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TOTAL COLOURINGS OF DIRECT PRODUCT GRAPHS

KYLE MACKEIGAN AND JEANNETTE JANSSEN

Abstract. A graph is k-total colourable if there is an assignment of
k different colours to the vertices and edges of the graph such that no
two adjacent nor incident elements receive the same colour. The total
chromatic number of some direct product graphs are determined. In
particular, a sufficient condition is given for direct products of bipartite
graphs to have total chromatic number equal to its maximum degree plus
one. Partial results towards the total chromatic number of Kn × Km

are also established.

1. Introduction

All graphs considered in this paper are finite and simple. A total colouring
is an assignment of colours to vertices and edges (elements), so that any
two adjacent or incident elements receive different colours. The minimum
number of colours required for a total colouring is called the total chromatic
number of G, denoted χ′′(G). Bezhad [1, 2] and Vizing [5] independently
conjectured, in what is now known as the total colouring conjecture, that
for any graph G, the following inequality holds:

∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2

where ∆(G) is the maximum degree of G. Graphs that require only ∆(G)+1
colours are called type I graphs whereas graphs that require ∆(G)+2 colours
are called type II graphs.

The direct product of two graphs G and H is a graph, denoted G × H,
whose vertex set is V (G) × V (H) and for which vertices (u, v) and (u′, v′)
are adjacent if and only if uu′ ∈ E(G) and vv′ ∈ E(H). The following work
was done on determining the total chromatic number of Kn × Km. Yap
[6, 7] showed that for n > 2, Kn × K2 is a type I graph and for n = 2,
K2 ×K2 ' 2K2 is a type II graph. Geetha and Somasundaram [3] proved
that if n ≥ 4 and n is even, then Kn ×Kn is a type I graph.

In this paper, it is shown that if G × K2 is type I, then G × H is type
I for any bipartite graph H. It is then shown that if n or m is even and
n,m ≥ 3, then Kn ×Km is a type I graph.
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2. Direct Product With Complete Graphs.

For the Cartesian graph product, Kemnitz and Marangio [4] proved that
if G�K2 is type I, then G�H is type I where H is any bipartite graph.
An analogous result has also been proved for the strong graph product [3].
Here the result for the direct graph product is established. The Cartesian
and strong graph product proofs utilized that the product graph have copies
of G and H. This is not always the case for the direct product. However,
the direct product with a bipartite graph is a bipartite graph, and it is well
known that bipartite graphs have ∆-edge colourings.

Theorem 2.1. If G ×K2 is type I then G ×H is type I for any bipartite
graph H.

Proof. If H is edgeless, then G × H is edgeless and thus a type I graph.
Suppose now that H is a bipartite graph with ∆(H) ≥ 1 and the following
bipartition of the vertices: {x1, x2, . . . , xn} and {y1, y2, . . . , ym} where n ≤
m. Suppose that G×K2 is a type I graph where G has vertices v1, v2, . . . , vr
and K2 has vertices z1 and z2. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, partition the
vertices of G × H into the following sets: Xi = {(vk, xi) : 1 ≤ k ≤ r} and
Yj = {(vk, yj) : 1 ≤ k ≤ r}.

Let f be a total colouring of G ×K2. We now form a total colouring g
of G ×H. For each vk and each xi, set g((vk, xi)) = f((vk, z1)). Similarly,
for each vk and each yj , set g((vk, yj)) = f((vk, z2)). Since {x1, x2, . . . , xm}
and {y1, y2, . . . , ym} is a bipartition of H, none of the vertices in any of
the sets Xi are mutually adjacent. Similarly none of the vertices in Yj are
mutually adjacent. Now, suppose there are two adjacent vertices, (vk, xi)
and (vt, yj). Then by definition, vk and vt are adjacent in G, and thus
(vk, z1) and (vt, z2) are adjacent vertices in G×K2. Hence in f , they must
receive different colours. Therefore, there is no conflict between vertices. It
remains to extend this colouring to the edges.

Now, since H is a bipartite graph, it is ∆(H)-edge colourable. Take any
one edge colour class C in an edge colouring of H. Since this is a ∆(H)-edge
colouring, all of the vertices with maximum degree in H will be an endpoint
of one edge in C. If xiyj ∈ C, then in G × H, set g((vk, xi)(vt, yj)) =
f((vk, z1)(vt, z2)). This is a proper edge colouring. Namely, suppose there
are two incident edges, (vk, xi)(vt, yj) and (vk, xi)(vt′ , yj′) with xiyj ∈ C and
xiyj′ ∈ C. Then, by definition, vkvt and vkvt′ are incident edges in G, and
thus, (vk, z1)(vt, z2) and (vk, z1)(vt′ , z2) are incident edges inG×K2, and thus
receive different colours in f . A similar argument holds for incident edges
that share an endpoint (vt, yj). Moreover, for each edge (vk, xi)(vt, yj) with
xiyj ∈ C, g((vk, xi)(vt, yj)) = f((vk, z1)(vt, z2)) 6= f((vk, z1)) = g((vk, xi)).
The same argument shows that g((vk, xi)(vt, yj)) 6= g((vt, yj)). Therefore,
there is no conflict between vertices and edges.

Notice in G × H that deg((v, w)) = deg(v) deg(w). Therefore, all ver-
tices in G × H have degree that is at most a multiple of ∆(H). In par-
ticular, all vertices that are not of max degree, ∆(G)∆(H), have degree
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at most ∆(G)(∆(H) − 1). Consider the graph obtained by removing all
edges (vk, xi)(vt, yj) with xiyj ∈ C from G × H. Since C is incident
with all vertices of maximum degree in H, the vertices in this graph will
have maximum degree ∆(G)(∆(H) − 1). But G × H is a bipartite graph
with bipartition X1 ∪ X2 ∪ · · · ∪ Xn and Y1 ∪ Y2 ∪ · · · ∪ Ym. Thus the re-
maining edges can be coloured with ∆(G)(∆(H) − 1) colours. Therefore
∆(G)(∆(H)− 1) + ∆(G) + 1 = ∆(G)∆(H) + 1 = ∆(G×H) + 1 colours are
used in this total colouring of G×H. �

Now one can determine that G × H is a type I graph, for any bipartite
graph H, by showing that G×K2 is a type I graph. For instance, applying
Theorem 2.1 to the fact that Kn ×K2 is a type I graph for n > 2 [6, 7], the
following corollary is established.

Corollary 2.2. If n 6= 2, then Kn ×H is a type I graph for any bipartite
graph H.

The graph Kn×K2 can be described as Kn,n with a perfect matching re-
moved. This graph is also sometimes described at the crown graph, denoted
J2n. Using a particular total colouring of J2n, the total chromatic number
of Kn ×Km when n or m is even and n,m ≥ 3 is determined.

Theorem 2.3. If n or m is even and n,m ≥ 3, then Kn ×Km is type I.

Proof. Suppose without loss of generality that n ≥ 4 is even and label the
vertices of Kn as v1, v2, . . . , vn and the vertices of Km as u1, u2, . . . , um.
Partition the vertices of Kn ×Km into the following sets:

X1 = {(v1, uk) : 1 ≤ k ≤ m}
X2 = {(v2, uk) : 1 ≤ k ≤ m}

...

Xn = {(vn, uk) : 1 ≤ k ≤ m}.

Note that the subgraph induced on X1 ∪ X2 is isomorphic to J2m. The
same is true for the subgraphs induced on X3 ∪ X4, . . . , Xn−1 ∪ Xn. The
next step is to find a total colouring of J2m where the colours assigned to the
vertices in each bipartition are distinct. Such a colouring can be acquired
by using a particular edge colouring of Km,m.

A perfect rainbow matching in a graph is defined as a perfect matching
such that all the edges in the perfect matching have distinct colours. Yap [7]
showed that for m ≥ 3, there is an m edge colouring of Km,m with a perfect
rainbow matching. By removing the edges in this perfect rainbow matching
from Km,m and colouring the endpoints of each edge by the colour of the
removed edge, a total colouring of J2m is acquired. Let h be this constructed
total colouring. Note that the vertices in each bipartition are distinctively
coloured. This is because each edge in the perfect rainbow matching was
distinctively coloured.
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Now, let {x1, x2, . . . , xm} and {y1, y2, . . . , ym} be a bipartition of J2m,
where xkyk 6∈ E(J2m). Then by the construction of h, h(xk) = h(xt) and
h(yk) = h(yt) if and only if k = t. Also, h(xk) = h(yt) if and only if k = t.
We now form a total colouring g of Kn×Km. For each k, 1 ≤ k ≤ m, and for
each i, 1 ≤ i ≤ n, set g((vi, uk)) = h(xk). Two vertices (vi, uk) and (vj , ut)
are adjacent only if k 6= t, therefore g((vi, uk)) = h(xk) 6= h(xt) = g((vj , ut)).
Therefore, there is no conflict between the vertices. It remains to extend
this colouring to the edges.

Consider an edge colouring l of Kn using colours 0, 1, . . . , n − 2. Note
that such a colouring exists because n is even. If l(vivj) = 0, then for
each k and each t, k 6= t, 1 ≤ k, t ≤ m, set g((vi, uk)(vj , ut)) = h(xkyt).
This is a proper edge colouring. Namely, suppose there are two incident
edges, (vi, uk)(vj , ut) and (vi, uk)(vj′ , ut′) where l(vivj) = l(vivj′) = 0. Then
t 6= t′, k 6= t, and k 6= t′, therefore xkyt and xkyt′ are incident edges in J2m,
and thus receive different colours in h. A similar argument holds for edges
that share an endpoint (vj , ut). Moreover, for each edge (vi, uk)(vj , ut),
where l(vivj) = 0, g((vi, uk)(vj , ut)) = h(xkyt) 6= h(xk) = g((vi, uk)) and
g((vi, uk)(vj , ut)) = h(xkyt) 6= h(yt) = g((vj , ut)). Thus, there is no conflict
between vertices and edges.

Now, consider an edge colouring f of J2m with colours 0, 1, . . . ,m − 2.
For 1 ≤ c ≤ n − 2, if l(vivj) = c, then for each k and each t, 1 ≤ k, t ≤ m,
k 6= t, set g((vi, uk)(vj , ut)) = c(m − 1) + f(xkyt) + 1. These edges are
assigned colours greater than m−1, so they will not conflict with the colours
assigned to the vertices or the previously coloured edges. To show that these
edges also do not conflict with each other, suppose that (vi, uk)(vj , ut) and
(vz, ur)(vj , ut) are incident. If i 6= z, then l(vivj) = c1 and l(vzvj) = c2
where c1 6= c2. Without loss of generality, suppose that c1 < c2, then

g((vi, uk)(vj , ut)) = c1(m− 1) + f(xkyt) + 1

≤ c1(m− 1) +m− 2 + 1

= c1(m− 1) + (m− 1)

= (m− 1)(c1 + 1)

≤ (m− 1)c2

< (m− 1)c2 + f(xryt) + 1

= g((vz, ur)(vj , ut)).

If i = z, then g((vi, uk)(vj , ut))− g((vi, ur)(vj , ut)) = f(xkyt)− f(xryt) 6= 0
because xkyt and xryt are incident in J2m and f is a proper edge colouring.
A similar argument holds for incident edges that share an endpoint (vi, uk).
Therefore, (n − 2)(m − 1) + m = (n − 1)(m − 1) + 1 = ∆(Kn × Km) + 1
colours are used in this total colouring of Kn ×Km. �

It is still an open problem to determine the total chromatic number of
Kn ×Km when n and m are both odd.
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