Contributions to Discrete Mathematics

Volume 15, Number 1, Pages 10-11
ISSN 1715-0868

CORRIGENDUM TO "ON THE ENUMERATION OF A CLASS OF TOROIDAL GRAPHS" [CONTRIB. DISCRETE MATH. 13 (2018), NO. 1, 79-119]

DIPENDU MAITY AND ASHISH KUMAR UPADHYAY

Here, all the notations and definitions are given in [1]. Lemma [1, Lemma 5.6 , p. 99] is not true in general on higher number of vertices for some cases. For example, $T(10,4,2)$ and $T(10,4,4)$ are not isomorphic although $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)=(10,20)$ since the cycle lengths of type B_{2} (defined below) are different. Lemma [1, Lemma 5.6] can be modified in a similar way to [1, Lemma 4.10]. This skipped our attention while writing the paper.

Let M_{1} and M_{2} be two maps of type $\left\{3^{2}, 4,3,4\right\}$ with the same number of vertices on the torus and $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right), i \in\{1,2\}$ denote M_{i}. Let $C_{i, 1}$ and $C_{i, 2}$ denote nonhomologous cycles of type B_{1} in $T\left(r_{i}, s_{i}, k_{i}\right)$. Define a cycle of type, say B_{2} (as defined in [1, eqn. (4.1), p. 90]) by two paths which are parts of an upper horizontal cycle and a vertical cycle which is nonhomologous to horizontal cycles of type B_{1}. Let $C_{(i, k), 2}$ denote a cycle of type B_{2} in $T\left(r_{i}, s_{i}, k_{i}\right)$ if $C_{i, k}$ is horizontal in $T\left(r_{i}, s_{i}, k_{i}\right)$. More precisely, the cycle $C_{(i, k), 2}$ is defined by $C_{i, k}$ and $C_{i, k^{1}}$, where $C_{i, k}$ is horizontal cycle and $C_{i, k^{1}}$ is the vertical cycle for $k, k^{1} \in\{1,2\}$ and $k \neq k^{1}$ in T_{i}. A similar definition is also given in the proof of [1, Lemma 5.6] on page 99 for fixed horizontal and vertical cycles. Let $a_{i, j}=\operatorname{length}\left(C_{i, j}\right)$ and $a_{(i, k), 2}=\operatorname{length}\left(C_{(i, k), 2}\right)$. We use these in the following lemma which replaces [1, Lemma 5.6].

Lemma 5.6'. The map $M_{1} \cong M_{2}$ if and only if $\left\{a_{1,1}, a_{1,2}\right\}=\left\{a_{2,1}, a_{2,2}\right\}$ and $a_{(1,1), 2}=a_{(2, t), 2}$, where $a_{1,1}=a_{2, t}$ and $t \in\{1,2\}$.

The proof of Lemma 5.6^{\prime} is similar to that of [1, Lemma 5.6]. In Lemma 5.6^{\prime} we added lengths of the cycles of type B_{2} which are not used in the statement of [1, Lemma 5.6]. Therefore, in [1, Cases 2, 3, and 4, Proof of Lemma 5.6], assume that $a_{(1,1), 2}=a_{(2, t), 2}$ where $a_{1,1}=a_{2, t}$ and $t \in\{1,2\}$ which is equivalent condition, "length $\left(C_{3}(1)\right)=$ length $\left(C_{3}(2)\right)$ " in the cases.

Similar modifications are also needed in the lemmas [1, Lemmas 6.3, 7.3, 8.3, 9.3, 10.3, 11.4]. Here are the modified statements.

Lemma 6.3'. The map $M_{1} \cong M_{2}$ if and only if $\left\{a_{1,1}, a_{1,2}, a_{1,3}\right\}=\left\{a_{2,1}\right.$, $\left.a_{2,2}, a_{2,3}\right\}$ and $a_{(1,1), 2}=a_{(2, t), 2}$, where $a_{1,1}=a_{2, t}$ and $t \in\{1,2,3\}$.

Received by the editors October 6, 2018, and in revised form November 22, 2018.

Lemma 7.3'. The map $M_{1} \cong M_{2}$ if and only if $\left\{b_{1,1}, b_{1,2}, b_{1,3}\right\}=\left\{b_{2,1}\right.$, $\left.b_{2,2}, b_{2,3}\right\}$ and $b_{(1,1), 2}=b_{(2, t), 2}$ where $b_{1,1}=b_{2, t}$ and $t \in\{1,2,3\}$.

Lemma 8.3'. The map $M_{1} \cong M_{2}$ if and only if $\left\{a_{1,1}, a_{1,2}, a_{1,3}\right\}=\left\{a_{2,1}\right.$, $\left.a_{2,2}, a_{2,3}\right\}$ and $a_{(1,1), 2}=a_{(2, t), 2}$ where $a_{1,1}=a_{2, t}$ and $t \in\{1,2,3\}$.
Lemma 9.3'. The map $M_{1} \cong M_{2}$ if and only if $\left\{b_{1,1}, b_{1,2}, b_{1,3}\right\}=\left\{b_{2,1}\right.$, $\left.b_{2,2}, b_{2,3}\right\}$ and $b_{(1,1), 2}=b_{(2, t), 2}$ where $b_{1,1}=b_{2, t}$ and $t \in\{1,2,3\}$.
Lemma 10.3'. The map $M_{1} \cong M_{2}$ if and only if $\left\{c_{1,1}, c_{1,2}, c_{1,3}\right\}=\left\{c_{2,1}\right.$, $\left.c_{2,2}, c_{2,3}\right\}$ and $c_{(1,1), 2}=c_{(2, t), 2}$ where $c_{1,1}=c_{2, t}$ and $t \in\{1,2,3\}$.
Lemma 11.4'. The map $M_{1} \cong M_{2}$ if and only if $\left\{a_{1,1}, a_{1,2}\right\}=\left\{a_{2,1}, a_{2,2}\right\}$ and $a_{(1,1), 2}=a_{(2, t), 2}$ where $a_{1,1}=a_{2, t}$ and $t \in\{1,2\}$.

The proofs of these lemmas would be same as mentioned above for Lemma 5.6 ${ }^{\prime}$. Accordingly, similar changes would appear in [1, Tables 2-8].

In [1, Lemmas 6.2, 7.2, 10.2 11.3], we need to change the following ambiguities.
(1) In [1, Lemma $6.2(\mathrm{v})]$ " $k \in\left\{2 t+6: 0 \leq t \leq \frac{r-10}{2}\right\} \backslash\left\{2\left(\frac{r-10}{4}\right)+6\right\}$ if $s=1$ " needs to be replaced by " $k \in\left\{2 t+6: 0 \leq t \leq \frac{r-10}{2}\right\} \backslash$ $\left\{2\left(\frac{r-10}{4}\right)+6: 4 \mid(r-10)\right\}$ if $s=1$ ".
(2) In [1, Lemma 7.2 (v)] " $k \in\left\{4 t+9: 0 \leq t \leq \frac{r-20}{4}\right\} \backslash\left\{4\left(\frac{r}{8}-3\right)+9\right\}$ if $s=1$ " needs to be replaced by " $k \in\left\{4 t+9: 0 \leq t \leq \frac{r-20}{4}\right\} \backslash\left\{4\left(\frac{r}{8}-\right.\right.$ $3)+9: 8 \mid r\}$ if $s=1$ ".
(3) In [1, Lemma 10.2] "(vi) $k \in\left\{3 t+4: 0 \leq t \leq \frac{r-9}{3}\right\}$ if $s=2 \&$ $k \in\left\{3 t+1: 0 \leq t \leq \frac{r-3}{3}\right\}$ if $s \geq 4$ " needs to be replaced by "(v) $k \in\left\{3 t+3: 0 \leq t \leq \frac{r-9}{3}\right\}$ if $s=2 \& k \in\left\{3 t: 0 \leq t \leq \frac{r-3}{3}\right\}$ if $s \geq 4$ ".
(4) In [1, Lemma 11.3 (v)] " $k \in\left\{4 t+6: 0 \leq t \leq \frac{r-12}{4}\right\}$ if $s=1$ " needs to be replaced by " $k \in\left\{4 t+6: 0 \leq t \leq \frac{r-12}{4}\right\} \backslash\left\{4 \times \frac{r-12}{8}+6: 8 \mid\right.$ $(r-12)\}$ if $s=1$ ".
(5) In [1, Lemma $11.3(\mathrm{v})] " k \in\left\{4 t-1(\bmod r): 0 \leq t \leq \frac{r-4}{4}\right\}$ if $s \geq 3$ ' needs to be replaced by " $k \in\left\{4 t-1(\bmod r): 0 \leq t \leq \frac{r-4}{4}\right\}$ if $s \geq 3$, even and $k \in\left\{4 t-2(\bmod r): 0 \leq t \leq \frac{r-4}{4}\right\}$ if $s \geq 3$, odd".

References

1. D. Maity and A. K. Upadhyay, On the enumeration of a class of toroidal graphs, Contrib. Discrete Math. 13 (2018), no. 1, 79-119.

Department of Sciences and Mathematics, Indian Institute of Information
Technology Guwahati, Bongora, Assam-781015, India
E-mail address: dipendumaity@gmail.com
Department of Mathematics, Indian Institute of Technology Patna, Bihta, 801 103, India
E-mail address: upadhyay@iitp.ac.in

