Volume 15, Number 3, Pages 117–129 ISSN 1715-0868

DECOMPOSITION OF COMPLETE TRIPARTITE GRAPHS INTO CYCLES AND PATHS OF LENGTH THREE

SHANMUGASUNDARAM PRIYADARSINI AND APPU MUTHUSAMY

ABSTRACT. Let C_k and P_k denote a cycle and a path on k vertices, respectively. In this paper, we obtain necessary and sufficient conditions for the decomposition of $K_{r,s,t}$ into p copies of C_3 and q copies of P_4 for all possible values of p, $q \ge 0$.

1. Introduction

We consider only finite undirected simple graphs. Let $K_{n_1,n_2,...,n_r}$ denote a complete r-partite graph with part sizes n_1, n_2, \ldots, n_r , where each $n_i > 0$ is an integer. A partition of a graph G into edge disjoint subgraphs $G_1, G_2, G_3, \ldots, G_n$ such that their union gives G is called a decomposition of G. Let C_k and P_k respectively denote a cycle and a path on k vertices. They are also called a k-cycle and k-path, respectively. The problem of finding necessary and sufficient conditions to decompose complete n-partite graphs into k-cycles has been considered for many values of n and k. The case n=2was completely solved by Sotteau [13]. Smith [12] proved that the necessary conditions for the decomposition of complete equipartite graphs into cycles of length 2p (where $p \geq 3$ is a prime) are also sufficient. In the case of complete tripartite graphs, Cavenagh [5] has shown that $K_{m,m,m}$ can be decomposed into k-cycles if and only if $k \leq 3m$ and k divides $3m^2$. Billington [2] gave necessary and sufficient conditions for the existence of a decomposition of any complete tripartite graph into specified number of 3-cycles and 4-cycles. Mahmoodian and Mirzakhani [10] proved the existence of a C_5 -decomposition of $K_{r,s,t}$ whenever the necessary conditions are satisfied and two of the partite sets have equal size, except when $r = s = 0 \pmod{5}$ and $t \neq 0 \pmod{5}$. The authors of [1, 3, 6, 7] also studied this problem. Billington et al. [4] gave necessary and sufficient conditions for the path and cycle decomposition of complete equipartite graphs with 3 and 5 parts. Priyadharsini and Muthusamy [11] gave necessary and sufficient conditions for the existence of (G_n, H_n) -decomposition of λK_n and $\lambda K_{n,n}$, where G_n ,

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors October 4, 2018, and in revised form February 9, 2020.

Key words and phrases. Cycle, Path, Complete tripartite graph, Decomposition of graphs.

 $H_n \in \{C_n, P_n, S_{n-1}\}$. Jeevadoss and Muthusamy [8] gave necessary and sufficient conditions for the existence of $\{P_{k+1}, C_k\}_{p,q}$ -decomposition of $K_{m,n}$ and K_n , when $m \geq k/2$, $n \geq \lceil (k+1)/2 \rceil$ for $k \equiv 0 \pmod 4$ and when m, $n \geq 2k$ for $k \equiv 2 \pmod 4$.

In this paper we give necessary and sufficient conditions for decomposing $K_{r,s,t}$ with $r \leq s \leq t$ into p copies of C_3 and q copies of P_4 for all possible values of $p, q \geq 0$. Definitions and notation not defined here can be referred to in [9].

Lemma 1.1 ([7]). Let r, s, and t be integers such that $r \leq s \leq t$. A Latin rectangle of order $r \times s$ based on t elements is equivalent to the existence of rs edge-disjoint triangles sitting inside the complete tripartite graph $K_{r,s,t}$.

The triangle (i, j, k) in the 3-partite graph $K_{r,s,t}$ is the subgraph of $K_{r,s,t}$ induced by the *i*th vertex of part 1, *j*th vertex of part 2, and *k*th vertex of part 3.

Definition 1.2 ([7]). Consider a rectangular array of order $r \times s$ with entries from the set $T = \{1, 2, ..., t\}$. If each element of T appears at most once in each row and at most once in each column, we call such an array a Latin rectangle of order $r \times s$ on t elements.

Definition 1.3 ([7]). Let r, s, and t be integers such that $r \leq s \leq t$. A Latin representation of the complete tripartite graph $K_{r,s,t}$ is a Latin rectangle of order $r \times s$ on t elements, together with a set of t - s elements at the end of each row and a set of t - r elements at the bottom of every column so that each element from the set $T = \{1, 2, 3, ..., t\}$ occurs once in each of the r rows and once in each of the s columns.

Remark: To construct a Latin representation of the complete tripartite graph $K_{r,s,t}$ we first take a Latin rectangle of order $r \times s$ on t elements. We then adjoin to the end of each row a set of remaining elements from the set $\{1, 2, 3, \ldots, t\}$ not already used in that row and to the bottom of each column we adjoin a set of remaining elements from the set $\{1, 2, 3, \ldots, t\}$ not already used in that column as in Figure 1.

Each entry k of the set appended at the end of the ith row represents an edge from the ith element of the partite set of size r to the element k of the partite set of size t. Similarly, each entry k of the set appended at the bottom of the jth column represents an edge from the jth element of the partite set of size s to the element k of the partite set of size t. So a Latin representation of $K_{r,s,t}$ is in fact equivalent to a decomposition of $K_{r,s,t}$ into rs triangles and $rK_{1,t-s} + sK_{1,t-r}$.

Here we define trade to be a set of elements in the Latin representation, corresponding to a set of triangles and edges in $K_{r,s,t}$ which are P_4 decomposable. We define relabelling of the elements of a trade to be a bijection ϕ from the set of elements of $T = \{1, 2, ..., t\}$ onto itself. Thus every occurrence of $i \in T$ in the trade is replaced by $\phi(i)$. The relabelling of

1	2	•				s	s+1	 t
2	3	•	•	•		s+1	s+2	 1
r	r+1		•	•	η	r + s - 1	r+s	 r-1
r+1	r+2	•	•	•		r+s		
•								
t	1	•	٠.			s-1		

Figure 1.

the elements in a trade does not change the structure of the corresponding set of edges in $K_{r,s,t}$.

Construction 1.5. Two copies of C_3 , with a common vertex, is equivalent to two copies of P_4 . Let (a_1,b_1,c_1) , (a_1,b_2,c_2) be two copies of C_3 with a common vertex a_1 ; then it can be written as two copies of P_4 , $P(c_1,a_1,b_2,c_2)$, $P(c_2,a_1,b_1,c_1)$. In general, n copies of C_3 with a common vertex is equivalent to n copies of P_4 . Let (a_1,b_1,c_1) , (a_1,b_2,c_2) ,..., $(a_1,b_{(n-1)},c_{(n-1)})$, (a_1,b_n,c_n) be n copies of C_3 with a common vertex a_1 ; then it can be written n copies of P_4 as $P(c_1,a_1,b_2,c_2)$, $P(c_2,a_1,b_3,c_3)$,..., $P(c_{(n-1)},a_1,b_n,c_n)$, $P(c_n,a_1,b_1,c_1)$.

Construction 1.6. Here we define two types of trades, in the first type we use elements from outside the Latin rectangle which are P_4 -decomposable. The trades of first type are T_1 , T_2 , T_3 , T_4 , as shown in Figure 2 from the elements outside the Latin rectangle in which each copy of trades in $K_{r,s,t}$ are all edge-disjoint and P_4 -decomposable.

The trade T_1 can be obtained from the newly adjoined elements on the right side of the Latin rectangle which can be decomposed into three copies of P_4 as follows: $P(c_{(s+1)}, a_i, c_{(s+2)}, a_j)$, $P(a_i, c_{(s+3)}, a_k, c_{(s+5)})$, $P(c_{(s+3)}, a_j, c_{(s+4)}, a_k)$. Similarly, by relabelling we can obtain the trade T_1 from the newly adjoined elements on the bottom of the Latin rectangle.

The trade T_2 can be obtained from the newly adjoined elements on the right side of the Latin rectangle which can be decomposed into two copies of P_4 as $P(c_{(s+1)}, a_i, c_{(s+2)}, a_j)$, $P(a_j, c_{(s+3)}, a_k, c_{(s+4)})$. Similarly, by relabelling we can obtain the trade T_2 from the newly adjoined elements on the bottom of the Latin rectangle.

Figure 2.

The trade T_3 can be obtained from the newly adjoined elements on the right side and the bottom of the Latin rectangle which can be decomposed into three copies of P_4 as $P(c_{(r+3)}, b_i, c_{(r+4)}, a_i)$, $P(c_{(r+4)}, b_j, c_{(s+5)}, a_j)$, $P(c_{(r+5)}, b_k, c_{(r+6)}, a_k)$, where s+4, s+5, s+6 in the right side of the Latin rectangle are equivalent to r+4, r+5, r+6 respectively.

The trade T_4 can be obtained from the newly adjoined elements on the right side and the bottom of the Latin rectangle which can be decomposed into four copies of P_4 as $P(c_{(r+1)}, b_i, c_{(r+2)}, b_j)$, $P(b_i, c_{(s+3)}, b_j, c_{(s+4)})$, $P(c_{(s+3)}, b_k, c_{(s+4)}, a_i)$, $P(b_k, c_{(s+5)}, a_i, c_{(s+3)})$ where s+3, s+4, s+5 in the right side of the Latin rectangle are equivalent to r+3, r+4, r+5 respectively.

In the second type, the elements from both inside and outside of the Latin rectangle are used. We use these two types of suitable trades untill all the edges in $K_{r,s,t}$ are used.

2. Necessary conditions

Theorem 2.1. If the complete tripartite graph $K_{r,s,t}$, where $r \leq s \leq t$, has a decomposition into p copies of C_3 and q copies of P_4 , then the following holds:

- (i) 3|(rs + st + tr),
- (ii) $q \neq 1$.

Proof. By a counting argument, we get the required condition (i). We prove (ii) by a contradiction. Suppose that q = 1. Then the end vertices of the only path P_4 have odd degree in $(K_{r,s,t} - E(P_4))$. Therefore the resulting graph $(K_{r,s,t} - E(P_4))$ cannot be decomposed into C_3 , a contradiction. Hence $q \neq 1$.

1	2	3
2	3	1
3	1	2

Figure 3.

Corollary 2.2. If the complete tripartite graph $K_{r,s,t}$ can be decomposed into pC_3 and qP_4 , where $r \leq s \leq t$, then r, s, and t must satisfy one of the following:

- (a) any two of r, s, t are congruent to $0 \pmod{3}$,
- (b) all of r, s, t are congruent to 1 (mod 3),
- (c) all of r, s, t are congruent to 2 (mod 3).

Proof. The proof follows from the fact that the number of edges of $K_{r,s,t}$ is divisible by 3.

3. Sufficient conditions

Lemma 3.1. The graph $K_{3,3,3}$ can be decomposed into p copies of C_3 and q copies of P_4 , where $0 \le p \le 9$ and $0 \le q \le 9$, $q \ne 1$.

Proof. Form a Latin square of order 3×3 on 3 elements as shown in Figure 3. By Lemma 1.1, we have nine edge-disjoint 3-cycles as follows:

$$(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3),$$

 $(a_2, b_3, c_1), (a_3, b_1, c_3), (a_3, b_2, c_1), (a_3, b_3, c_2).$

In fact, this gives the required decomposition when p=9, q=0. The required decomposition for the other choices of p and q can be obtained by using Construction 1.5.

Lemma 3.2. The graph $K_{3,3,4}$ can be decomposed into pC_3 and qP_4 , where $0 \le p \le 7$ and $4 \le q \le 11$.

Proof. We form a Latin rectangle of order 3×3 on 4 elements. By Lemma 1.1, we have nine copies of C_3 as follows:

$$(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3), (a_2, b_3, c_4), (a_3, b_1, c_3), (a_3, b_2, c_4), (a_3, b_3, c_1).$$

The newly added element to the right side of each row in the Latin rectangle represents a single edge which cannot be decomposed into P_4 . Similarly the newly added element to the bottom of each column of the Latin rectangle represents a single edge which cannot be decomposed into P_4 . Here we use trades of the second type to get required number of copies of P_4 . The single

Figure 4.

edges outside the Latin rectangle along with the two copies of C_3 indicated by bold letters in Figure 4 give four copies of P_4 :

$$P(a_1, c_4, b_2, a_3), P(b_1, c_4, a_3, b_3), P(a_2, c_1, a_3, c_2), P(b_2, c_1, b_3, c_2).$$

Also, when p = 6, q = 5, we have six copies of C_3 :

$$(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3), (a_2, b_3, c_1)$$

and five copies of P_4 :

$$P(c_3, b_3, c_1, a_2), P(c_1, a_3, b_1, c_3), P(c_2, a_3, b_2, c_4),$$

 $P(a_1, c_4, b_2, c_1), P(b_1, c_4, a_3, b_3).$

The other choices of p and q can be obtained by using Construction 1.5. Hence the graph $K_{3,3,4}$ has the desired decomposition.

Theorem 3.3. If $r \equiv 0 \pmod{3}$, $s \equiv 0 \pmod{3}$, and for any t, then the complete tripartite graph $K_{r,s,t}$, $r \leq s \leq t$, can be decomposed into p copies of C_3 and q copies of P_4 , where $q \neq 1$.

Proof. The proof is separated into three cases.

Case 1:
$$r \equiv 0 \pmod{3}$$
, $s \equiv 0 \pmod{3}$, $t \equiv 0 \pmod{3}$.

The Latin rectangle of order $r \times s$ on t elements give rs triangles. The other choices of p and q can be obtained by Construction 1.5. Now the newly added elements to the right side of the Latin rectangle form (r/3)[(t-s)/3] copies of 3×3 arrays each representing the trade T_1 . Similarly the newly added elements to the bottom of the Latin rectangle form (s/3)[(t-r)/3] copies of 3×3 arrays each representing the trade T_1 . By Construction 1.6, the copies of trade T_1 are all edge-disjoint and P_4 -decomposable. Hence we have the required decomposition, where $0 \le p \le rs$,

$$r\left(\frac{t-s}{3}\right)+s\left(\frac{t-r}{3}\right)\leq q\leq rs+r\left(\frac{t-s}{3}\right)+s\left(\frac{t-r}{3}\right).$$

Case 2: $r \equiv 0 \pmod{3}$, $s \equiv 0 \pmod{3}$, $t \equiv 1 \pmod{3}$.

For the graph $K_{r,r,r+1}$, the newly added elements to the right side of Latin rectangle form an $r \times 1$ array which cannot be decomposed into P_4 . Similarly the newly added elements to the bottom of Latin rectangle form a $1 \times s$ array which cannot be decomposed into P_4 . Therefore we

use trades of the second type to obtain the required number of copies of P_4 . The single edges on the both side of the Latin rectangle along with 2r/3 copies of C_3 give 4r/3 copies of P_4 . These 4r/3 copies of P_4 and the remaining $(r^2 - (2r/3))$ copies of C_3 give the maximum number of copies of P_4 by Construction 1.5. Hence the graph has the required decomposition, where $0 \le p \le (r^2 - \frac{2r}{3})$,

$$\frac{4r}{3} \le q \le r^2 + \frac{2r}{3}.$$

For the graph $K_{r,s,s+1}$, the newly added elements to the right side of the Latin rectangle is an $r \times 1$ array. The newly added elements to the bottom of the Latin rectangle form (s/3)[((t-r)-4)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form 2s/3 copies of 2×3 arrays which represents the trade T_2 . The elements of r/3 copies of 3×1 array in the right side of the Latin rectangle along with the elements of r/3 copies of 2×3 array at the bottom of the Latin rectangle which contain the same elements of a 3×1 array form the trade T_3 . By Construction 1.6, the edge-disjoint copies of T_1 , T_2 , T_3 are T_4 -decomposable. The remaining possible choices of T_1 and T_2 can be obtained by using Construction 1.5. Hence we have the required decomposition, where $0 \le p \le rs$,

$$s \left[\frac{(t-r)-4}{3} \right] + \frac{4s}{3} - \frac{2r}{3} + r \le q$$
$$\le s \left[\frac{(t-r)-4}{3} \right] + \frac{4s}{3} - \frac{2r}{3} + r + rs.$$

For t > s+1, the newly added elements to the right side of the Latin rectangle form (r/3)[((t-s)-4)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form 2r/3 copies of 3×2 arrays which represents the trade T_2 . The newly added elements to the bottom of the Latin rectangle form (s/3)[((t-r)-4)/3] copies of 3×3 arrays which represents the trade T_1 and 2s/3 copies of 2×3 arrays which represents the trade T_2 . By Construction 1.6, the edge-disjoint copies of T_1 , T_2 are P_4 -decomposable. The remaining possible choices of p and q can be obtained by using Construction 1.5. Hence we have the required decomposition, where $0 \le p \le rs$,

$$s\left[\frac{(t-r)-4}{3}\right] + r\left[\frac{(t-s)-4}{3}\right] + 4\left(\frac{r}{3} + \frac{s}{3}\right) \le q$$
$$\le s\left[\frac{(t-r)-4}{3}\right] + r\left[\frac{(t-s)-4}{3}\right] + 4\left(\frac{r}{3} + \frac{s}{3}\right) + rs.$$

Case 3: $r \equiv 0 \pmod{3}$, $s \equiv 0 \pmod{3}$, $t \equiv 2 \pmod{3}$.

In this graph, the newly added elements to the right side of Latin rectangle form (r/3)[((t-s)-2)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form r/3 copies of 3×2 arrays

which represents the trade T_2 . Similarly the newly added elements to the bottom of the Latin rectangle form (s/3)[((t-r)-2)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form s/3 copies of 2×3 arrays which represents the trade T_2 . Hence we have the required decomposition, where $0 \le p \le rs$,

$$s\left[\frac{(t-r)-2}{3}\right] + r\left[\frac{(t-s)-2}{3}\right] + \frac{2(r+s)}{3} \le q$$

$$\le s\left[\frac{(t-r)-2}{3}\right] + r\left[\frac{(t-s)-2}{3}\right] + \frac{2(r+s)}{3} + rs.$$

Theorem 3.4. If $r \equiv 0 \pmod{3}$, $s \equiv 1 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, r < s < t, can be decomposed into pC_3 and qP_4 , where $q \neq 1$.

Proof. The Latin rectangle of order $r \times s$ on t elements form rs triangles. The other choices of p and q can be obtained by Construction 1.5. The newly added elements to the right side of the Latin rectangle form (r/3)[((t-s)-2)/3] copies of 3×3 arrays each representing the trade T_1 and the remaining elements form r/3 copies of 3×2 arrays which represents the trade T_2 . Similarly the newly added elements to the bottom of the Latin rectangle form [(t-r)/3][(s-4)/3] copies of 3×3 arrays each representing the trade T_1 and the remaining elements form [2(t-r)/3] copies of 3×2 arrays which represents the trade T_2 . By Construction 1.6, all the trades are edge-disjoint and P_4 -decomposable. Hence we have the required decomposition, where $0 \le p \le rs$,

$$r\left[\frac{(t-s)-2}{3}\right] + \frac{4(t-r)}{3} + \frac{2r}{3} + \left[\frac{(t-r)(s-4)}{3}\right] \le q$$
$$\le rs + r\left[\frac{(t-s)-2}{3}\right] + \frac{4(t-r)}{3} + \frac{2r}{3} + \frac{(t-r)(s-4)}{3}.$$

Theorem 3.5. If $r \equiv 0 \pmod{3}$, $s \equiv 2 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, r < s < t, can be decomposed into pC_3 and qP_4 , where $q \neq 1$.

Proof. We consider s = r + 2, then the newly added elements to the right side of the Latin rectangle is an $r \times 1$ array which cannot be decomposed into P_4 . Therefore, we use trades of the second type. These r single edges along with 2r/3 triangles give 5r/3 copies of P_4 . Now the newly added elements to the bottom of the Latin rectangle have (s-2)/3 copies of 3×3 arrays and one copy of a 3×2 array. Hence we have the required decomposition, where $0 \le p \le r(s-(2/3))$,

$$\frac{5r}{3} + s \le q \le \frac{5r}{3} + s + r\left(s - \frac{2}{3}\right).$$

For t=s+1, the newly added elements to the right side of the Latin rectangle form r/3 copies of 3×1 arrays which cannot be decomposed into copies of P_4 . Now the elements of r/3 copies of 3×1 arrays in the right side of the Latin rectangle along with the elements of r/3 copies of 2×3 arrays in the bottom of the Latin rectangle which contain the same elements of a 3×1 array form the trade T_3 . The newly added elements to the bottom of the Latin rectangle form ([((t-r)-6)/3][(s-2)/3] copies of 3×3 arrays, (t-r)/3 copies of 3×2 arrays and 3(s-2)/3 copies of 2×3 arrays. Therefore we get [((t-r)-6)/3][(s-2)/3] copies of the trade T_1 , (t-r)/3, 3(s-2)/3, and (3s-6-r)/3 copies of T_2 in which all are edge-disjoint. Hence we have the required decomposition, where $0 \le p \le rs$ and $q \ne 1$,

$$(s-2)\left[\frac{(t-r)-6}{3}\right] + r + \frac{2(t-r)}{3} + 2(s-2) + \frac{2(3s-6-r)}{3} \le q$$

$$\le (s-2)\left[\frac{(t-r)-6}{3}\right] + r + \frac{2(t-r)}{3} + 2(s-2) + \frac{2(3s-6-r)}{3} + rs.$$

Now for t>s+1, the newly added elements to the right side of the Latin rectangle form $\frac{r}{3}[\frac{(t-s)-4}{3}]$ copies of 3×3 arrays and 2r/3 copies of 3×2 arrays which represents the trade T_1 and T_2 respectively. The newly added elements to the bottom of the Latin rectangle form [(t-r)/3][(s-2)/3] copies of 3×3 arrays and [(t-r)/3] copies of 3×2 arrays which represents the trade T_1 and T_2 respectively. Hence we have the required decomposition, where $0\leq p\leq rs$ and $q\neq 1$,

$$\begin{aligned} \frac{4r}{3} + \frac{2(t-r)}{3} + \frac{(t-r)(s-2)}{3} + r\left[\frac{(t-s)-4}{3}\right] &\leq q \\ &\leq \frac{4r}{3} + \frac{2(t-r)}{3} + \frac{(t-r)(s-2)}{3} + r\left[\frac{(t-s)-4}{3}\right] + rs. \end{aligned}$$

Theorem 3.6. If $r \equiv 1 \pmod{3}$, $s \equiv 1 \pmod{3}$, and $t \equiv 1 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r \leq s \leq t$, can be decomposed into pC_3 and qP_4 , where $q \neq 1$.

Proof. We consider three cases:

Case 1: r > 1.

In this case the Latin rectangle of order $r \times s$ on t elements give rs triangles. The newly added elements to the right side of the Latin rectangle form [(t-s)/3][(r-4)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form 2(t-s)/3 copies of 2×3 arrays which represents the trade T_2 . The newly added elements to the bottom of the Latin rectangle form [(t-r)/3][(s-4)/3] copies of 3×3 arrays each representing the trade T_1 and the remaining elements form 2(t-r)/3 copies of 3×2 arrays which represents the trade T_2 . The other

choices of p and q can be obtained by Construction 1.5. Hence we have the required decomposition, where $0 \le p \le rs$,

$$\frac{(t-s)(r-4)}{3} + \frac{(t-r)(s-4)}{3} + \frac{4(t-s)}{3} + \frac{4(t-r)}{3} \le q$$

$$\le rs + \frac{(t-s)(r-4)}{3} + \frac{(t-r)(s-4)}{3} + \frac{4(t-s)}{3} + \frac{4(t-r)}{3}.$$

Case 2: r = 1, s = 1.

We have one copy of C_3 and (t-1)/3 copies of $K_{2,3}$ which can be decomposed into two copies of P_4 . Therefore in this case we get p=1 and q=2(t-1)/3.

Case 3: r = 1, s > 1.

In this case we have p=s. The newly added elements to the bottom of the Latin rectangle form [(t-1)/3][(s-4)/3] copies of 3×3 arrays which represents the trade T_1 and the remaining elements form 2(t-1)/3 copies of 3×2 arrays which represents the trade T_2 . The newly added elements to the right side of the Latin rectangle form (t-s)/3 copies of 1×3 arrays which cannot be decomposed into copies of P_4 . The elements of (t-s)/3 copies of 1×3 arrays in the right side of the Latin rectangle along with the elements of (t-s)/3 copies of 3×3 arrays in the bottom of the Latin rectangle which contain the same elements of 1×3 arrays form the trade T_4 . Therefore we get ([(t-1)/3][(s-4)/3]-[(t-s)/3]) copies of 3×3 arrays which represents the trade T_1 . Hence we have the required decomposition, where $0\leq p\leq rs$,

$$\begin{split} \frac{4(t-s)}{3} + \left[\frac{(t-1)(s-4) - 3(t-s)}{3}\right] + \frac{4(t-1)}{3} &\leq q \\ &\leq s + \frac{4(t-s)}{3} + \left[\frac{(t-1)(s-4) - 3(t-s)}{3}\right] + \frac{4(t-1)}{3}. \end{split}$$

Theorem 3.7. If $r \equiv 1 \pmod{3}$, $s \equiv 0 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r < s \le t$, can be decomposed into pC_3 and qP_4 , where $q \ne 1$.

Proof. We consider two cases:

Case 1: r = 1.

The Latin rectangle of order $1 \times s$ on t elements give s triangles. The newly added elements to the bottom of the Latin rectangle have (s/3)[(t-3)/3] copies of 3×3 arrays and s/3 copies of 2×3 arrays. The newly added elements to the right side of the Latin rectangle have (t-s)/3 copies of 1×3 arrays. The elements of (t-s)/3 copies of 1×3 arrays on the right side of the Latin rectangle along with the elements of (t-s)/3 copies of 3×3 array in the bottom of the Latin rectangle which contain the same elements of a 1×3 array form the trade T_4 . Therefore we have ((s/3)[(t-3)/3]-[(t-s)/3]) copies of T_1 , (t-s)/3 copies of T_4

and s/3 copies of T_2 . Hence we have the required decomposition, where $0 \le p \le s$,

$$\left[\frac{s(t-3)-3(t-s)}{3}\right] + \frac{2s}{3} + \frac{4(t-s)}{3}$$

$$\leq q \leq s + \left[\frac{s(t-3)-3(t-s)}{3}\right] + \frac{2s}{3} + \frac{4(t-s)}{3}.$$

Case 2: r > 1.

The Latin rectangle of order $r \times s$ on t elements give rs triangles. The newly added elements to the right side of the Latin rectangle form (t-s)(r-4)/9 copies of 3×3 arrays and 2(t-s)/3copies of 2×3 arrays. The newly added elements to the bottom of the Latin rectangle form [s(t-r-2)/9] copies of 3×3 arrays and s/3 copies of 2×3 arrays. Therefore each copy of 3×3 arrays and 2×3 arrays representing the trades T_1 and T_2 respectively. Hence we have the required decomposition, where $0 \le p \le rs$,

$$\frac{s(t-r-2)}{3} + \frac{(t-s)(r-4)}{3} + \frac{4(t-s)}{3} + \frac{2s}{3} \le q$$
$$\le rs + \frac{s(t-r-2)}{3} + \frac{(t-s)(r-4)}{3} + \frac{4(t-s)}{3} + \frac{2s}{3}.$$

Theorem 3.8. If $r \equiv 2 \pmod{3}$, $s \equiv 2 \pmod{3}$, and $t \equiv 2 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r \leq s \leq t$, can be decomposed into pC_3 and qP_4 , $q \neq 1$.

Proof. The Latin rectangle of order $r \times s$ on t elements give rs triangles. The other choices of p and q can be obtained by using Construction 1.5. The newly added elements to the right side of the Latin rectangle form [(t-s)/3][(r-2)/3] copies of 3×3 arrays and (t-s)/3 copies of 2×3 arrays each representing the trades T_1 and T_2 respectively. Similarly the newly added elements to the bottom of the Latin rectangle form [(t-r)/3][(s-2)/3] copies of 3×3 arrays and (t-r)/3 copies of 3×2 arrays each representing the trades T_1 and T_2 respectively. Hence we have the required decomposition, where $0 \le p \le rs$,

$$\frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{(t-r)(s-2)}{3} + \frac{2(t-r)}{3} \le q$$

$$\le \frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{(t-r)(s-2)}{3} + \frac{2(t-r)}{3} + rs.$$

Theorem 3.9. If $r \equiv 2 \pmod{3}$, $s \equiv 0 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r < s \le t$, can be decomposed into pC_3 and qP_4 , $q \ne 1$.

Proof. We consider two cases:

Case 1: s = t.

The Latin rectangle of order $r \times s$ on s elements give rs triangles. The newly added elements to the bottom of the Latin rectangle is a $1 \times (s/3)$ array which cannot be decomposed into P_4 . Here we use trades of the second type to decompose P_4 . The edges in the bottom of the Latin rectangle along with 2s/3 triangles give s copies of P_4 . Therefore we get $0 \le p \le (rs - (2s/3))$ and $s \le q \le (rs + s/3)$.

Case 2: s < t.

The newly added elements to the right side of the Latin rectangle form [(t-s)/3][(r-2)/3] copies of 3×3 arrays and the remaining elements form [(t-s)/3] copies of 2×3 arrays. Similarly the newly added elements to the bottom of the Latin rectangle form [(t-r-4)/3][s/3] copies of 3×3 arrays and the remaining elements form 2s/3 copies of 2×3 arrays. Therefore each copy of 3×3 arrays and 2×3 arrays represent the trades T_1 and T_2 , respectively. The other choices of p and p can be obtained by using Construction 1.5. Hence we get the required decomposition, where $0 \le p \le rs$,

$$\frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{s(t-r-4)}{3} + \frac{4s}{3} \le q$$

$$\le \frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{s(t-r-4)}{3} + \frac{4s}{3} + rs.$$

4. Conclusion

Main Theorem. Let p and q be nonnegative integers and let r, s, t be positive integers. There exists a decomposition of $K_{r,s,t}$, $r \leq s \leq t$, into pC_3 and qP_4 if and only if 3(p+q)=rs+st+tr, $q \neq 1$, where r, s, t satisfy the following conditions:

- (a) any two of r, s, t are congruent to 0 (mod 3),
- (b) all of r, s, t are congruent to 1 (mod 3),
- (c) all of r, s, t are congruent to 2 (mod 3).

Proof. This follows from the Theorems 2.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9. \Box

ACKNOWLEDGEMENT

The authors thank the UGC New Delhi, India (Grant No. F.510/7/DRS-I/2016(SAP-DRS-I)) and the Department of Science and Technology, New Delhi (Grant No. SR/FIST/MSI-115/2016(Level-I)), for their generous financial support.

References

- S. Alipour, E. S. Mahmoodian, and E. Mollaahmadi, On decomposing complete tripartite graphs into 5-cycles, Australas. J. Combin. 54 (2012), 289–301.
- E. J. Billington, Decomposing complete tripartite graphs into cycles of length 3 and 4, Discrete Math. 197–198 (1999), 123–135.
- 3. E. J. Billington and N. J. Cavenagh, Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size, Aequationes Math. 82 (2011), 277–289.
- 4. E. J. Billington, N. J. Cavenagh, and B. R. Smith, *Path and cycle decompositions of complete equipartite graphs:* 3 and 5 parts, Discrete Math. **310** (2010), 241–252.
- N. J. Cavenagh, Decompositions of complete tripartite graphs into k cycles, Australas.
 J. Combin. 18 (1998), 193–200.
- 6. _____, Further decompositions of complete tripartite graphs into 5-cycles, Discrete Math. **256** (2002), 55-81.
- 7. N. J. Cavenagh and E. J. Billington, On decomposing complete tripartite graphs into 5-cycles, Australas. J. Combin. 22 (2000), 41-62.
- 8. S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. **331** (2014), 98–108.
- 9. C. C. Lindner and C. A. Rodger, *Design theory*, 2nd ed., CRC Press, Boca Raton, 2009.
- E. S. Mahmoodian and M. Mirzakhani, Combinatorial advances, Mathematics and Its Applications, vol. 329, ch. Decomposition of complete tripartite graphs into 5-cycles, pp. 235–241, Kluwer Academic Publishers, Dordrechtn, 1995.
- 11. H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multidecomposition of $K_{m,m}$, Bull. ICA **66** (2012), 42–48.
- 12. B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Combin. Des. 16 (2008), 244–252.
- 13. D. Sotteau, Decomposition of $K_{m,n}(K*_{m,n})$ into cycles(circuits) of length 2k, J. Combin. Theory Ser. B **30** (1981), 75–81.

DEPARTMENT OF MATHEMATICS, PERIYAR UNIVERSITY, SALEM TAMILNADU, INDIA. $E\text{-}mail\ address:}$ priyaah.ss@gmail.com

DEPARTMENT OF MATHEMATICS, PERIYAR UNIVERSITY, SALEM TAMILNADU, INDIA. E-mail address: appumuthusamy@gmail.com