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MINIMAL GRAPHS FOR COMPLETELY INDEPENDENT
SPANNING TREES AND COMPLETELY INDEPENDENT
SPANNING TREES IN COMPLETE T -PARTITE GRAPH

XIA HONG, FENG GAO, AND ZENGBAO WU

Abstract. Let T1, T2, . . . , Tk be spanning trees of a graph G. For any
two vertices u, v of G, if the paths from u to v in these k trees are pair-
wise openly disjoint, then we say that T1, T2, . . . , Tk are completely
independent spanning trees. In this paper, we give the definition of
minimal graph for k completely independent spanning trees and we
characterized all minimal graphs for k completely independent span-
ning trees. Finally, we obtain the number of completely independent
spanning trees in complete t(t ≥ 2)-partite graph Kn1,n2,...,nt , which
is generalizes the known result.

1. Introduction

The graphs considered in this paper are finite, undirected, and simple
(no loops or multiple edges). The vertex set and the edge set of G are
denoted by V (G) and E(G), respectively. Denote e(G) = |E(G)|. For a
vertex v ∈ V (G), the neighbor set NG(v) is the set of vertices adjacent to
v, dG(v) = |NG(v)| is the degree of v. For a subgraph H of G, NH(v) is the
set of neighbors of v which are in H, and dH(v) = |NH(v)| is the degree of
v in H. The set of neighbors (resp. close neighbors) of an edge e in G is
denoted by N(e)(resp. N [e]). When no confusion occurs, we write N(v)
instead of NG(v). δ(G) =min{d(v) : v ∈ V (G)} is the minimum degree
of G. For a subset U ⊆ V (G), the subgraph induced by U is denoted by
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G[U ], which is the graph on U whose edges are precisely the edges of G
with both ends in U . Let Kn1,n2,...,nt be a complete t(t ≥ 2)-partite graph
with |V1| = n1, |V2| = n2, . . . , |Vt| = nt. Denote [n] = {1, 2, . . . , n}.

A tree T of G is a spanning tree of G if V (T ) = V (G). A leaf is a vertex
of degree 1. An internal vertex is a vertex of degree at least 2. Let x, y
be two vertices of G. An (x, y)-path is a path with the two ends x and y.
Two (x, y)-paths P1, P2 are openly disjoint if they have no common edge
and no common vertex except for the two ends x and y. Let T1, T2, . . . , Tk

be spanning trees in a graph G. For any two vertices u, v of G, if the paths
from u to v in these k trees are pairwise openly disjoint, then we say that
T1, T2, . . . , Tk are completely independent spanning trees (CISTs) in G. The
concept of CISTs was proposed by Hasunuma [5].

In [5], Hasunuma gave a characterization for CISTs and proved that the
underlying graph of a k-connected line digraph always contains k CISTs.
It is well known [12][16] that every 2k-edge-connected graph has k edge
disjoint spanning trees. Motivated by this, Hasunuma [6] conjectured that
every 2k-connected graph has k CISTs. However, Péterfalvi [15] disproved
the conjecture by constructing a k-connected graph, for each k ≥ 2, which
does not have two CISTs. Recently, sufficient conditions have been deter-
mined in order to guarantee the existence of two CISTs. These conditions
are inspired by the sufficient conditions for Hamiltonicity: Fleischner’s
condition [1], Dirac’s condition [1], Ore’s condition [4] and Neighborhood
Union and Intersection Conditions [10]. Moreover, Dirac’s condition has
been generalized to k(≥ 2) CISTs [3][7][17] and has been independently
improved for two CISTs [7][17]. In [9], Hong proved that the k-th power
of a k-connected graph G on n vertices with n ≥ 2k has k CISTs. Con-
structing CISTs has many applications on interconnection networks such as
fault-tolerant broadcasting and secure message distribution [2][14][11][8].

In this paper, we give the definition of minimal graph for k CISTs and
we characterized all minimal graphs for k CISTs. Finally, we obtain the
number of CISTs in complete t(t ≥ 2)-partite graphs Kn1,n2,...,nt , which is
generalizes the known result [13].

2. Preliminaries

Definition 2.1 ([5]). Let T1, T2, . . . , Tk be spanning trees in a graph G.
For any two vertices u, v of G, if the paths from u to v in T1, T2, . . . , Tk

are pairwise openly disjoint, then we say that T1, T2, . . . , Tk are completely
independent spanning trees(CISTs) in G.

The following result obtained by Hasunuma [5] plays a key role in our
proof.
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Lemma 2.1 ([5]). Let k ≥ 2 be an integer. T1, T2, . . . , Tk are CISTs in a
graph G if and only if they are edge disjoint spanning trees of G and for
any v ∈ V (G), there is at most one Ti such that dTi(v) > 1.

Hasunuma [6] showed that whether there exist two CISTs in an arbitrary
graph G is NP-complete, and proved the following result.

Lemma 2.2 ([6]). There are two CISTs in any 4-connected maximal plane
graph.

Kung-Jui Pai [13] showed that the following results.

Lemma 2.3 ([13]). There are ⌊n2 ⌋ CISTs in complete graph Kn for all
n ≥ 4.

Lemma 2.4 ([13]). There are ⌊n2 ⌋ CISTs in complete bipartite graph Km,n

for all m ≥ n ≥ 4.

Lemma 2.5 ([13]). There are ⌊n2+n1
2 ⌋ CISTs in complete tripartite graph

Kn3,n2,n1 for all n3 ≥ n2 ≥ n1 and n2 + n1 ≥ 4.

In [1], Araki provided a new characterization of the existence of k CISTs.
Let (V1, V2, . . . , Vk) be a partition of the vertex set V (G) and, for i ̸= j,
B(Vi, Vj , G) be a bipartite graph with the edge set {uv|uv ∈ E(G), u ∈
Vi and v ∈ Vj}. If the graph G is clear from the context, we may use
B(V1, V2) instead of B(V1, V2, G). A partition (V1, V2, . . . , Vk) is called a
CIST-partition of G if it satisfies the following two conditions:

(1) for i ∈ [k], the induced subgraph G[Vi] is connected and
(2) for any i ̸= j, the bipartite graph B(Vi, Vj) has no tree compo-

nents, that is, every connected component H of B(Vi, Vj) satisfies
|E(H)| ≥ |V (H)|.

The following result obtained by Araki [1] plays a key role in our proof.

Lemma 2.6 ([1]). A connected graph G has k CISTs if and only if there
is a CIST-partition (V1, . . . , Vk) of V (G).

Now, based on the concept of CISTs, we give the definition of minimal
graphs for k CISTs.

Definition 2.2. Let G be a graph for which there exist k CISTs. Then
G is called a minimal graphs for k CISTs if there exists a set of k CISTs
T1, T2, . . . , Tk in G such that E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk).

If k = 1, then a minimal graph is a tree. So we consider a minimal graph
for k CISTs for k ≥ 2. According to Definition 2.2, we obtain the following
two propositions.
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Proposition 2.1. Let G be a connected graph with n(n ≥ 1) vertices.
We suppose that G has k edge disjoint spanning trees T1, T2, . . . , Tk and
E(G) = E(T1)∪E(T2)∪ · · ·∪E(Tk). If it satisfies one of the following two
conditions, then G is a minimal graph for k CISTs.

(a) n = 2k and there exists only one spanning tree Ti(1 ≤ i ≤ k) such
that dTi(x) = k for each vertex x ∈ V (G).

(b) The subgraph induced by all internal vertex of Ti(1 ≤ i ≤ k) is a
path P = x1x2 · · ·xr and dTi(x1) = dTi(xr) = k, dTi(xi) = k+1 for
i ̸= 1, r, where r is the number of all internal vertices of Ti.

Proof. (a) Let T1, T2, . . . , Tk be k edge disjoint spanning trees of G. Since
E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk), we have e(G) = k(n − 1). If there
exists only one spanning tree Ti such that dTi(x) = k for any vertex x ∈
V (G), then

∑
j ̸=i dTj (x) ≤ n − 1 − k = k − 1. Because G has k − 1 edge

disjoint spanning trees except for Ti and Tj(j ̸= i) is a spanning tree.
Thus, dTj (x) = 1(j ̸= i). By Lemma 2.1, G has k CISTs. Hence, G is a
minimal graphs for k CISTs.

Figure 1 illustrates K6 is a minimal graphs for 3 CISTs if n = 6 and
there exists only one spanning tree Ti(1 ≤ i ≤ 3) such that dTi(x) = 3 for
each vertex x ∈ V (G).
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Proposition 2.1. Let G be a connected graph with n(n ≥ 1) vertices.88

We suppose that G has k edge disjoint spanning trees T1, T2, . . . , Tk and89

E(G) = E(T1)∪E(T2)∪ · · ·∪E(Tk). If it satisfies one of the following two90

conditions, then G is a minimal graph for k CISTs.91

(a) n = 2k and there exists only one spanning tree Ti(1 ≤ i ≤ k) such92

that dTi(x) = k for each vertex x ∈ V (G).93

(b) The subgraph induced by all internal vertex of Ti(1 ≤ i ≤ k) is a94

path P = x1x2 · · ·xr and dTi(x1) = dTi(xr) = k, dTi(xi) = k+1 for95

i ̸= 1, r, where r is the number of all internal vertices of Ti.96

Proof. (a) Let T1, T2, . . . , Tk be k edge disjoint spanning trees of G. Since97

E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk), we have e(G) = k(n − 1). If there98

exists only one spanning tree Ti such that dTi(x) = k for any vertex x ∈99

V (G), then
∑

j ̸=i dTj (x) ≤ n − 1 − k = k − 1. Because G has k − 1 edge100

disjoint spanning trees except for Ti and Tj(j ̸= i) is a spanning tree.101

Thus, dTj (x) = 1(j ̸= i). By Lemma 2.1, G has k CISTs. Hence, G is a102

minimal graphs for k CISTs.103

Figure 1 illustrates K6 is a minimal graphs for 3 CISTs if n = 6 and104

there exists only one spanning tree Ti(1 ≤ i ≤ 3) such that dTi(x) = 3 for105

each vertex x ∈ V (G).106

(b) Let T1, T2, . . . , Tk be k edge disjoint spanning trees of G. Since107

E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk), we have e(G) = k(n − 1). It is108

sufficient to prove that k CISTs.109

Suppose that Uj = {uj1, uj2, . . . , ujrj} are internal vertices of Tj and110

dTj (u
j
i ) ∈ {k, k + 1} for uji ∈ Uj , 1 ≤ i ≤ rj , 1 ≤ j ≤ k. Assume that111

Ti has a li leaves for 1 ≤ i ≤ k, then112

(1) ri = n− li.

According to the assumptions of the proposition, it follows that113

(2) 2e(Ti) = 2k + (ri − 2)(k + 1) + li, 1 ≤ i ≤ k.

Figure 1. Minimal graph for 3 CISTs in K6 (red line: edge
of T1, blue line: edge of T2, green line: edge of T3).
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(b) Let T1, T2, . . . , Tk be k edge disjoint spanning trees of G. Since
E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk), we have e(G) = k(n − 1). It is
sufficient to prove that k CISTs.

Suppose that Uj = {uj1, uj2, . . . , ujrj} are internal vertices of Tj and

dTj (u
j
i ) ∈ {k, k + 1} for uji ∈ Uj , 1 ≤ i ≤ rj , 1 ≤ j ≤ k. Assume that

Ti has a li leaves for 1 ≤ i ≤ k, then

(1) ri = n− li.

According to the assumptions of the proposition, it follows that

(2) 2e(Ti) = 2k + (ri − 2)(k + 1) + li, 1 ≤ i ≤ k.

Summing over i in (2), we get

(3) 2k2 + (k + 1)(

k∑

i=1

ri − 2k) +

k∑

i=1

li = 2k(n− 1).

Substituting (1) into (3), we obtain

(4) 2k2 + (k + 1)(
k∑

i=1

ri − 2k) + (nk −
k∑

i=1

ri) = 2k(n− 1).

Simplifying (4), and implies that

k∑

i=1

ri = n.

So, Ui∩Uj = ∅ for 1 ≤ i ̸= j ≤ k and U1∪U2∪· · ·∪Uk = V (G). It follows
that if dTi(u) ∈ {k, k + 1} for any vertex u ∈ Ui, then dTj (u) = 1(j ̸= i).
By Lemma 2.1, G has k CISTs. Hence, G is a minimal graphs for k CISTs.

Figure 2 and Figure 3 illustrates the graphs is a minimal graphs for k
CISTs if the subgraph induced by all internal vertex of Ti(1 ≤ i ≤ k) is a
path P = x1x2 · · ·xr and dTi(x1) = dTi(xr) = k, dTi(xi) = k+1 for i ̸= 1, r,
where r = 3 (or r = 4) and k = 2 (or k = 3).

□
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Summing over i in (2), we get114

(3) 2k2 + (k + 1)(
k∑

i=1

ri − 2k) +
k∑

i=1

li = 2k(n− 1).

Substituting (1) into (3), we obtain115

(4) 2k2 + (k + 1)(
k∑

i=1

ri − 2k) + (nk −
k∑

i=1

ri) = 2k(n− 1).

Simplifying (4), and implies that116

k∑

i=1

ri = n.

So, Ui∩Uj = ∅ for 1 ≤ i ̸= j ≤ k and U1∪U2∪· · ·∪Uk = V (G). It follows117

that if dTi(u) ∈ {k, k + 1} for any vertex u ∈ Ui, then dTj (u) = 1(j ̸= i).118

By Lemma 2.1, G has k CISTs. Hence, G is a minimal graphs for k CISTs.119

Figure 2 and Figure 3 illustrates the graphs is a minimal graphs for k120

CISTs if the subgraph induced by all internal vertex of Ti(1 ≤ i ≤ k) is a121

path P = x1x2 · · ·xr and dTi(x1) = dTi(xr) = k, dTi(xi) = k+1 for i ̸= 1, r,122

where r = 3 (or r = 4) and k = 2 (or k = 3).123

□124

Figure 2. Minimal graph for 2 CISTs (red line: edge of
T1, blue line: edge of T2).6 XIA HONG, FENG GAO, AND ZENGBAO WU

Proposition 2.2. Let G be a connected graph with n(n ≥ 1) vertices and125

G has k edge disjoint spanning trees. Suppose that V (G) can be partitioned126

into A and B, where A = {u|d(u) = 2k},B = {u|d(u) = 2k − 1}. Then G127

is minimal graph for k CISTs if and only if |A| = n− 2k, |B| = 2k.128

Proof. Let G be a minimal graph for k CISTs, then e(G) = k(n − 1). We
suppose that |A| = s, |B| = t, then

2k · s+ (2k − 1) · t = 2k(n− 1),

s+ t = n.

Consequently,129

s = n− 2k, t = 2k.

Suppose that |A| = n− 2k, |B| = 2k, then we have130

2k(n− 2k) + (2k − 1)2k = 2e(G).

It follows that131

(5) e(G) = k(n− 1).

We only need to show that G has k CISTs.132

For 1 ≤ j ≤ k, we suppose that Uj = {uj1, uj2, . . . , ujrj} are internal133

vertices of Tj and Aj = Uj ∩A,Bj = Uj ∩B, |Aj | = sj , |Bj | = tj , then134

sj + tj = rj .

Figure 3. Minimal graph for 3 CISTs (red line: edge of
T1, blue line: edge of T2, green line: edge of T3).

Proposition 2.2. Let G be a connected graph with n(n ≥ 1) vertices and
G has k edge disjoint spanning trees. Suppose that V (G) can be partitioned
into A and B, where A = {u|d(u) = 2k},B = {u|d(u) = 2k − 1}. Then G
is minimal graph for k CISTs if and only if |A| = n− 2k, |B| = 2k.
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Proof. Let G be a minimal graph for k CISTs, then e(G) = k(n − 1). We
suppose that |A| = s, |B| = t, then

2k · s+ (2k − 1) · t = 2k(n− 1),

s+ t = n.

Consequently,

s = n− 2k, t = 2k.

Suppose that |A| = n− 2k, |B| = 2k, then we have

2k(n− 2k) + (2k − 1)2k = 2e(G).

It follows that

(5) e(G) = k(n− 1).

We only need to show that G has k CISTs.

For 1 ≤ j ≤ k, we suppose that Uj = {uj1, uj2, . . . , ujrj} are internal
vertices of Tj and Aj = Uj ∩A,Bj = Uj ∩B, |Aj | = sj , |Bj | = tj , then

sj + tj = rj .

and

(6)

k∑

j=1

sj ≤ n− 2k,

k∑

j=1

tj ≤ 2k.

As dTl
(u) ≥ 1(l ̸= j) for u ∈ Uj and there are k − 1 edge disjoint spanning

trees except for Tj . So, we have

(7)

∣∣∣∣∣∣
N(u) ∩

⋃

l ̸=j

Ul

∣∣∣∣∣∣
≥ k − 1.

Therefore,

dTj (u) ≤ k + 1, u ∈ Aj ,

dTj (u) ≤ k, u ∈ Bj .

Claim. dTj (u
j
i ) = k + 1 for uji ∈ Aj , dTj (u

j
i ) = k for uji ∈ Bj . Suppose, to

the contrary, that there exists a vertex u ∈ Bj such that dTj (u) < k or there
exists a vertex u ∈ Aj such that dTj (u) < k+1. Without loss of generality,
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we may assume there exists a vertex u1i ∈ B1 such that dT1(u
1
i ) < k, then

e(T1) ≤ (k − 1) + (t1 − 1)k + s1(k + 1) + n− r1

= t1k + s1k + n− t1 − 1,

e(T2) ≤ t2k + s2(k + 1) + n− r2,

· · ·
e(Tk) ≤ tkk + sk(k + 1) + n− rk.(8)

Summing over k in (8) and by (6), we obtain

k∑

j=1

e(Tj) ≤ 2k(n− 1)− 1.

This is a contradiction to (5). The claim is proved.
By Claim, the equation in (7) is true and we have

(9) dTl
(u) = 1(l ̸= j), u ∈ Uj .

Thus, Ui ∩ Uj = ∅ for 1 ≤ i ̸= j ≤ k, U1 ∪ U2 ∪ · · · ∪ Uk = V (G) and
dTj (u) ∈ {k, k + 1} for any vertex u ∈ Uj . By Lemma 2.1, G has k CISTs.
Hence, G is a minimal graphs for k CISTs.

□
Based on propositions 2.1 and 2.2, we characterized all minimal graphs

for k CISTs.

Theorem 2.3. Let G be a connected graph with n vertices. Then G is a
minimal graph for k(k ≥ 2) CISTs if and only if G is complete graph with

2k vertices or a graph Ĝ with k-part vertex set (V1, V2, . . . , Vk) and |Vi| ≥ 2
such that satisfies the following conditions:

(1) for i ∈ [k], the induced subgraph G[Vi] is a path;
(2) for any i ̸= j, every connected component H of B(Vi, Vj) is uni-

cyclic graph.

Remark: The Proposition 2.1 is a special case of Theorem 2.3.

Finally, we obtain the number of CISTs in complete t(t ≥ 2)-partite
graphs Knt,nt−1,...,n1 . In fact, we prove the Theorem 2.4 by a different
method with Kung-Jui Pai’s [13] and the Theorem 2.5 generalizes the main
results of Kung-Jui Pai’s [13].

Theorem 2.4. Let G be complete bipartite graph Kn2,n1 for all n2 ≥ n1 ≥
4. Then G has ⌊n1

2 ⌋ CISTs.

Theorem 2.5. Let G be complete t(t ≥ 3)-partite graph Knt,nt−1,...,n1 with

nt ≥ nt−1 ≥ · · · ≥ n1. Then G has ⌊nt−1+nt−2

2 ⌋ CISTs.
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3. Proof of Theorem 2.3

Proof. If G is a complete graph K2k and let G has k-partite vertex set
(V1, V2, . . . , Vk) and |Vi| = 2(i ∈ [k]), then G[Vi] ∼= P2 and B(Vi, Vj) ∼= C4.
Thus, the vertex set (V1, V2, . . . , Vk) of G is a CIST-partition. By Lemma
2.6, G has k CISTs and we have

e(G) = k +
k(k + 1)

2
4 = k + 2k(k − 1) = k(n− 1).

So, G is a minimal graphs for k CISTs.

If G ∼= Ĝ and Ĝ has k-partite vertex set (V1, V2, . . . , Vk) such that
G[Vi](i ∈ [k]) is a path and every connected component of B(Vi, Vj)(j ̸= i)
is unicyclic graph, then

e(G[Vi]) = |Vi| − 1,

e(B(Vi, Vj)) = |Vi|+ |Vj |.

We first compute e(G), then

e(G) =
k∑

i=1

e(G[Vi]) +
∑

j ̸=i

e(B(Vi, Vj))

= |V1| − 1 + |V1|+ |V2|+ |V2| − 1 + |V2|+ |V3|+ |V1|+ |V3|+ |V3|
− 1 + |V3|+ |V4|+ · · ·+ |Vk| − 1 + |Vk|+ |V1|

= n− k + |V1|+ |V2|
+ |V1|+ |V3|+ |V2|+ |V3|
+ |V1|+ |V4|+ |V2|+ |V4|+ |V3|+ |V4|
· · ·
+ |V1|+ |Vk|+ |V2|+ |Vk|+ |V3|+ |Vk|+ · · ·+ |Vk−1|+ |Vk|

= n− k + |V1|(k − 1) + |V2|(k − 1) + · · ·+ |Vk|(k − 1)

= n− k + n(k − 1)

= k(n− 1).

Thus, G is a minimal graphs for k CISTs.
On the other hand, let G be minimal graphs for k CISTs. By the def-

inition of minimal graphs for k CISTs, G has k CISTs. By Lemma 2.6,
G has k-partite vertex set (V1, V2, . . . , Vk) such that every induced sub-
graph G[Vi](i ∈ [k]) is a connected and every connected component H of
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B(Vi, Vj)(j ̸= i) has no tree component. Therefore,

e(G) =
k∑

i=1

e(G[Vi]) +
∑

j ̸=i

e(B(Vi, Vj))

≥
k∑

i=1

(|Vi| − 1) +
∑

j ̸=i

(|Vi|+ |Vj |)

= k(n− 1).

Since e(G) = k(n− 1), then this equation is true only if e(G[Vi]) = |Vi| − 1
and e(B(Vi, Vj)) = |Vi|+ |Vj |.

Hence, in this case, we have G[Vi] is a path and B[Vi, Vj ] is an unicyclic
graph. If |Vi| = 2, then G ∼= K2k and G[Vi] is a path P2 and B(Vi, Vj) is

a cycle C4. If |Vi| ≥ 3, then G ∼= Ĝ such that G[Vi] is a path Pm(m ≥ 3)
and B[Vi, Vj ] is a unicyclic graph.

□

4. Proof of Theorem 2.4

Proof. Let G be a complete bipartite graph Kn2,n1 with |Vi| = ni, i ∈ [2].
Let

V1 = {ui|i ∈ [n1]}, V2 = {vi|i ∈ [n2]}.
where n2 ≥ n1 ≥ 4. We divide the V (G) into W1,W2, . . . ,W⌊n1

2
⌋ as follows.

If n1 ≡ 0 (mod 2), then let

Wi = {u2i−1, v2i−1, u2i, v2i}, 1 ≤ i ≤ n1

2
− 1,

Wn1
2

= {un1−1, un1 , vn1−1, vn1 , . . . , vn2}.
If n1 ≡ 1 (mod 2), then let

Wi = {u2i−1, v2i−1, u2i, v2i}, 1 ≤ i ≤ ⌊n1

2
⌋ − 1,

Wi = {u2i−1, v2i−1, u2i, v2i, un1 , vn1 , . . . , vn2}, i = ⌊n1

2
⌋.

If 1 ≤ i ≤ ⌊n1
2 ⌋ − 1, then every vertex u2i−1, u2i in Wi is adjacent to

v2i−1, v2i in Wi. Thus, G[Wi] is a cycle. If i = ⌊n1
2 ⌋, then every vertex

u2i−1, u2i (or u2i−1, u2i, un1) in Wi is adjacent to each vertex
{v2i−1, v2i, vn1+1, . . . , vn2} (or {v2i−1, v2i, vn1 , vn1+1, . . . , vn2}) inWi, respec-
tively. So, G[Wi] is connected graph.

For 1 ≤ i ̸= j ≤ ⌊n1
2 ⌋ − 1, since every vertex u2i−1, u2i in Wi is adjacent

to each vertex v2j−1, v2j in Wj and therefore dB(Wi,Wj)(x) ≥ 2 for any

vertex x ∈ Wi. For 1 ≤ i ≤ ⌊n1
2 ⌋ − 1, j = ⌊n1

2 ⌋, every vertex u2i−1, u2i in
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Wi is adjacent to each vertex in V2 ∩Wj and every vertex v2i−1, v2i in Wi

is adjacent to each vertex in V1 ∩ Wj . Hence, dB(Wi,Wj)(x) ≥ 2 for any

vertex x ∈ Wi. So, B(Wi,Wj) has no tree component. By Lemma 2.6, G
has ⌊n1

2 ⌋ CISTs. □

5. Proof of Theorem 2.5

Proof. Let G be a complete t(t ≥ 3)-partite graph Knt,nt−1,...,n1 with |Vi| =
ni, i ∈ [t], where nt ≥ nt−1 ≥ · · · ≥ n1. Let

Vj = {uji |i = 1, 2, . . . , nj}, j ∈ [t].

We divide the V (G) into W1,W2, . . . ,W⌊nt−1+nt−2
2

⌋ as follows.

If nt−1 + nt−2 ≡ 0 (mod 2), let

Wi = {uji |1 ≤ j ≤ t}, 1 ≤ i ≤ n1.

Wi = {uji |2 ≤ j ≤ t}, n1 + 1 ≤ i ≤ n2.

Wi = {uji |3 ≤ j ≤ t}, n2 + 1 ≤ i ≤ n3.

· · ·
Wnt−2 = {ujnt−2

|t− 2 ≤ j ≤ t}.
Wnt−2+l = {ut−1

nt−2+(2l−1), u
t−1
nt−2+2l, u

t
nt−2+(2l−1), u

t
nt−2+2l},

1 ≤ l ≤ nt−1 − nt−2

2
− 1.

Wnt−2+l = {ut−1
nt−2+(2l−1), u

t−1
nt−2+2l, u

t
nt−2+(2l−1),

utnt−2+2l, u
t
nt−2+2l+1, . . . , u

t
nt
}, l =

nt−1 − nt−2

2
.

If nt−1 + nt−2 ≡ 1 (mod 2), let

Wi = {uji |1 ≤ j ≤ t}, 1 ≤ i ≤ n1.

Wi = {uji |2 ≤ j ≤ t}, n1 + 1 ≤ i ≤ n2.

Wi = {uji |3 ≤ j ≤ t}, n2 + 1 ≤ i ≤ n3.

· · ·
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Wnt−2 = {ujnt−2
|t− 2 ≤ j ≤ t}.

Wnt−2+l = {ut−1
nt−2+(2l−1), u

t−1
nt−2+2l, u

t
nt−2+(2l−1), u

t
nt−2+2l},

1 ≤ l ≤ ⌊nt−1 − nt−2

2
⌋ − 1.

Wnt−2+l = {ut−1
nt−2+(2l−1), u

t−1
nt−2+2l, u

t−1
nt−1

, utnt−2+(2l−1),

utnt−2+2l, u
t
nt−1

, . . . , utnt
}, l = ⌊nt−1 − nt−2

2
⌋.

For 1 ≤ i ≤ nt−2, every vertex uji in Wi is adjacent to uli ∈ Wi(l ̸= j).

Thus, G[Wi] is a complete graph. For nt−2+1 ≤ i ≤ ⌊nt−1+nt−2

2 ⌋−1, every

vertex ut−1
nt−2+(2l−1), u

t−1
nt−2+2l in Wi is adjacent to each vertex utnt−2+(2l−1),

utnt−2+2l in Wi. So, G[Wi] is a cycle. For i = ⌊nt−1+nt−2

2 ⌋, every vertex in

Wi ∩ Vt−1 is adjacent to each vertex of Wi ∩ Vt. So, G[Wi] is connected
graph.

If 1 ≤ i ̸= j ≤ nt−2, then |Wi| ≥ 3 and dB(Wi,Wj)(x) ≥ 2 for x ∈ Wi.

Thus, B(Wi,Wj) has no tree component. If nt−2+1 ≤ i ̸= j ≤ ⌊nt−1+nt−2

2 ⌋,
then dB[Wi,Wj ](x) ≥ 2 for x ∈ Wi. In addition, we get dB[Wi,Wj ](x) ≥ 2 for

1 ≤ i ≤ nt−2 and nt−2 + 1 ≤ j ≤ ⌊nt−1+nt−2

2 ⌋. So, B(Wi,Wj) has no tree

component. By Lemma 2.6, G has ⌊nt−1+nt−2

2 ⌋ CISTs. □
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