DECOMPOSITION OF COMPLETE TRIPARTITE GRAPHS INTO CYCLES AND PATHS OF LENGTH THREE

SHANMUGASUNDARAM PRIYADARSINI AND APPU MUTHUSAMY

Abstract. Let C_k and P_k denote a cycle and a path on k vertices, respectively. In this paper, we obtain necessary and sufficient conditions for the decomposition of $K_{r,s,t}$ into p copies of C_3 and q copies of P_4 for all possible values of $p, q \geq 0$.

1. Introduction

We consider only finite undirected simple graphs. Let $K_{n_1,n_2,...,n_r}$ denote a complete r-partite graph with part sizes n_1, n_2, \ldots, n_r, where each $n_i > 0$ is an integer. A partition of a graph G into edge disjoint subgraphs $G_1, G_2, G_3, \ldots, G_n$ such that their union gives G is called a decomposition of G. Let C_k and P_k respectively denote a cycle and a path on k vertices. They are also called a k-cycle and k-path, respectively. The problem of finding necessary and sufficient conditions to decompose complete n-partite graphs into k-cycles has been considered for many values of n and k. The case $n=2$ was completely solved by Sotteau [13]. Smith [12] proved that the necessary conditions for the decomposition of complete equipartite graphs into cycles of length $2p$ (where $p \geq 3$ is a prime) are also sufficient. In the case of complete tripartite graphs, Cavenagh [5] has shown that $K_{m,m,m}$ can be decomposed into k-cycles if and only if $k \leq 3m$ and k divides $3m^2$. Billington [2] gave necessary and sufficient conditions for the existence of a decomposition of any complete tripartite graph into specified number of 3-cycles and 4-cycles. Mahmoodian and Mirzakhani [10] proved the existence of a C_5-decomposition of $K_{r,s,t}$ whenever the necessary conditions are satisfied and two of the partite sets have equal size, except when $r = s = 0 \pmod{5}$ and $t \neq 0 \pmod{5}$. The authors of [1, 3, 6, 7] also studied this problem. Billington et al. [4] gave necessary and sufficient conditions for the path and cycle decomposition of complete equipartite graphs with 3 and 5 parts. Priyadharsini and Muthusamy [11] gave necessary and sufficient conditions for the existence of (G_n, H_n)-decomposition of λK_n and $\lambda K_{n,n}$, where G_n, H_n,
Given $H_n \in \{C_n, P_n, S_{n-1}\}$. Jeevadoss and Muthusamy [8] gave necessary and sufficient conditions for the existence of $\{P_{k+1}, C_k\}_{p,q}$-decomposition of $K_{m,n}$ and K_n, when $m \geq k/2$, $n \geq [(k+1)/2]$ for $k \equiv 0 \pmod{4}$ and when m, $n \geq 2k$ for $k \equiv 2 \pmod{4}$.

In this paper we give necessary and sufficient conditions for decomposing $K_{r,s,t}$ with $r \leq s \leq t$ into p copies of C_3 and q copies of P_4 for all possible values of $p, q \geq 0$. Definitions and notation not defined here can be referred to in [9].

Lemma 1.1 ([7]). Let r, s, t be integers such that $r \leq s \leq t$. A Latin rectangle of order $r \times s$ based on t elements is equivalent to the existence of rs edge-disjoint triangles sitting inside the complete tripartite graph $K_{r,s,t}$.

The triangle (i, j, k) in the 3-partite graph $K_{r,s,t}$ is the subgraph of $K_{r,s,t}$ induced by the ith vertex of part 1, jth vertex of part 2, and kth vertex of part 3.

Definition 1.2 ([7]). Consider a rectangular array of order $r \times s$ with entries from the set $T = \{1, 2, \ldots, t\}$. If each element of T appears at most once in each row and at most once in each column, we call such an array a Latin rectangle of order $r \times s$ on t elements.

Definition 1.3 ([7]). Let r, s, t be integers such that $r \leq s \leq t$. A Latin representation of the complete tripartite graph $K_{r,s,t}$ is a Latin rectangle of order $r \times s$ on t elements, together with a set of $t - s$ elements at the end of each row and a set of $t - r$ elements at the bottom of every column so that each element from the set $T = \{1, 2, 3, \ldots, t\}$ occurs once in each of the r rows and once in each of the s columns.

Remark: To construct a Latin representation of the complete tripartite graph $K_{r,s,t}$, we first take a Latin rectangle of order $r \times s$ on t elements. We then adjoin to the end of each row a set of remaining elements from the set $\{1, 2, 3, \ldots, t\}$ not already used in that row and to the bottom of each column we adjoin a set of remaining elements from the set $\{1, 2, 3, \ldots, t\}$ not already used in that column as in Figure 1.

Each entry k of the set appended at the end of the ith row represents an edge from the ith element of the partite set of size r to the element k of the partite set of size t. Similarly, each entry k of the set appended at the bottom of the jth column represents an edge from the jth element of the partite set of size s to the element k of the partite set of size t. So a Latin representation of $K_{r,s,t}$ is in fact equivalent to a decomposition of $K_{r,s,t}$ into rs triangles and $rK_{1,t-s} + sK_{1,t-r}$.

Here we define trade to be a set of elements in the Latin representation, corresponding to a set of triangles and edges in $K_{r,s,t}$ which are P_4-decomposable. We define relabelling of the elements of a trade to be a bijection ϕ from the set of elements of $T = \{1, 2, \ldots, t\}$ onto itself. Thus every occurrence of $i \in T$ in the trade is replaced by $\phi(i)$. The relabelling of
Two copies of C_3, with a common vertex, is equivalent to two copies of P_4. Let $(a_1, b_1, c_1), (a_1, b_2, c_2)$ be two copies of C_3 with a common vertex a_1; then it can be written as two copies of P_4, $P(c_1, a_1, b_2, c_2), P(c_2, a_1, b_1, c_1)$. In general, n copies of C_3 with a common vertex is equivalent to n copies of P_4. Let $(a_1, b_1, c_1), (a_1, b_2, c_2), \ldots, (a_1, b_{(n-1)}, c_{(n-1)}), (a_1, b_n, c_n)$ be n copies of C_3 with a common vertex a_1; then it can be written n copies of P_4 as $P(c_1, a_1, b_2, c_2), P(c_2, a_1, b_3, c_3), \ldots, P(c_{(n-1)}, a_1, b_n, c_n), P(c_n, a_1, b_1, c_1)$.

Construction 1.6. Here we define two types of trades, in the first type we use elements from outside the Latin rectangle which are P_4-decomposable. The trades of first type are T_1, T_2, T_3, T_4, as shown in Figure 2 from the elements outside the Latin rectangle in which each copy of trades in $K_{r,s,t}$ are all edge-disjoint and P_4-decomposable.

The trade T_1 can be obtained from the newly adjoined elements on the right side of the Latin rectangle which can be decomposed into three copies of P_4 as follows: $P(c_{(s+1)}, a_i, c_{(s+2)}, a_j), P(a_i, c_{(s+3)}, a_k, c_{(s+5)}), P(c_{(s+3)}, a_j, c_{(s+4)}, a_k)$. Similarly, by relabelling we can obtain the trade T_1 from the newly adjoined elements on the bottom of the Latin rectangle.

The trade T_2 can be obtained from the newly adjoined elements on the right side of the Latin rectangle which can be decomposed into two copies of P_4 as $P(c_{(s+1)}, a_i, c_{(s+2)}, a_j), P(a_j, c_{(s+3)}, a_k, c_{(s+4)}).$ Similarly, by relabelling we can obtain the trade T_2 from the newly adjoined elements on the bottom of the Latin rectangle.

![Figure 1](image-url)

The elements in a trade does not change the structure of the corresponding set of edges in $K_{r,s,t}$.

\begin{table}
\begin{tabular}{|c|c|c|c|}
\hline
1 & 2 & \cdots & s \\
\hline
2 & 3 & \cdots & s + 1 \\
\hline
\cdots & \cdots & \cdots & \cdots \\
\hline
r & r + 1 & \cdots & r + s - 1 \\
\hline
r + 1 & r + 2 & \cdots & r + s \\
\hline
\cdots & \cdots & \cdots & \cdots \\
\hline
t & 1 & \cdots & s - 1 \\
\hline
\end{tabular}
\end{table}
The trade T_3 can be obtained from the newly adjoined elements on the right side and the bottom of the Latin rectangle which can be decomposed into three copies of P_4 as $P(c_{r+3}, b_i, c_{r+4}, a_i)$, $P(c_{r+4}, b_j, c_{s+5}, a_j)$, $P(c_{r+5}, b_k, c_{r+6}, a_k)$, where $s+4$, $s+5$, $s+6$ in the right side of the Latin rectangle are equivalent to $r+4$, $r+5$, $r+6$ respectively.

The trade T_4 can be obtained from the newly adjoined elements on the right side and the bottom of the Latin rectangle which can be decomposed into four copies of P_4 as $P(c_{r+1}, b_i, c_{r+2}, b_j)$, $P(b_i, c_{s+3}, b_j, c_{s+4})$, $P(c_{s+3}, b_k, c_{s+4}, a_i)$, $P(b_k, c_{s+5}, a_i, c_{s+3})$ where $s+3$, $s+4$, $s+5$ in the right side of the Latin rectangle are equivalent to $r+3$, $r+4$, $r+5$ respectively.

In the second type, the elements from both inside and outside of the Latin rectangle are used. We use these two types of suitable trades until all the edges in $K_{r,s,t}$ are used.

2. Necessary conditions

Theorem 2.1. If the complete tripartite graph $K_{r,s,t}$, where $r \leq s \leq t$, has a decomposition into p copies of C_3 and q copies of P_4, then the following holds:

(i) $3(rst + tr)$,

(ii) $q \neq 1$.

Proof. By a counting argument, we get the required condition (i). We prove (ii) by a contradiction. Suppose that $q = 1$. Then the end vertices of the only path P_4 have odd degree in $(K_{r,s,t} - E(P_4))$. Therefore the resulting graph $(K_{r,s,t} - E(P_4))$ cannot be decomposed into C_3, a contradiction. Hence $q \neq 1$. \qed
Corollary 2.2. If the complete tripartite graph $K_{r,s,t}$ can be decomposed into pC_3 and qP_4, where $r \leq s \leq t$, then r, s, and t must satisfy one of the following:

(a) any two of r, s, t are congruent to 0 (mod 3),
(b) all of r, s, t are congruent to 1 (mod 3),
(c) all of r, s, t are congruent to 2 (mod 3).

Proof. The proof follows from the fact that the number of edges of $K_{r,s,t}$ is divisible by 3.

3. Sufficient conditions

Lemma 3.1. The graph $K_{3,3,3}$ can be decomposed into p copies of C_3 and q copies of P_4, where $0 \leq p \leq 9$ and $0 \leq q \leq 9$, $q \neq 1$.

Proof. Form a Latin square of order 3×3 on 3 elements as shown in Figure 3. By Lemma 1.1, we have nine edge-disjoint 3-cycles as follows:

\[(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3),
(a_2, b_3, c_1), (a_3, b_1, c_3), (a_3, b_2, c_1), (a_3, b_3, c_2)\]

In fact, this gives the required decomposition when $p = 9$, $q = 0$. The required decomposition for the other choices of p and q can be obtained by using Construction 1.5.

Lemma 3.2. The graph $K_{3,3,4}$ can be decomposed into pC_3 and qP_4, where $0 \leq p \leq 7$ and $4 \leq q \leq 11$.

Proof. We form a Latin rectangle of order 3×3 on 4 elements. By Lemma 1.1, we have nine copies of C_3 as follows:

\[(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3),
(a_2, b_3, c_4), (a_3, b_1, c_3), (a_3, b_2, c_4), (a_3, b_3, c_1)\]

The newly added element to the right side of each row in the Latin rectangle represents a single edge which cannot be decomposed into P_4. Similarly the newly added element to the bottom of each column of the Latin rectangle represents a single edge which cannot be decomposed into P_4. Here we use trades of the second type to get required number of copies of P_4. The single
edges outside the Latin rectangle along with the two copies of C_3 indicated by bold letters in Figure 4 give four copies of P_4:

$$P(a_1, c_4, b_2, a_3), P(b_1, c_4, a_3, b_3), P(a_2, c_1, a_3, c_2), P(b_2, c_1, b_3, c_2).$$

Also, when $p = 6, q = 5$, we have six copies of C_3:

$$(a_1, b_1, c_1), (a_1, b_2, c_2), (a_1, b_3, c_3), (a_2, b_1, c_2), (a_2, b_2, c_3), (a_2, b_3, c_1)$$

and five copies of P_4:

$$P(c_3, b_3, c_1, a_2), P(c_1, a_3, b_1, c_3), P(c_3, a_3, b_2, c_4),$$
$$P(a_1, c_4, b_2, c_1), P(b_1, c_4, a_3, b_3).$$

The other choices of p and q can be obtained by using Construction 1.5. Hence the graph $K_{3,3,4}$ has the desired decomposition. □

Theorem 3.3. If $r \equiv 0 \pmod{3}, s \equiv 0 \pmod{3},$ and for any t, then the complete tripartite graph $K_{r,s,t}$, $r \leq s \leq t$, can be decomposed into p copies of C_3 and q copies of P_4, where $q \neq 1$.

Proof. The proof is separated into three cases.

Case 1: $r \equiv 0 \pmod{3}, s \equiv 0 \pmod{3}, t \equiv 0 \pmod{3}$.

The Latin rectangle of order $r \times s$ on t elements give rs triangles. The other choices of p and q can be obtained by Construction 1.5. Now the newly added elements to the right side of the Latin rectangle form $(r/3)[(t-s)/3]$ copies of 3×3 arrays each representing the trade T_1. Similarly the newly added elements to the bottom of the Latin rectangle form $(s/3)[(t-r)/3]$ copies of 3×3 arrays each representing the trade T_1. By Construction 1.6, the copies of trade T_1 are all edge-disjoint and P_4-decomposable. Hence we have the required decomposition, where $0 \leq p \leq rs$,

$$r \left(\frac{t-s}{3} \right) + s \left(\frac{t-r}{3} \right) \leq q \leq rs + r \left(\frac{t-s}{3} \right) + s \left(\frac{t-r}{3} \right).$$

Case 2: $r \equiv 0 \pmod{3}, s \equiv 0 \pmod{3}, t \equiv 1 \pmod{3}$.

For the graph $K_{r,r,r+1}$, the newly added elements to the right side of Latin rectangle form an $r \times 1$ array which cannot be decomposed into P_4. Similarly the newly added elements to the bottom of Latin rectangle form a $1 \times s$ array which cannot be decomposed into P_4. Therefore we
use trades of the second type to obtain the required number of copies of P_4. The single edges on the both side of the Latin rectangle along with $2r/3$ copies of C_3 give $4r/3$ copies of P_4. These $4r/3$ copies of P_4 and the remaining $(r^2 - (2r/3))$ copies of C_3 give the maximum number of copies of P_4 by Construction 1.5. Hence the graph has the required decomposition, where $0 \leq p \leq (r^2 - \frac{2r}{3})$,

$$\frac{4r}{3} \leq q \leq r^2 + \frac{2r}{3}.$$

For the graph $K_{r,s,s+1}$, the newly added elements to the right side of the Latin rectangle is an $r \times 1$ array. The newly added elements to the bottom of the Latin rectangle form $(s/3)[[(t - r) - 4)/3]$ copies of 3×3 arrays which represents the trade T_1 and the remaining elements form $2s/3$ copies of 2×3 arrays which represents the trade T_2. The elements of $r/3$ copies of 3×1 array in the right side of the Latin rectangle along with the elements of $r/3$ copies of 2×3 array at the bottom of the Latin rectangle which contain the same elements of a 3×1 array form the trade T_3. By Construction 1.6, the edge-disjoint copies of T_1, T_2, T_3 are P_4-decomposable. The remaining possible choices of p and q can be obtained by using Construction 1.5. Hence we have the required decomposition, where $0 \leq p \leq rs$,

$$s \left[\frac{(t-r)-4}{3} + \frac{4s}{3} - \frac{2r}{3} + r \right] \leq q$$

For $t > s + 1$, the newly added elements to the right side of the Latin rectangle form $(r/3)[[(t - s) - 4)/3]$ copies of 3×3 arrays which represents the trade T_1 and the remaining elements form $2r/3$ copies of 3×2 arrays which represents the trade T_2. The newly added elements to the bottom of the Latin rectangle form $(s/3)[[(t - r) - 4)/3]$ copies of 3×3 arrays which represents the trade T_1 and $2s/3$ copies of 2×3 arrays which represents the trade T_2. By Construction 1.6, the edge-disjoint copies of T_1, T_2 are P_4-decomposable. The remaining possible choices of p and q can be obtained by using Construction 1.5. Hence we have the required decomposition, where $0 \leq p \leq rs$,

$$s \left[\frac{(t-r)-4}{3} + r \left[\frac{(t-s)-4}{3} + 4 \left(\frac{r}{3} + \frac{s}{3} \right) \right] \right] \leq q$$

Case 3: $r \equiv 0 \pmod{3}, s \equiv 0 \pmod{3}, t \equiv 2 \pmod{3}$.

In this graph, the newly added elements to the right side of Latin rectangle form $(r/3)[[(t - s) - 2)/3]$ copies of 3×3 arrays which represents the trade T_1 and the remaining elements form $r/3$ copies of 3×2 arrays
which represents the trade T_2. Similarly the newly added elements to the bottom of the Latin rectangle form $(s/3)[((t - r) - 2)/3]$ copies of 3×3 arrays which represents the trade T_1 and the remaining elements form $s/3$ copies of 2×3 arrays which represents the trade T_2. Hence we have the required decomposition, where $0 \leq p \leq rs$,

$$s \left[\frac{(t - r) - 2}{3}\right] + r \left[\frac{(t - s) - 2}{3}\right] + \frac{2(r + s)}{3} \leq q$$

$$\leq s \left[\frac{(t - r) - 2}{3}\right] + r \left[\frac{(t - s) - 2}{3}\right] + \frac{2(r + s)}{3} + rs.$$

\[\square\]

Theorem 3.4. If $r \equiv 0 \pmod{3}$, $s \equiv 1 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r < s < t$, can be decomposed into pC_3 and qP_4, where $q \neq 1$.

Proof. The Latin rectangle of order $r \times s$ on t elements form rs triangles. The other choices of p and q can be obtained by Construction 1.5. The newly added elements to the right side of the Latin rectangle form $(r/3)[((t - s) - 2)/3]$ copies of 3×3 arrays each representing the trade T_1 and the remaining elements form $r/3$ copies of 3×2 arrays which represents the trade T_2. Similarly the newly added elements to the bottom of the Latin rectangle form $[(t - r)/3][(s - 4)/3]$ copies of 3×3 arrays each representing the trade T_1 and the remaining elements form $[2(t - r)/3]$ copies of 3×2 arrays which represents the trade T_2. By Construction 1.6, all the trades are edge-disjoint and P_4-decomposable. Hence we have the required decomposition, where $0 \leq p \leq rs$,

$$r \left[\frac{(t - s) - 2}{3}\right] + \frac{4(t - r)}{3} + \frac{2r}{3} + \frac{(t - r)(s - 4)}{3} \leq q$$

$$\leq rs + r \left[\frac{(t - s) - 2}{3}\right] + \frac{4(t - r)}{3} + \frac{2r}{3} + \frac{(t - r)(s - 4)}{3}.$$

\[\square\]

Theorem 3.5. If $r \equiv 0 \pmod{3}$, $s \equiv 2 \pmod{3}$, and $t \equiv 0 \pmod{3}$, then the complete tripartite graph $K_{r,s,t}$, $r < s < t$, can be decomposed into pC_3 and qP_4, where $q \neq 1$.

Proof. We consider $s = r + 2$, then the newly added elements to the right side of the Latin rectangle is an $r \times 1$ array which cannot be decomposed into P_4. Therefore, we use trades of the second type. These r single edges along with $2r/3$ triangles give $5r/3$ copies of P_4. Now the newly added elements to the bottom of the Latin rectangle have $(s - 2)/3$ copies of 3×3 arrays and one copy of a 3×2 array. Hence we have the required decomposition, where $0 \leq p \leq r(s - (2/3))$,

$$\frac{5r}{3} + s \leq q \leq \frac{5r}{3} + s + r \left(\frac{s - 2}{3}\right).$$
For \(t = s + 1 \), the newly added elements to the right side of the Latin rectangle form \(r/3 \) copies of \(3 \times 1 \) arrays which cannot be decomposed into copies of \(P_4 \). Now the elements of \(r/3 \) copies of \(3 \times 1 \) arrays in the right side of the Latin rectangle along with the elements of \(r/3 \) copies of \(2 \times 3 \) arrays in the bottom of the Latin rectangle which contain the same elements of a \(3 \times 1 \) array form the trade \(T_3 \). The newly added elements to the bottom of the Latin rectangle form \(\left[(t-r) - 6\right]/3\] copies of \(3 \times 3 \) arrays, \((t-r)/3 \) copies of \(3 \times 2 \) arrays and \(3(s-2)/3 \) copies of \(2 \times 3 \) arrays. Therefore we get \(\left[(t-r) - 6\right]/3\] copies of the trade \(T_1 \), \((t-r)/3 \), \(3(s-2)/3 \), and \((3s-6-r)/3 \) copies of \(T_2 \) in which all are edge-disjoint. Hence we have the required decomposition, where \(0 \leq p \leq rs \) and \(q \neq 1 \),

\[
(s-2) \left[\frac{(t-r) - 6}{3} \right] + r + \frac{2(t-r)}{3} + 2(s-2) + \frac{2(3s-6-r)}{3} \leq q
\]

\[
\leq (s-2) \left[\frac{(t-r) - 6}{3} \right] + r + \frac{2(t-r)}{3} + 2(s-2) + \frac{2(3s-6-r)}{3} + rs.
\]

Now for \(t > s + 1 \), the newly added elements to the right side of the Latin rectangle form \(r/3\left[(t-s) - 4\right]/3\) copies of \(3 \times 3 \) arrays and \(2r/3 \) copies of \(3 \times 2 \) arrays which represents the trade \(T_1 \) and \(T_2 \) respectively. The newly added elements to the bottom of the Latin rectangle form \(\left[(t-r)/3\right]/\left[(s-2)/3\right] \) copies of \(3 \times 3 \) arrays and \(\left[(t-r)/3\right] \) copies of \(3 \times 2 \) arrays which represents the trade \(T_1 \) and \(T_2 \) respectively. Hence we have the required decomposition, where \(0 \leq p \leq rs \) and \(q \neq 1 \),

\[
\frac{4r}{3} + \frac{2(t-r)}{3} + \frac{(t-r)(s-2)}{3} + r \left[\frac{(t-s) - 4}{3} \right] \leq q
\]

\[
\leq \frac{4r}{3} + \frac{2(t-r)}{3} + \frac{(t-r)(s-2)}{3} + r \left[\frac{(t-s) - 4}{3} \right] + rs.
\]

\[\square\]

Theorem 3.6. If \(r \equiv 1 \pmod{3}, s \equiv 1 \pmod{3}, \) and \(t \equiv 1 \pmod{3}, \) then the complete tripartite graph \(K_{r,s,t}, r \leq s \leq t, \) can be decomposed into \(pC_3 \) and \(qP_4, \) where \(q \neq 1. \)

Proof. We consider three cases:

Case 1: \(r > 1. \)

In this case the Latin rectangle of order \(r \times s \) on \(t \) elements give \(rs \) triangles. The newly added elements to the right side of the Latin rectangle form \(\left[(t-s)/3\right]/\left[(r-4)/3\right] \) copies of \(3 \times 3 \) arrays which represents the trade \(T_1 \) and the remaining elements form \(2(t-s)/3 \) copies of \(2 \times 3 \) arrays which represents the trade \(T_2. \) The newly added elements to the bottom of the Latin rectangle form \(\left[(t-r)/3\right]/\left[(s-4)/3\right] \) copies of \(3 \times 3 \) arrays each representing the trade \(T_1 \) and the remaining elements form \(2(t-r)/3 \) copies of \(3 \times 2 \) arrays which represents the trade \(T_2. \) The other
Case 2: \(r = 1, s = 1 \).

We have one copy of \(C_3 \) and \((t - 1)/3\) copies of \(K_{2,3} \) which can be decomposed into two copies of \(P_4 \). Therefore in this case we get \(p = 1 \) and \(q = 2(t - 1)/3 \).

Case 3: \(r = 1, s > 1 \).

In this case we have \(p = s \). The newly added elements to the bottom of the Latin rectangle form \([(t - 1)/3][(s - 4)/3] \) copies of \(3 \times 3 \) arrays which represents the trade \(T_1 \) and the remaining elements form \(2(t - 1)/3 \) copies of \(3 \times 2 \) arrays which represents the trade \(T_2 \). The newly added elements to the right side of the Latin rectangle form \((t - s)/3\) copies of \(1 \times 3 \) arrays which cannot be decomposed into copies of \(P_4 \). The elements of \((t - s)/3\) copies of \(1 \times 3 \) arrays in the right side of the Latin rectangle along with the elements of \((t - s)/3\) copies of \(3 \times 3 \) arrays in the bottom of the Latin rectangle which contain the same elements of \(1 \times 3 \) arrays form the trade \(T_4 \). Therefore we get \(([t - 1]/3][(s - 4)/3] - [(t - s)/3] \) copies of \(3 \times 3 \) arrays which represents the trade \(T_1 \). Hence we have the required decomposition, where \(0 \leq p \leq rs \),

\[
\frac{4(t - s)}{3} + \left[\frac{(t - 1)(s - 4) - 3(t - s)}{3} \right] + \frac{4(t - 1)}{3} \leq q
\]

\[
\leq s + \frac{4(t - s)}{3} + \left[\frac{(t - 1)(s - 4) - 3(t - s)}{3} \right] + \frac{4(t - 1)}{3}.
\]

\(\square \)

Theorem 3.7. If \(r \equiv 1 \pmod{3}, s \equiv 0 \pmod{3}, \) and \(t \equiv 0 \pmod{3} \), then the complete tripartite graph \(K_{r,s,t} \), \(r < s \leq t \), can be decomposed into \(pC_3 \) and \(qP_4 \), where \(q \neq 1 \).

Proof. We consider two cases:

Case 1: \(r = 1 \).

The Latin rectangle of order \(1 \times s \) on \(t \) elements give \(s \) triangles. The newly added elements to the bottom of the Latin rectangle have \((s/3)[(t - 3)/3] \) copies of \(3 \times 3 \) arrays and \(s/3 \) copies of \(2 \times 3 \) arrays.

The newly added elements to the right side of the Latin rectangle have \((t - s)/3\) copies of \(1 \times 3 \) arrays. The elements of \((t - s)/3\) copies of \(1 \times 3 \) arrays on the right side of the Latin rectangle along with the elements of \((t - s)/3\) copies of \(3 \times 3 \) array in the bottom of the Latin rectangle which contain the same elements of a \(1 \times 3 \) array form the trade \(T_4 \). Therefore we have \((s/3)[(t - 3)/3] - [(t - s)/3] \) copies of \(T_1 \), \((t - s)/3\) copies of \(T_4 \)
and \(s/3\) copies of \(T_2\). Hence we have the required decomposition, where \(0 \leq p \leq s\),
\[
\left\lfloor \frac{s(t - 3) - 3(t - s)}{3} \right\rfloor + \frac{2s}{3} + \frac{4(t - s)}{3} \leq q \leq s + \left\lfloor \frac{s(t - 3) - 3(t - s)}{3} \right\rfloor + \frac{2s}{3} + \frac{4(t - s)}{3}.
\]

Case 2: \(r > 1\).

The Latin rectangle of order \(r \times s\) on \(t\) elements give \(rs\) triangles. The newly added elements to the right side of the Latin rectangle form \((t - s)(r - 4)/9\) copies of \(3 \times 3\) arrays and \(2(t - s)/3\) copies of \(2 \times 3\) arrays. The newly added elements to the bottom of the Latin rectangle form \([s(t - r - 2)/9]\) copies of \(3 \times 3\) arrays and \(s/3\) copies of \(2 \times 3\) arrays. Therefore each copy of \(3 \times 3\) arrays and \(2 \times 3\) arrays representing the trades \(T_1\) and \(T_2\) respectively. Hence we have the required decomposition, where \(0 \leq p \leq rs\),
\[
\frac{s(t - r - 2)}{3} + \frac{(t - s)(r - 4)}{3} + \frac{4(t - s)}{3} + \frac{2s}{3} \leq q \leq rs + \frac{s(t - r - 2)}{3} + \frac{(t - s)(r - 4)}{3} + \frac{4(t - s)}{3} + \frac{2s}{3}.
\]

Proof. The Latin rectangle of order \(r \times s\) on \(t\) elements give \(rs\) triangles. The other choices of \(p\) and \(q\) can be obtained by using Construction 1.5. The newly added elements to the right side of the Latin rectangle form \([(t - s)/3][(r - 2)/3]\) copies of \(3 \times 3\) arrays and \((t - s)/3\) copies of \(2 \times 3\) arrays each representing the trades \(T_1\) and \(T_2\) respectively. Similarly the newly added elements to the bottom of the Latin rectangle form \([(t - r)/3][(s - 2)/3]\) copies of \(3 \times 3\) arrays and \((t - r)/3\) copies of \(3 \times 2\) arrays each representing the trades \(T_1\) and \(T_2\) respectively. Hence we have the required decomposition, where \(0 \leq p \leq rs\),
\[
\frac{(t - s)(r - 2)}{3} + \frac{2(t - s)}{3} + \frac{(t - r)(s - 2)}{3} + \frac{2(t - r)}{3} \leq q \leq \frac{(t - s)(r - 2)}{3} + \frac{2(t - s)}{3} + \frac{(t - r)(s - 2)}{3} + \frac{2(t - r)}{3} + rs.
\]

Theorem 3.8. If \(r \equiv 2 \pmod{3}\), \(s \equiv 2 \pmod{3}\), and \(t \equiv 2 \pmod{3}\), then the complete tripartite graph \(K_{r,s,t}\), \(r \leq s \leq t\), can be decomposed into \(pC_3\) and \(qP_4\), \(q \neq 1\).

Proof.
Proof. We consider two cases:

Case 1: $s = t$.

The Latin rectangle of order $r \times s$ on s elements give rs triangles. The newly added elements to the bottom of the Latin rectangle is a $1 \times (s/3)$ array which cannot be decomposed into P_4. Here we use trades of the second type to decompose P_4. The edges in the bottom of the Latin rectangle along with $2s/3$ triangles give s copies of P_4. Therefore we get $0 \leq p \leq (rs - (2s/3))$ and $s \leq q \leq (rs + s/3)$.

Case 2: $s < t$.

The newly added elements to the right side of the Latin rectangle form $[(t-s)/3][(r-2)/3]$ copies of 3×3 arrays and the remaining elements form $[(t-s)/3]$ copies of 2×3 arrays. Similarly the newly added elements to the bottom of the Latin rectangle form $[(t-r-4)/3][s/3]$ copies of 3×3 arrays and the remaining elements form $2s/3$ copies of 2×3 arrays. Therefore each copy of 3×3 arrays and 2×3 arrays represent the trades T_1 and T_2, respectively. The other choices of p and q can be obtained by using Construction 1.5. Hence we get the required decomposition, where

$$\frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{s(t-r-4)}{3} + \frac{4s}{3} \leq q$$

$$\leq \frac{(t-s)(r-2)}{3} + \frac{2(t-s)}{3} + \frac{s(t-r-4)}{3} + \frac{4s}{3} + rs.$$

\[\square\]

4. Conclusion

Main Theorem. Let p and q be nonnegative integers and let r, s, t be positive integers. There exists a decomposition of $K_{r,s,t}$, $r \leq s \leq t$, into pC_3 and qP_4 if and only if $3(p+q) = rs + st + tr$, $q \neq 1$, where r, s, t satisfy the following conditions:

(a) any two of r, s, t are congruent to 0 (mod 3),
(b) all of r, s, t are congruent to 1 (mod 3),
(c) all of r, s, t are congruent to 2 (mod 3).

Proof. This follows from the Theorems 2.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9. \[\square\]

Acknowledgement

The authors thank the UGC New Delhi, India (Grant No. F.510/7/DRS-I/2016(SAP-DRS-I)) and the Department of Science and Technology, New Delhi (Grant No. SR/FIST/MSI-115/2016(Level-I)), for their generous financial support.
References

3. E. J. Billington and N. J. Cavenagh, Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size, Aequationes Math. 82 (2011), 277–289.
11. H. M. Priyadharsini and A. Muthusamy, \((G_m, H_m)\)-multidecomposition of \(K_{m,m}\), Bull. ICA 66 (2012), 42–48.
13. D. Sotteau, Decomposition of \(K_{m,n}(K^*_{m,n})\) into cycles(circuits) of length \(2k\), J. Combin. Theory Ser. B 30 (1981), 75–81.

Department of Mathematics, Periyar University, Salem Tamilnadu, India.
E-mail address: priyahh.ss@gmail.com

Department of Mathematics, Periyar University, Salem Tamilnadu, India.
E-mail address: appumuthusamy@gmail.com