Latin squares of order n has at least two minimal elements for
the Bruhat order.

Proof. Let n be an even positive integer, n 6= 2, n 6= 4. Then there are
positive integers k and u such that n = 2k ·u, where u is an odd integer and
k ≥ 1 if u ≥ 3 or k ≥ 3 if u = 1. So, we have two cases:
Case 1 : u ≥ 3.

By Proposition 14, let V and X be two distinct minimal Latin squares
of order u for the Bruhat order. Using Theorem 15, the matrices

Q1 =

[
V + uJu V

V V + uJu

]
and R1 =

[
X + uJu X

X X + uJu

]
are two distinct minimal Latin squares of order 2u for the Bruhat order.
If k = 1, then the result follows. If k > 1, repeating this process with Q1

and R1 we obtain two distinct minimal Latin squares of order 22 · u, Q2

and R2 for the Bruhat order (note that the block on the top right of Q2

is V , and the same block in R2 is X). Again, if k = 2 the result follows.
If k > 2, then we repeat this process until we have two Latin squares of
order n.

Case 2 : u = 1.
In this case, k ≥ 3 and by Proposition 17, there are at least two

minimal Latin squares of order 8, for the Bruhat order. If n = 23, then
the result holds. Otherwise, we use similar arguments as in Case 1 until
we have the desired matrices.

�

We conclude this section with a result that summarizes our study.

Theorem 19. Let n be a positive integer. Then the class of Latin squares
of order n has a unique minimal element for the Bruhat order if and only if
n = 1, 2, 4.



116 ROSÁRIO FERNANDES, HENRIQUE F. DA CRUZ, AND DOMINGOS SALOMÃO

Remark 20. By Theorem 19, and by Remark 12 we conclude that

A′ =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


is the unique maximal Latin square of order 4.

5. A Construction of Minimal Latin Squares

Since the proof of Proposition 18 gives us a process that constructs mini-
mal Latin squares of order n for the Bruhat order when n is an even positive
integer, we only need to obtain a process when n is odd. In this section we
describe how to construct a minimal Latin square of order n for the Bruhat
order when n is an odd positive integer and n = 2k− 1 with k ≥ 2. First we
write the process described in Theorem 15.

5.1. Minimal Latin squares when n is even. Let n = 2k · u, where u
is an odd integer and k ≥ 1. Let V be a minimal Latin square of order u
for the Bruhat order. To construct a minimal Latin square of order n we
proceed as follows:

(1) Let p = u and A = V .

(2) Let G =

[
A+ pJp A

A A+ pJp

]
.

(3) If n = 2p, stop. Otherwise, go to step 1 with 2p instead of u and G
instead of V .

This process gives us a minimal Latin square of order n for the Bruhat or-
der because each time we repeat it we obtain a minimal matrix (see Theorem
15).

Example 21. Let n = 12 = 22 × 3. The matrix

C9 =

 3 1 2
2 3 1
1 2 3


is a minimal Latin square of order 3 for the Bruhat order (see Section 4).
Using this process, we consider p = 3 and A = C9 and obtain the matrix

G =


C9 + 3J3 C9

C9 C9 + 3J3

 =


6 4 5 3 1 2
5 6 4 2 3 1
4 5 6 1 2 3
3 1 2 6 4 5
2 3 1 5 6 4
1 2 3 4 5 6

 .
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Since 12 = n 6= 2p = 6, we repeat the process with p = 6 and A = G. We
obtain the matrix

H =


G+ 6J6 G

G G+ 6J6



=



12 10 11 9 7 8 6 4 5 3 1 2
11 12 10 8 9 7 5 6 4 2 3 1
10 11 12 7 8 9 4 5 6 1 2 3
9 7 8 12 10 11 3 1 2 6 4 5
8 9 7 11 12 10 2 3 1 5 6 4
7 8 9 10 11 12 1 2 3 4 5 6
6 4 5 3 1 2 12 10 11 9 7 8
5 6 4 2 3 1 11 12 10 8 9 7
4 5 6 1 2 3 10 11 12 7 8 9
3 1 2 6 4 5 9 7 8 12 10 11
2 3 1 5 6 4 8 9 7 11 12 10
1 2 3 4 5 6 7 8 9 10 11 12



.

Since n = 12 = 2p, the process ends and H is a minimal matrix.

5.2. Minimal Latin squares of order n when n = 2k − 1 is odd, with
k ≥ 2. We now give a procedure to construct minimal Latin squares of order
n = 2k − 1, k ≥ 2:

Since n = 2k − 1 = 2k−1 + (2k−1 − 1), let s = 2k−1, v = 2k−1 − 1, X be a
minimal Latin square of order v for the Bruhat order, and Y be a minimal
Latin square of order s for the Bruhat order, with the above conditions of
Corollary 16 (the last column of Y is equal to the last row of Y and are
equal to the vector (1, 2, . . . , s), and the main diagonal of Y is filled with
the integer s). Let T = X + sJv. Let Z be the matrix obtained by Y
removing the last row and W be the matrix obtained by Y removing the
last column. Let G be the matrix obtained by Y changing

• the integer u by u+ s, for u = 1, . . . , s− 2,
• the integer s− 1 by n,
• the integer s in row i by i, for i = 1, . . . , s.

Proposition 22. With the above conditions, the matrix

A =

[
T Z
W G

]
is a minimal Latin square of order n for the Bruhat order.

Proof. Let s = 2k−1, v = 2k−1−1. First we prove that this process produces
a Latin square. Since Z is obtained from Y by removing the last row, W is
obtained from Y by removing the last column, and T = X + sJv, there are
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no repeated integers in the first v = 2k−1−1 rows or in the first v = 2k−1−1
columns of A. Keeping in mind that Y is a minimal Latin square of order
s for the Bruhat order in the conditions of Corollary 16 (the last row and
the last column of Y are [1, . . . 2k−1] and [1, . . . 2k−1]T , respectively, and the
integer 2k−1 is on the main diagonal), then the matrix G has in row and
column i, the integers i, s+ 1, . . . , n, for i = 1, . . . , s, and the matrix A is a
Latin square on the integers 1, . . . , n = 2k − 1.

Let D be a Latin square of order n and assume that D �B A. Write

D = [di,j ] =

[
D0 D1

D2 D3

]
where D0 is the v × v submatrix of D. Since D �B A,

σi,j(D) ≥ σi,j(A),

for all i, j ∈ {1, . . . , n}.
We have di,j ≥ 2k−1 +1 = s+1, for all i, j ∈ {1, . . . , 2k−1−1}. Otherwise

we have
σv,v(D) < σv,v(A),

which is impossible because D �B A.
Since D is a Latin square then D0 − sJv is a Latin square of order v.

Using the fact that

σi,j(D0) = σi,j(D) ≥ σi,j(A) = σi,j(T ),

i, j ∈ {1, . . . , v}, and X �B (D0 − sJv) we conclude that D0 = T .
Therefore D1 is an v × s matrix whose entries are in the set {1, . . . , s}.

Since D is a Latin square, there are no two equal integers in the same row
or in the same column of D1. Assume D1 6= Z, and let i ∈ {1, . . . , v} and
j ∈ {s, . . . , n}. Then

σi,j(D) = σi,v(D0) + σi,j′(D1),

where j′ = j − v.
Similarly

σi,j(A) = σi,v(T ) + σi,j′(Z),

and since T = D0 and D �B A we have

σi,j′(D1) ≥ σi,j′(Z),

for all i ∈ {1, . . . , v} and j′ ∈ {1, . . . , s}. Since D1 6= Z, let (i, j′) be the
smaller pair by the lexicographic order satisfying σi,j′(D1) > σi,j′(Z).

Let D′1 be the matrix obtained from D1 by adding the (s+1)th row whose
ith position is an integer in the set {1, . . . , s} and is not in the ith column of
D1. ThenD′1 is a Latin square on the integers {1, . . . , s} and using Remark 7,
we conclude that D′1 ≺B Y . This is impossible because Y is a minimal Latin
square. Then D1 = Z. Similarly we have W = D2. To complete the proof
we only have to show that G = D3. Since D1 = Z, D2 = W , noting how Z
and W are constructed from Y , and since D is Latin square, we conclude
that the entry (i, i) of D3 has the integer i, for i = 1, . . . , s, and the other
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entries of D3 are filled with the integers s+ 1, . . . , 2s− 1. So, D3 and G are
Latin squares on the same set of integers. Moreover, D3 �B G.

Because D is a Latin square there are no two integers in the same row
or in the same column of D3. Therefore there is a unique Latin square V
on the integers 2k−1, . . . , n such that if we replace the entry (i, i) of V by i,
for i = 1, . . . , 2k−1 we obtain D3. Since Y is minimal then Y �B (V − vJs).
Consequently, G = D3 and D = A. Then A is minimal. �

Example 23. Let n = 7 = 23 − 1 = 22 + (22 − 1) = 3 + 22. The matrix

X = C9 =

 3 1 2
2 3 1
1 2 3


is a minimal element for the Bruhat order (see Section 4). By Proposition
13,

Y =


4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4


is the unique minimal Latin square of order 4, for the Bruhat order.

Using previous process, we consider

T = X + 4J4 =

 7 5 6
6 7 5
5 6 7


and we obtain the minimal Latin square of order 7

A =



7 5 6 4 3 2 1
6 7 5 3 4 1 2
5 6 7 2 1 4 3
4 3 2 1 7 6 5
3 4 1 7 2 5 6
2 1 4 6 5 3 7
1 2 3 5 6 7 4


.

Remark 24. In the procedures above, the construction of minimal Latin
squares of order n requires minimal Latin squares of orders less than n.
Since for n = 4 we can only use minimal Latin squares of order 2 and since
there is a unique minimal Latin square of order 2 for the Bruhat order, then
we get a unique minimal Latin square of order 4.
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