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BINDING NUMBER, MINIMUM DEGREE AND

(g, f)-FACTORS OF GRAPHS

TAKAMASA YASHIMA

Abstract. Let a and b be integers with 2 ≤ a < b, and let G be a graph

of order n with n ≥ (a+b−1)2

a+1
and the minimum degree δ(G) ≥ 1+ (b−2)n

a+b−1
.

Let g and f be nonnegative integer-valued functions defined on V (G)
such that a ≤ g(x) < f(x) ≤ b for each x ∈ V (G). We prove that if the
binding number bind(G) ≥ 1 + b−2

a+1
, then G has a (g, f)-factor.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs. Let G
be a graph with vertex set V (G) and edge set E(G). For x ∈ V (G), we
denote by degG(x) the degree of x in G, and by NG(x) the set of vertices
adjacent to x inG; thus degG(x) = |NG(x)|. ForX ⊆ V (G), we letNG(X) =⋃

x∈X NG(x). The minimum degree of G is denoted by δ(G). For S ⊆ V (G),
we denote by G[S] the subgraph of G induced by S, and by G − S the
subgraph obtained from G by deleting vertices in S together with the edges
incident to vertices in S; G−S = G[V (G)−S]. A vertex set S of G is called
an independent set if G[S] has no edges. The binding number bind(G) of G
is defined by

bind(G) = min

{
|NG(X)|
|X|

| ∅ 6= X ⊆ V (G), NG(X) 6= V (G)

}
,

which was introduced in 1973 by Woodall [7] (prior to that, it was called
the “melting-point” of a graph, for example, in [1]).

Let f and g be nonnegative integer-valued functions defined on V (G).
A spanning subgraph F of G is called a (g, f)-factor if it satisfies g(x) ≤
degF (x) ≤ f(x) for every x ∈ V (G). Other notation and terminology are
the same as those in [3].

The following results are already known on the binding number for the
existence of k-factors, f -factors and [a, b]-factors.

Theorem A (Tokushige [6]). Let k be an integer with k ≥ 2, and let G be
a graph of order n with n > 4k + 1 − 4

√
k + 2 and kn even. Suppose that
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δ(G) 6= b (k−1)n+2k−3
2k−1 c or kn ≡ −1, 0, 1, . . . , k − 1 (mod 2k − 1). Then G

has a k-factor if

bind(G) ≥ 2− 1

k
.

Theorem B (Kano and Tokushige [4]). Let a and b be integers with 1 ≤ a ≤
b and 2 ≤ b, and let G be a connected graph of order n with n ≥ (a+ b)2/a
and

∑
x∈V (G) f(x) ≡ 0 (mod 2). Let f be a nonnegative integer-valued

function defined on V (G) such that a ≤ f(x) ≤ b for each x ∈ V (G). If one
of the following three conditions is satisfied, then G has an f -factor.

(1) bind(G) > (a+b−1)(n−1)
an−(a+b)+3 ;

(2) δ(G) > bn−2
a+b ;

(3) δ(G) ≥ (b−1)n+a+b−2
a+b−1 and for every nonempty independent subset X

of V (G),

|NG(X)| ≥ (b− 1)n+ |X| − 1

a+ b− 1
.

Theorem C (Chen [2]). Let a and b be integers with 2 ≤ a < b, and let G
be a graph of order n with n ≥ b+ 3a. Then G has an [a, b]-factor if

bind(G) ≥ 1 +
a− 1

b
and δ(G) ≥ 1 +

(a− 1)n

a+ b− 1
.

In this paper, we prove the following theorem on the existence of (g, f)-
factors of graphs, which is an extension of Theorems B and C for large
graphs.

Theorem 1.1. Let a and b be integers with 2 ≤ a < b, and let G be a
graph of order n with n ≥ (a+ b− 1)2/(a+ 1). Let g and f be nonnegative
integer-valued functions defined on V (G) such that a ≤ g(x) < f(x) ≤ b for
each x ∈ V (G). Then G has a (g, f)-factor if

bind(G) ≥ 1 +
b− 2

a+ 1
and δ(G) ≥ 1 +

(b− 2)n

a+ b− 1
.

Unfortunately, the author does not know whether the lower bound of the
minimum degree in Theorem 1.1 is best possible or not. Hence, we pose the
following conjecture.

Conjecture 1.2. Let a and b be integers with 2 ≤ a < b, and let G be
a graph of sufficiently large order n. Let g and f be nonnegative integer-
valued functions defined on V (G) such that a ≤ g(x) < f(x) ≤ b for each
x ∈ V (G). Then G has a (g, f)-factor if

bind(G) ≥ 1 +
b− 2

a+ 1
and δ(G) ≥ (b− 2)n+ a+ 1

a+ b− 1
.



BINDING NUMBER, MINIMUM DEGREE AND (g, f)-FACTORS OF GRAPHS 139

2. Proof of Theorem 1.1

In our proof, we use the following theorem, which is a special case of the
(g, f)-factor theorem due to Lovász.

Lemma D (Lovász [5]). Let G be a graph, and let g and f be nonnegative
integer-valued functions defined on V (G) such that a ≤ g(x) < f(x) ≤ b for
each x ∈ V (G). Then G has a (g, f)-factor if and only if∑

x∈S
f(x) +

∑
y∈T

(degG−S(y)− g(y)) ≥ 0

for all disjoint subsets S and T of V (G).

Let a, b, f, g, G, and n be as in Theorem 1.1. Suppose that G satisfies the
assumption of Theorem 1.1 but has no (g, f)-factor. Then by Lemma D,
there exist disjoint subsets S and T of V (G) such that∑

x∈S
f(x) +

∑
y∈T

(degG−S(y)− g(y)) < 0.(2.1)

We choose such subsets S and T so that |T | is as small as possible.
If T = ∅, then by (2.1) we have

∑
x∈S f(x) ≤ −1, which is a contradiction.

Also, suppose that there exists a vertex y0 ∈ T such that degG−S(y0) ≥
g(y0). Then the subsets S and T − {y0} satisfy (2.1), which contradicts the
choice of T . Thus T 6= ∅ and degG−S(y) < g(y) ≤ b− 1 for each y ∈ T .

Since T 6= ∅, we can define

h = min{degG−S(y) | y ∈ T}.

Note that 0 ≤ h ≤ b− 2.
We divide the proof into two cases.

Case 1 : h = 0.
Let T0 = {y ∈ T | degG−S(y) = 0}, and hence T0 is an independent

subset of G and T0 6= ∅. Then the following claim holds.

Claim 2.1. We have |NG(T0)| ≥ (b−2)n+(a+1)|T0|
a+b−1 .

Proof. Let Z = V (G)−NG(T0). Then T0 ⊆ Z and NG(Z) ⊆ V (G)−T0,
and hence it follows from the binding number condition of the theorem
that

n− |T0| ≥ |NG(Z)| ≥
(

1 +
b− 2

a+ 1

)
|Z|

=
a+ b− 1

a+ 1
(n− |NG(T0)|),

that is,

|NG(T0)| ≥
(b− 2)n+ (a+ 1)|T0|

a+ b− 1
.

�
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On the other hand, by (2.1) we have

0 >
∑
x∈S

f(x) +
∑
y∈T

degG−S(y)−
∑
y∈T

g(y)

≥ (a+ 1)|S|+
∑
y∈T

degG−S(y)− (b− 1)|T |

≥ (a+ 1)|S|+ |T | − |T0| − (b− 1)|T |
≥ (a+ 1)|S| − |T0| − (b− 2)(n− |S|)
= (a+ b− 1)|S| − |T0| − (b− 2)n,

that is,

|NG(T0)| ≤ |S| <
(b− 2)n+ |T0|
a+ b− 1

,

which contradicts Claim 2.1.
Case 2 : 1 ≤ h ≤ b− 2.

It follows from (2.1) that

0 >
∑
x∈S

f(x) +
∑
y∈T

degG−S(y)−
∑
y∈T

g(y)

≥ (a+ 1)|S|+
∑
y∈T

degG−S(y)− (b− 1)|T |

≥ (a+ 1)|S|+ (h− b+ 1)|T |
≥ (a+ 1)|S|+ (h− b+ 1)(n− |S|)
= (a+ b− h)|S| − (b− 1− h)n.

Hence

|S| < (b− 1− h)n

a+ b− h
.

Thus for any y ∈ T with degG−S(y) = h, we have

degG(y) ≤ degG−S(y) + |S| < h+
(b− 1− h)n

a+ b− h
.

Let

f(h) = h+
(b− 1− h)n

a+ b− h
= h+ n− (a+ 1)n

a+ b− h
.

Since n ≥ (a+ b− 1)2/(a+ 1) and h ≥ 1, we obtain

f ′(h) = 1− (a+ 1)n

(a+ b− h)2
≤ 1− (a+ 1)n

(a+ b− 1)2
≤ 0.

Thus f(h) takes the maximum value at h = 1.
Consequently, it follows from the minimum degree condition of the

theorem that

1 +
(b− 2)n

a+ b− 1
≤ δ(G) ≤ degG(y) < f(h) ≤ f(1) = 1 +

(b− 2)n

a+ b− 1
,
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a contradiction.
This completes the proof of Theorem 1.1.
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