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ON THE ILLUMINATION OF A CLASS OF CONVEX

BODIES

SENLIN WU AND YING ZHOU

Abstract. We study Boltyanski’s illumination problem (or Hadwiger’s
covering problem) for the class of convex bodies in Rn consisting of
convex hulls of a pair of compact convex sets contained in two parallel
hyperplanes of Rn. This special case of the problem is completely solved
when n = 3.

1. Introduction

We denote by Kn the family of nonempty compact convex subsets of Rn,
and by Knm (m ≤ n) the set of compact convex subsets of Rn whose affine
dimension is m. Each member of Knn is called a convex body, i.e., a convex
body in Rn is a compact convex set having interior points.

For each K ∈ Kn, we denote by intK, relintK, bdK, and relbdK the
interior, relative interior, boundary, and relative boundary ofK, respectively.
A unit vector in Rn is called a direction. Suppose that K ∈ Kn, x ∈ relbdK,
and u is a direction. If there exists a positive number λ such that x+ λu ∈
relintK, then we say that x is illuminated by u. Let A be a subset of relbdK
and D be a set of directions. If each point in A is illuminated by a direction
in D, then we say that A is illuminated by D. When relbdK 6= ∅, the
illumination number c(K) of K is defined by

c(K) = min {cardD : D is a set of directions illuminating relbdK} ,

where cardD is the cardinality of D. It is not difficult to see that c(K) is
affinely invariant. Concerning the least upper bound of c(K) for all K ∈ Knn,
there is a long-standing conjecture (see the monographs [11], [12], and [4],
and the surveys [9], [14], [3], [5] for the history, known results, and relevant
references of this conjecture):
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Conjecture 1.1 (Boltyanski’s illumination conjecture). For each K ∈ Knn,
we have

c(K) ≤ 2n;

equality holds if and only if K ∈ Knn is a parallelotope.

Since, when K ∈ Knn, c(K) equals the least number of translates of intK
needed to cover K, Conjecture 1.1 is also called Hadwiger’s covering con-
jecture. A “dual” version of Conjecture 1.1 is called Bezdek’s separation
conjecture, cf. [4, p. 24].

Conjecture 1.2 (Bezdek’s separation conjecture). Let K ∈ Knn (n ≥ 3) and
p be an arbitrary interior point of K. Then there exists a collection H of 2n

hyperplanes such that each exposed face of K and p can be strictly separated
by at least one hyperplane in H. Furthermore, 2n hyperplanes are necessary
only if K is the convex hull of n line segments having linearly independent
directions which intersect at the common relative interior point p.

See, e.g., [2], [6], [8], and [7] for progress toward the solution of Conjecture
1.2.

Conjecture 1.1 is completely solved only when n = 2. More precisely, it is
known that c(K) = 4 when K ∈ K2

2 is a parallelogram and c(K) = 3 holds
for the rest. Even when n = 3, Conjecture 1.1 is widely open. Thus it is
natural to consider how to make efficient use of the knowledge of c(K) when
K ∈ Kn−1 to solve Conjecture 1.1 in Rn. It is more natural to study the
value of c(K) when K is constructed from lower dimensional convex bodies.
For example, it is shown in [10] that

c(M1 ⊕M2 ⊕ · · · ⊕Mk) ≤
k∏
i=1

c(Mi),

where Mi, i = 1, . . . , k, are compact convex sets and M1 ⊕M2 ⊕ · · · ⊕Mk

is their direct sum. Moreover, when M1,M2 ∈ K2
2, the set of all possible

values of c(M1 ⊕ M2) is {7, 8, 9, 12, 16}, cf. [1]. Also, solving Conjecture
1.1 for centrally symmetric convex bodies in Rn+1 (the case when n = 2 is
solved by Lassak in [13]) would lead to the solution of Conjecture 1.1 for all
convex bodies in Rn if the answer to the following problem (possibly due to
P. Soltan) is positive:

Problem 1.3. Suppose that T = −B ∈ Knn and

K = conv ((T × {1}) ∪ (B × {0})).
Is it true that c(K) = c(T ) + c(B) = 2c(T )?

In this paper we estimate the illumination number for the class A of
convex bodies in Knn constructed from lower dimensional convex bodies,
where each member of A is the convex hull of two compact convex sets
contained in two parallel hyperplanes of Rn. In Section 2 we introduce
several fundamental and useful lemmas. The illumination numbers of convex
bodies in A will be studied in Section 3.
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2. Several lemmas

For each positive integer m, we put

[m] =
{
k ∈ Z+ : 1 ≤ k ≤ m

}
.

Let a and b be two distinct points in Rn. We denote by [a, b] the segment
connecting a and b, and by 〈a, b〉 the line passing through a and b. Suppose
that K ∈ Knn and [a, b] ⊆ K. If there exists a pair of parallel supporting
hyperplanes H1 and H2 of K such that a ∈ H1 and b ∈ H2, then we say that
[a, b] is an affine diameter of K. In this situation, each segment contained
in K and parallel to 〈a, b〉 is not longer than [a, b]. See the excellent survey
[15] for more information about affine diameters of convex bodies.

Lemma 2.1. Let K ∈ Knn and [a, b] be an affine diameter of K. If u ∈ Rn
is a direction illuminating a, then u does not illuminate b.

Proof. Suppose the contrary that u also illuminates b. Then there exists a
positive number λ such that

a+ λu, b+ λu ∈ intK.

It follows that there exists a segment contained in K parallel to 〈a, b〉 that
is strictly longer than [a, b], a contradiction to the fact that [a, b] is an affine
diameter of K. �

Lemma 2.2. Suppose that K ∈ Kn, c ∈ relintK, and 0 < λ1 ≤ λ2 < 1.
Then

(1− λ1)c+ λ1K ⊆ (1− λ2)c+ λ2K.

Proof. Let z be an arbitrary point in (1− λ1)c+ λ1K. There exists a point
x ∈ K such that z = (1− λ1)c+ λ1x. We have

z − (1− λ2)c = z − (1− λ1)c+ (λ2 − λ1)c
= λ1x+ (λ2 − λ1)c

= λ2

(
λ1
λ2
x+

λ2 − λ1
λ2

c

)
∈ λ2K,

from which it follows that z ∈ (1− λ2)c+ λ2K. �

Lemma 2.3. Suppose that K ∈ Kn, p ∈ relintK, C is a nonempty compact
subset of relbdK, and D = {ui : i ∈ [m]} is a set of directions illuminating
C. Then there exist two numbers λ > 0 and γ ∈ (0, 1) such that, for each
point x ∈ C, there exists i ∈ [m] satisfying

x+ λui ∈ γ(relintK) + (1− γ)p.

Proof. For each pair of k, j ∈ Z+, and each i ∈ [m], put

Ci,j,k =

{
x ∈ C : x+

1

j
ui ∈

(
1− 1

k

)
K +

1

k
p ⊂ relintK

}
.
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It suffices to show that there exists j0 ∈ Z+ satisfying

C ⊆
⋃
i∈[m]

Ci,j0,j20 .

Otherwise, for each j ∈ Z+, there exists a point

(2.1) xj ∈ C \

 ⋃
i∈[m]

Ci,j,j2

.
By choosing a subsequence if necessary, we may assume that {xj}j∈Z+ con-

verges to a point x0 ∈ C. Then there exist an i0 ∈ [m] and a number λ > 0
such that

x0 + λui0 ∈ relintK.

Hence, there exists a positive number δ such that (cf. Theorem 2.23 on p. 85
in [16] for the last equality)

B(x0 + λui0 , δ) ∩ aff K ⊂ relintK =
⋃
k∈Z+

((
1− 1

k

)
K +

1

k
p

)
,

where B(x0 + λui0 , δ) is the closed ball centered at x0 + λui0 having radius
δ. Then there exists a number η ∈ (0, 1) such that

B(x0 + λui0 , δ) ∩ aff K ⊂ (1− η)K + ηp.

Let j0 be an integer in Z+ such that

‖xj0 − x0‖ < δ and that j0 > max

{
λ

η
,

1

λ

}
.

Then

xj0 +
1

j0
ui0 =

(
1− 1

λj0

)
xj0 +

1

λj0
(xj0 + λui0)

∈
(

1− 1

λj0

)
K +

1

λj0
(B(x0 + λui0 , δ) ∩ aff K)

⊆
(

1− 1

λj0

)
K +

1

λj0
((1− η)K + ηp)

=

(
1− η

λj0

)
K +

η

λj0
p

⊆
(

1− 1

j20

)
K +

1

j20
p,

where the last step follows from Lemma 2.2, a contradiction to (2.1). �

Corollary 2.4. Let K ∈ Knn and m = c(K). Then there exist a set D =
{ui : i ∈ [m]} of m directions in Rn and a number λ > 0 such that, for each
point x ∈ bdK, there exists i ∈ [m] satisfying x+ λui ∈ intK.

We will use several fundamental results related to relative interior of con-
vex sets. First we have:
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Lemma 2.5 (cf. Theorem 2.34 on p. 92 in [16]). If T : Rn 7→ Rm is an
affine transformation and K ∈ Kn, then

(2.2) relint (T (K)) = T (relintK).

From Lemma 2.5 it follows that

(2.3) relint (K + x) = relintK + x, ∀K ∈ Kn, x ∈ Rn.

By Theorem 2.63 in [16, p. 109], we have

relbd (K + x) = relbdK + x, ∀K ∈ Kn, x ∈ Rn.

Finally, the following lemma will also be used in the next section.

Lemma 2.6 (cf. Theorem 2.29 on p. 89 in [16]). If K1, . . . ,Km are convex
sets in Rn and µ1, . . . , µm are in R, then

relint

(
m∑
i=1

µiKi

)
=

m∑
i=1

µi relintKi.

3. Illuminations numbers of convex bodies in A

Throughout this section n is an integer not less than 3, T and B are two
sets in Kn−1 such that

(3.1) K = conv((T × {1}) ∪ (B × {0})) ∈ Knn.

For each η ∈ [0, 1], put Hη = Rn−1 × {η} and Kη = K ∩Hη. It is clear that

• H1 and H0 are the two supporting hyperplanes of K parallel to
Rn−1 × {0},
• T × {1}, B × {0} ⊂ bdK,
• for each η ∈ (0, 1), Hη intersects intK.

Lemma 3.1. For each η ∈ (0, 1), we have

(1) Kη = (ηT )× {η}+ ((1− η)B)× {0},
(2) relintKη = intK ∩Hη.

Proof. (1). First suppose that x ∈ K ∩ Hη. Then there exist two posi-
tive integers m1 and m2, two sets of positive numbers {αi : i ∈ [m1]} and
{βj : j ∈ [m2]}, and two sets of points

{pi : i ∈ [m1]} ⊂ T and {qj : j ∈ [m2]} ⊂ B

such that∑
i∈[m1]

αi +
∑
j∈[m2]

βj = 1 and x =
∑
i∈[m1]

αi(pi, 1) +
∑
j∈[m2]

βj(qj , 0).

It follows that ∑
i∈[m1]

αi = η and
∑
j∈[m2]

βj = (1− η).
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Therefore,

x = η
∑
i∈[m1]

αi
η

(pi, 1) + (1− η)
∑
j∈[m2]

βj
1− η

(qj , 0)

∈ η(T × {1}) + (1− η)(B × {0})
= (ηT )× {η}+ ((1− η)B)× {0}.

Conversely, suppose that

x ∈ (ηT )× {η}+ ((1− η)B)× {0}.
Then there exist two points p ∈ T and q ∈ B such that

x = (ηp, η) + ((1− η)q, 0) = η(p, 1) + (1− η)(q, 0) ∈ K ∩Hη.

(2). Since η ∈ (0, 1), intK ∩Hη 6= ∅. For each point x ∈ intK ∩Hη, there
exists a number δ > 0 such that B(x, δ) ⊂ K. It follows that

B(x, δ) ∩ aff Kη ⊂ B(x, δ) ∩Hη ⊂ K ∩Hη = Kη.

Thus x ∈ relintKη.
Fix a point x0 ∈ intK ∩ Kη. Then x0 ∈ relintKη. For each point

y ∈ relintKη, there exists a number γ > 0 such that

z = y + γ(y − x0) ∈ Kη.

It follows that

y =
1

1 + γ
z +

γ

1 + γ
x0 ∈ intK ∩Hη.

This completes the proof. �

Lemma 3.2. The boundary bdK of K can be illuminated by a set D of
directions if and only if D illuminates both T × {1} and B × {0}.

Proof. Clearly, if D illuminates bdK then D has to illuminate both T ×{1}
and B × {0}. Conversely, suppose that D illuminates T × {1} as well as
B × {0}. Denote by DT and DB the subsets of D that can illuminate
T × {1} and B × {0}, respectively. Let (z, η) be an arbitrary point in
bdK \ (T × {1} ∪B × {0}). Then η ∈ (0, 1) and, by Lemma 2.6,

(z, η) ∈ Kη \ (η relintT × {1}+ (1− η) relintB × {0}).
We distinguish two cases.
Case 1 : There exist x ∈ relbdT and y ∈ B such that z = ηx+ (1− η)y.

There exist a direction (u, γ) ∈ DT and λ > 0 such that (x, 1) +
λ(u, γ) ∈ intK. Thus

(z, η) + ηλ(u, γ) = (ηx+ (1− η)y, η) + ηλ(u, γ)

= η((x, 1) + λ(u, γ)) + (1− η)(y, 0) ∈ intK.

Case 2 : There exist x ∈ T and y ∈ relbdB such that z = ηx+ (1− η)y.
As in Case 1, there exists a direction in DB illuminating (z, η).

Thus bdK is illuminated by D. �
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Lemma 3.3. Suppose that T is not a singleton. Let m = c(T ), {vi : i ∈ [m]}
⊂ Rn−1 be a set of directions illuminating T , p be a point in relintT , and q
be a point in relintB. Then there exist a positive number λ and a number
γ ∈ (0, 1) such that T × {1} can be illuminated by

D =

{
(λvi, 0) + u0
‖(λvi, 0) + u0‖

: i ∈ [m]

}
,

where u0 = (1− γ)(−p+ q,−1).

Proof. By Lemma 2.3, there exist a positive number λ and a number γ ∈
(0, 1) such that for each x ∈ relbdT , there exists i ∈ [m] satisfying

x+ λvi ∈ γ(relintT ) + (1− γ)p.

We claim that λ and γ have the desired property. Let (x, 1) be an arbitrary
point in T × {1}. We distinguish two cases.
Case 1 : x ∈ relbdT .

Without loss of generality we may assume that

x+ λv1 ∈ γ(relintT ) + (1− γ)p.

Then

(x, 1) + ‖(λv1, 0) + u0‖
(λv1, 0) + u0
‖(λv1, 0) + u0‖

= (x, 1) + (λv1, 0) + u0

= (x+ λv1, 1) + (1− γ)(−p+ q,−1)

= (x+ λv1 + (1− γ)(−p+ q), γ)

∈ (γ(relintT ) + (1− γ)(relintB))× {γ}
⊂ intK.

Case 2 : x ∈ relintT .
There exist two points y, z ∈ relbdT and a number η ∈ (0, 1) such

that x = ηy + (1− η)z. Without loss of generality we may assume that

y + λv1 ∈ γ(relintT ) + (1− γ)p.

As in Case 1, we have

(y, 1) + ‖(λv1, 0) + u0‖
(λv1, 0) + u0
‖(λv1, 0) + u0‖

∈ intK.

Thus

(x, 1) + η ‖(λv1, 0) + u0‖
(λv1, 0) + u0
‖(λv1, 0) + u0‖

=η

(
(y, 1) + ‖(λv1, 0) + u0‖

(λv1, 0) + u0
‖(λv1, 0) + u0‖

)
+ (1− η)(z, 1)

∈ intK.

It follows that T × {1} can be illuminated by D. �
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In a similar way we can prove the following lemma.

Lemma 3.4. Suppose that B is not a singleton. Let m = c(B), {vi : i∈ [m]}
⊂ Rn−1 be a set of directions illuminating B, p be a point in relintB, and
q be a point in relintT . Then there exist a positive number λ and a number
γ ∈ (0, 1) such that B × {0} can be illuminated by

D =

{
(λvi, 0) + u0
‖(λvi, 0) + u0‖

: i ∈ [m]

}
,

where u0 = (1− γ)(−p+ q, 1).

Theorem 3.5. c(K) ≤ c(T ) + c(B).

Proof. Suppose that one of T and B, say T , is a singleton. Then K is a
convex cone having B as base. By Theorem 4 in [17] or by Theorem 3.11
below, we have

c(K) ≤ 1 + c(B) = c(T ) + c(B).

If neither T nor B is a singleton, then the desired inequality follows from
Lemma 3.2, Lemma 3.3, and Lemma 3.4. �

In general, the estimation given in Theorem 3.5 is best possible. See the
following examples.

Example 3.6. Let

T = [(−1, 0), (1, 0)] ⊂ R2 and B = [(0,−1), (0, 1)] ⊂ R2.

Then K ∈ K3
3 is a tetrahedron and c(K) = c(T ) + c(B).

Example 3.7. Let T = B = [0, 1] × [0, 1] ⊂ R2. Then K ∈ K3
3 is a cube

and c(K) = c(T ) + c(B).

Lemma 3.8. If B is contained in a translate of T , then the minimal cardi-
nality m of a set of directions in Rn that can illuminate relbdT ×{1} equals
c(T ).

Proof. By Lemma 3.3, we only need to prove that m ≥ c(T ).
Let t ∈ Rn−1 be a point such that B ⊂ T + t, p be an arbitrary point in

intK, and D = {(ui, γi) : i ∈ [m]} be a set of directions in Rn illuminating
relbdT × {1}. Then it is clear that each direction in D illuminates at least
one point in relbdT × {1}. It is not difficult to see that γi < 0, ∀i ∈ [m].
By Lemma 2.3, there exist two positive numbers λ and γ ∈ (0, 1) such that,
for each point (x, 1) ∈ relbdT × {1}, there exists i ∈ [m] satisfying

(x, 1) + λ(ui, γi) ∈ γ intK + (1− γ)p.

Let

η = max {(y|en) : y ∈ γK + (1− γ)p} ,
where (y|en) is the inner product of y and the nth member of the standard
basis of Rn. Then η ∈ (0, 1) and 1 + λγi ≤ η holds for each i ∈ [m].
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For each point x ∈ relbdT , there exists i ∈ [m] such that

(x, 1) + λ(ui, γi) ∈ γ intK + (1− γ)p.

Let λi be the number such that 1 + λiλγi = η. Clearly, λi ∈ (0, 1].

(x, 1) + λiλ(ui, γi) = (x+ λiλui, 1 + λiλγi)

= (x+ λiλui, η)

∈ [(x, 1), (x, 1) + λ(ui, γi)] \ {(x, 1)} ∩Hη

⊂ intK ∩Hη

= (η relintT + (1− η) relintB)× {η}
⊂ (η relintT + (1− η)B)× {η}
⊂ (η relintT + (1− η)(T + t))× {η}
⊂ (relintT + (1− η)t)× {η}.

It follows that

x+ λiλ

(
ui −

1− η
λiλ

t

)
∈ relintT.

Since x ∈ relbdT ,

vi := ui −
1− η
λiλ

t 6= o.

Hence {
vi
‖vi‖

: i ∈ [m]

}
is a set of directions in Rn−1 illuminating relbdT . Therefore c(T ) ≤ m. �

In a similar way, we can prove the following lemma.

Lemma 3.9. If T is contained in a translation of B, then the minimal
cardinality m of a set of directions in Rn illuminating relbdB × {0} equals
c(B).

Corollary 3.10. If T is a translate of B, then c(K) = c(T )+c(B) = 2c(T ).

For some special cases, the estimation of c(K) can be improved. In the
proof of the next theorem, we shall use the following result (see (6) of The-
orem 2.15 in [16, p. 79]): if A and B are subsets of Rn such that a translate
of B lies in aff A, then relintA+B ⊂ relint (A+B).

Theorem 3.11. Suppose that T + c ⊆ relintB holds for some point c ∈
Rn−1. Then c(K) = 1 + c(B).

Proof. By Lemma 3.9, the minimal cardinality m of a set of directions in Rn
illuminating relbdB × {0} equals c(B). By Lemma 2.1, c(K) ≥ c(B) + 1.
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Put u = (c,−1)/2. Next we show that each point in K1 = T × {1} can
be illuminated by u/ ‖u‖:

K1 + u = T × {1}+
1

2
(c,−1)

=

(
1

2
T

)
× {1}+

(
1

2
T

)
× {0}+

1

2
(c, 0) +

1

2
(0,−1)

=
1

2
(T × {1}) +

(
1

2
(T + c)

)
× {0}

⊆ 1

2
(T × {1}) +

1

2
(relintB × {0})

=

(
1

2
T +

1

2
relintB

)
×
{

1

2

}
⊆
(

relint

(
1

2
T +

1

2
B

))
×
{

1

2

}
⊆ relintK 1

2
⊆ intK.

Hence each point in K1 can be illuminated by u/ ‖u‖. By Lemma 3.2,
c(K) ≤ 1 + c(B). Therefore c(K) = c(B) + 1. �

Remark. Both Example 3.7 and Corollary 3.10 show that the condition
T + x ⊆ relintB in Theorem 3.11 cannot be replaced by T + x ⊆ B.

It is easy to verify the following:

Lemma 3.12. A set D of directions in Rn illuminates T × {1} (resp. B ×
{0}) if and only if D illuminates the set of extreme points of T×{1} (resp. of
B × {0}).

Theorem 3.13. If n = 3 then c(K) ≤ 8; equality holds if and only if K is
a parallelepiped.

Proof. Since n = 3, T and B are in K2. Thus c(K) ≤ c(T )+c(B) ≤ 4+4 = 8.
Suppose that c(K) = 8 holds. It follows that c(T ) = c(B) = 4. Therefore,

T and B are two parallelograms, and each one of them has 4 extreme points.
By a suitable translation if necessary, we may assume that B is centered at
the origin o of Rn−1. Let t be the center of T . It is clear that (t/2, 1/2) ∈
intK. To show that K is a parallelepiped it sufficies to show that T −t = B.

Otherwise T − t 6⊆ B or B 6⊆ T − t. We may assume, without loss of
generality, that one vertex v of T − t is exterior to B. We distinguish two
cases.
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Case 1 : The segment [o, v] contains a vertex w of B.
There exists a number λ ∈ (0, 1) such that w = λv. In this case we

have

(w, 0) +
1

2
(t, 1) = λ(v, 0) +

1

2
(t, 1)

=
2λ

λ+ 1
· 1

2
((w, 0) + (v + t, 1)) +

1− λ
λ+ 1

· 1

2
(t, 1)

∈ intK.

In a similar way, we can show that (−w, 0) + (t/2, 1/2) ∈ intK. By
Lemma 3.2 and Lemma 3.12, bdK can be illuminated by at most 7
directions, a contradiction.

Case 2 : The segment [o, v] contains a point p which is a relative interior
point of an edge [w,w′] of B.

There exist two numbers λ, η ∈ (0, 1) such that p = ηv = λw + (1 −
λ)w′. By interchanging w and w′ if necessary, we may assume that
λ ≤ 1− λ. In this case we have

1

2
(t, 1) + (p, 0) =

1

2
(t, 1) + η(v, 0)

=
1− η
1 + η

· 1

2
(t, 1) +

2η

1 + η
· 1

2
((1 + η)(v, 0) + (t, 1))

=
1− η
1 + η

· 1

2
(t, 1) +

2η

1 + η
· 1

2
((p, 0) + (v, 0) + (t, 1))

=
1− η
1 + η

· 1

2
(t, 1) +

2η

1 + η
· 1

2
((p, 0) + (v + t, 1))

∈ 1− η
1 + η

intK +
2η

1 + η
K

⊆ intK.

In a similar way we can show that

1

2
(t, 1)− (p, 0) ∈ intK.

Put

u =
1
2(t, 1) + (p− w, 0)∥∥1
2(t, 1) + (p− w, 0)

∥∥ .
Thus

(w, 0) +

∥∥∥∥1

2
(t, 1) + (p− w, 0)

∥∥∥∥u =
1

2
(t, 1) + (p, 0) ∈ intK,
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and

− (w′, 0) +
λ
∥∥1
2(t, 1) + (p− w, 0)

∥∥
1− λ

u

=− (w′, 0) +
λ

1− λ

(
1

2
(t, 1) + (1− λ)(w′ − w, 0)

)
=− (w′, 0) +

λ

1− λ
· 1

2
(t, 1) + λ(w′ − w, 0)

=− (p, 0) +
λ

1− λ
· 1

2
(t, 1)

∈ intK;

i.e., (w, 0) and −(w′, 0) can be illuminated by the direction u. Thus K
can be illuminated by at most 7 directions, again a contradiction.

�

Remark. Let A+ ⊂ Knn be the family of convex bodies having a summand
in A. Then, by Theorem 34.8 on p. 266 in [11], for each K ′ ∈ A+, we have

c(K ′) ≤ max {c(K) : K ∈ A} .

Thus our main results also yield good estimations of c(K) for A+.
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