Contributions to Discrete Mathematics

BINDING NUMBER, MINIMUM DEGREE AND (g, f)-FACTORS OF GRAPHS

TAKAMASA YASHIMA

Abstract

Let a and b be integers with $2 \leq a<b$, and let G be a graph of order n with $n \geq \frac{(a+b-1)^{2}}{a+1}$ and the minimum degree $\delta(G) \geq 1+\frac{(b-2) n}{a+b-1}$. Let g and f be nonnegative integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. We prove that if the binding number $\operatorname{bind}(G) \geq 1+\frac{b-2}{a+1}$, then G has a (g, f)-factor.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, we denote by $\operatorname{deg}_{G}(x)$ the degree of x in G, and by $N_{G}(x)$ the set of vertices adjacent to x in G; thus $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. For $X \subseteq V(G)$, we let $N_{G}(X)=$ $\bigcup_{x \in X} N_{G}(x)$. The minimum degree of G is denoted by $\delta(G)$. For $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S, and by $G-S$ the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S; $G-S=G[V(G)-S]$. A vertex set S of G is called an independent set if $G[S]$ has no edges. The binding number $\operatorname{bind}(G)$ of G is defined by

$$
\operatorname{bind}(G)=\min \left\{\left.\frac{\left|N_{G}(X)\right|}{|X|} \right\rvert\, \emptyset \neq X \subseteq V(G), N_{G}(X) \neq V(G)\right\}
$$

which was introduced in 1973 by Woodall [7] (prior to that, it was called the "melting-point" of a graph, for example, in [1]).

Let f and g be nonnegative integer-valued functions defined on $V(G)$. A spanning subgraph F of G is called a (g, f)-factor if it satisfies $g(x) \leq$ $\operatorname{deg}_{F}(x) \leq f(x)$ for every $x \in V(G)$. Other notation and terminology are the same as those in [3].

The following results are already known on the binding number for the existence of k-factors, f-factors and $[a, b]$-factors.

Theorem A (Tokushige [6]). Let k be an integer with $k \geq 2$, and let G be a graph of order n with $n>4 k+1-4 \sqrt{k+2}$ and $k n$ even. Suppose that

Received by the editors November 10, 2017, and in revised form February 21, 2018. 2000 Mathematics Subject Classification. 05C70.
Key words and phrases. binding number; and degree condition; and (g, f)-factor.
$\delta(G) \neq\left\lfloor\frac{(k-1) n+2 k-3}{2 k-1}\right\rfloor$ or $k n \equiv-1,0,1, \ldots, k-1(\bmod 2 k-1)$. Then G has a k-factor if

$$
\operatorname{bind}(G) \geq 2-\frac{1}{k}
$$

Theorem B (Kano and Tokushige [4]). Let a and b be integers with $1 \leq a \leq$ b and $2 \leq b$, and let G be a connected graph of order n with $n \geq(a+b)^{2} / a$ and $\sum_{x \in V(G)} f(x) \equiv 0(\bmod 2)$. Let f be a nonnegative integer-valued function defined on $V(G)$ such that $a \leq f(x) \leq b$ for each $x \in V(G)$. If one of the following three conditions is satisfied, then G has an f-factor.
(1) $\operatorname{bind}(G)>\frac{(a+b-1)(n-1)}{a n-(a+b)+3}$;
(2) $\delta(G)>\frac{b n-2}{a+b}$;
(3) $\delta(G) \geq \frac{(b-1) n+a+b-2}{a+b-1}$ and for every nonempty independent subset X of $V(G)$,

$$
\left|N_{G}(X)\right| \geq \frac{(b-1) n+|X|-1}{a+b-1} .
$$

Theorem C (Chen [2]). Let a and b be integers with $2 \leq a<b$, and let G be a graph of order n with $n \geq b+3 a$. Then G has an $[a, b]$-factor if

$$
\operatorname{bind}(G) \geq 1+\frac{a-1}{b} \text { and } \delta(G) \geq 1+\frac{(a-1) n}{a+b-1}
$$

In this paper, we prove the following theorem on the existence of (g, f) factors of graphs, which is an extension of Theorems B and C for large graphs.

Theorem 1.1. Let a and b be integers with $2 \leq a<b$, and let G be a graph of order n with $n \geq(a+b-1)^{2} /(a+1)$. Let g and f be nonnegative integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. Then G has a (g, f)-factor if

$$
\operatorname{bind}(G) \geq 1+\frac{b-2}{a+1} \text { and } \delta(G) \geq 1+\frac{(b-2) n}{a+b-1} .
$$

Unfortunately, the author does not know whether the lower bound of the minimum degree in Theorem 1.1 is best possible or not. Hence, we pose the following conjecture.

Conjecture 1.2. Let a and b be integers with $2 \leq a<b$, and let G be a graph of sufficiently large order n. Let g and f be nonnegative integervalued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. Then G has a (g, f)-factor if

$$
\operatorname{bind}(G) \geq 1+\frac{b-2}{a+1} \text { and } \delta(G) \geq \frac{(b-2) n+a+1}{a+b-1}
$$

2. Proof of Theorem 1.1

In our proof, we use the following theorem, which is a special case of the (g, f)-factor theorem due to Lovász.

Lemma D (Lovász [5]). Let G be a graph, and let g and f be nonnegative integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. Then G has a (g, f)-factor if and only if

$$
\sum_{x \in S} f(x)+\sum_{y \in T}\left(\operatorname{deg}_{G-S}(y)-g(y)\right) \geq 0
$$

for all disjoint subsets S and T of $V(G)$.
Let a, b, f, g, G, and n be as in Theorem 1.1. Suppose that G satisfies the assumption of Theorem 1.1 but has no (g, f)-factor. Then by Lemma D, there exist disjoint subsets S and T of $V(G)$ such that

$$
\begin{equation*}
\sum_{x \in S} f(x)+\sum_{y \in T}\left(\operatorname{deg}_{G-S}(y)-g(y)\right)<0 . \tag{2.1}
\end{equation*}
$$

We choose such subsets S and T so that $|T|$ is as small as possible.
If $T=\emptyset$, then by (2.1) we have $\sum_{x \in S} f(x) \leq-1$, which is a contradiction. Also, suppose that there exists a vertex $y_{0} \in T$ such that $\operatorname{deg}_{G-S}\left(y_{0}\right) \geq$ $g\left(y_{0}\right)$. Then the subsets S and $T-\left\{y_{0}\right\}$ satisfy (2.1), which contradicts the choice of T. Thus $T \neq \emptyset$ and $\operatorname{deg}_{G-S}(y)<g(y) \leq b-1$ for each $y \in T$.

Since $T \neq \emptyset$, we can define

$$
h=\min \left\{\operatorname{deg}_{G-S}(y) \mid y \in T\right\} .
$$

Note that $0 \leq h \leq b-2$.
We divide the proof into two cases.
Case 1: $h=0$.
Let $T_{0}=\left\{y \in T \mid \operatorname{deg}_{G-S}(y)=0\right\}$, and hence T_{0} is an independent subset of G and $T_{0} \neq \emptyset$. Then the following claim holds.

Claim 2.1. We have $\left|N_{G}\left(T_{0}\right)\right| \geq \frac{(b-2) n+(a+1)\left|T_{0}\right|}{a+b-1}$.
Proof. Let $Z=V(G)-N_{G}\left(T_{0}\right)$. Then $T_{0} \subseteq Z$ and $N_{G}(Z) \subseteq V(G)-T_{0}$, and hence it follows from the binding number condition of the theorem that

$$
\begin{aligned}
n-\left|T_{0}\right| \geq\left|N_{G}(Z)\right| & \geq\left(1+\frac{b-2}{a+1}\right)|Z| \\
& =\frac{a+b-1}{a+1}\left(n-\left|N_{G}\left(T_{0}\right)\right|\right),
\end{aligned}
$$

that is,

$$
\left|N_{G}\left(T_{0}\right)\right| \geq \frac{(b-2) n+(a+1)\left|T_{0}\right|}{a+b-1} .
$$

On the other hand, by (2.1) we have

$$
\begin{aligned}
0 & >\sum_{x \in S} f(x)+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-\sum_{y \in T} g(y) \\
& \geq(a+1)|S|+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-(b-1)|T| \\
& \geq(a+1)|S|+|T|-\left|T_{0}\right|-(b-1)|T| \\
& \geq(a+1)|S|-\left|T_{0}\right|-(b-2)(n-|S|) \\
& =(a+b-1)|S|-\left|T_{0}\right|-(b-2) n,
\end{aligned}
$$

that is,

$$
\left|N_{G}\left(T_{0}\right)\right| \leq|S|<\frac{(b-2) n+\left|T_{0}\right|}{a+b-1}
$$

which contradicts Claim 2.1.
Case 2: $1 \leq h \leq b-2$.
It follows from (2.1) that

$$
\begin{aligned}
0 & >\sum_{x \in S} f(x)+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-\sum_{y \in T} g(y) \\
& \geq(a+1)|S|+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-(b-1)|T| \\
& \geq(a+1)|S|+(h-b+1)|T| \\
& \geq(a+1)|S|+(h-b+1)(n-|S|) \\
& =(a+b-h)|S|-(b-1-h) n .
\end{aligned}
$$

Hence

$$
|S|<\frac{(b-1-h) n}{a+b-h} .
$$

Thus for any $y \in T$ with $\operatorname{deg}_{G-S}(y)=h$, we have

$$
\operatorname{deg}_{G}(y) \leq \operatorname{deg}_{G-S}(y)+|S|<h+\frac{(b-1-h) n}{a+b-h}
$$

Let

$$
f(h)=h+\frac{(b-1-h) n}{a+b-h}=h+n-\frac{(a+1) n}{a+b-h} .
$$

Since $n \geq(a+b-1)^{2} /(a+1)$ and $h \geq 1$, we obtain

$$
f^{\prime}(h)=1-\frac{(a+1) n}{(a+b-h)^{2}} \leq 1-\frac{(a+1) n}{(a+b-1)^{2}} \leq 0 .
$$

Thus $f(h)$ takes the maximum value at $h=1$.
Consequently, it follows from the minimum degree condition of the theorem that

$$
1+\frac{(b-2) n}{a+b-1} \leq \delta(G) \leq \operatorname{deg}_{G}(y)<f(h) \leq f(1)=1+\frac{(b-2) n}{a+b-1}
$$

a contradiction.
This completes the proof of Theorem 1.1.

ACKNOWLEDGMENT

The author would like to thank the anonymous referee for his or her helpful comments and suggestions.

References

1. I. Anderson, Sufficient conditions for matching, Proc. Edinburgh Math. Soc. 18 (1973), 129-136.
2. C. Chen, Binding number and minimum degree for $[a, b]$-factors, J. Sys. Sci. and Math. Scis. 6 (1993), 179-185.
3. R. Diestel, Graph theory, 4th ed., Graduate Texts in Mathematics, vol. 173, Springer, 2010.
4. M. Kano and N. Tokushige, Binding numbers and f-factors of graphs, J. Combin. Theory Ser. B 54 (1992), 213-221.
5. L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970), 391-416.
6. N. Tokushige, Binding number and minimum degree for k-factors, J. Graph Theory 13 (1989), 607-617.
7. D. R. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory Ser. B 15 (1973), 225-255.

Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522, Japan
E-mail address: takamasa.yashima@gmail.com

