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ON THE 2-ADIC BEHAVIOR OF THE NUMBER OF

DOMINO TILINGS ON A TORUS

WEIDONG CHENG AND XUEJUN GUO

Abstract. We study the 2-adic behavior of the number of domino
tilings of a 2(2n + 1) × 2(2n + 1) torus. We show that this number is of
the form 24n+2g(n)2+28n+2(2n+1)4nh(n), where g(n) and h(n) are odd
positive integers. Moreover, we prove that g(n) and h(n) are uniformly
continuous under the 2-adic metric and invariant under interchanging n
and −1−n. This paper is an analog of Henry Cohn’s results for 2n×2n
squares (Electron. J. Combin. 6 (1999)).

1. Introduction

A domino is a 1 × 2 (or 2 × 1) rectangle, and a tiling of a region by
dominos is a way of covering that region with dominos so that there are no
gaps or overlaps [2]. In 1961, Kasteleyn [5] found formulas for the numbers
of domino tilings of the finite quadratic lattice (with edges or with periodic
boundary conditions) by a combinatorial method involving Pfaffians. This
kind of combinatorial problems relating to a regular space lattice play a very
important role in the theory of various physical phenomena.

In 1999, Cohn [1] studied the 2-adic behavior of the number of domino
tilings for the 2n× 2n square planar quadratic lattice based on Kasteleyn’s
formula. Cohn found that this number is of the form 2nf(n)2, where f(n)
is an odd positive integer, and f is uniformly continuous under the 2-adic
metric, and its unique extension to a function from Z2 to Z2 satisfies the
functional equation

f(−1− n) =

{
f(n), if n ≡ 0, 3 (mod 4);
−f(n), if n ≡ 1, 2 (mod 4).

(1.1)
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Here and subsequently, we say a function f is uniformly continuous under
the 2-adic metric means that for every k, there exists an l such that if
n ≡ m

(
mod 2l

)
, then f(n) ≡ f(m)

(
mod 2k

)
. This definition agrees with

the one given in [1].
On account of Kasteleyn’s configuration generating function for toroidal

quadratic lattice [5, §4, formula (25)], the number of domino tilings of a k× l
toroidal quadratic lattice (with kl even) is equal to
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The purpose of this paper is to study the 2-adic behavior of the number of
domino tilings of a 2(2n+ 1)× 2(2n+ 1) torus for n ≥ 0. We will show that
Kasteleyn’s formula (1.2) can be written as 24n+2g(n)2+28n+2(2n+1)4nh(n)
in our situation, where g(n) and h(n) are odd positive integers. Moreover, we
prove the following main theorems (see Theorems 3.5 and 3.6 in Subsection
3.2 for details):

Theorem 1.1. The function g(n) is uniformly continuous under the 2-adic
metric, and its unique extension to a function from Z2 to Z2 satisfies the
functional equation g(−1− n) = g(n).

Theorem 1.2. The function h(n) is uniformly continuous under the 2-adic
metric, and its unique extension to a function from Z2 to Z2 satisfies the
functional equation h(−1− n) = h(n).

Let µm := e2πi/m for m ≥ 1. In our proof, we will view the number of
domino tilings as an element of the cyclotomic field Q(µ2n+1) (note that
Q(µ4n+2) = Q(µ2n+1), because µ4n+2 = −µn+1

2n+1). Since 2n + 1 is odd,
the extension Q2(µ2n+1)/Q2 is unramified and the rational prime number 2
remains prime in Q2(µ2n+1) (see for example [1, 3, 6]). And then we can
discuss the 2-adic behaviour of (1.2) for a 2(2n+ 1)× 2(2n+ 1) torus.

Moreover, it is natural to study the same problem for the torus with
all side lengths equal 4n. In this case, the corresponding number given by
(1.2) belongs to Q(µ4n). Although the rational prime number 2 is no longer
a prime in Q(µ4n), one may turn to consider the divisibility of (1.2) by
some p, where p|2 is a prime ideal in the ring of integers of Q(µ4n). Note
that the 2-adic valuation still has a unique extension to Q2(µ4n). One may
conjecture that some results similar to Theorems 1.1 and 1.2 still hold, we
will not consider this situation here but leave it as an open problem.
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We remark that the question to study the 2-adic behaviour of the number
of domino tilings relating to a regular space lattice is far from being solved.
For example, Cohn [1] solved the square case for k× l planar lattice. But no
relevant results have appeared until now when k 6= l. Kasteleyn’s results [5]
told us that to discuss such a question for both planer and toroidal lattices
with k 6= l, one will involve two distinguish cyclotomic fields, then the num-
ber of domino tilings should be viewed as an element of their composition
field. By a similar argument as in the previous paragraph, it does make
sense to study the 2-adic behaviour for these general situations.

In Section 3, we first give some lemmas that will be used in our proofs.
And then we prove Theorems 3.5 and 3.6 in Subsection 3.2. Our method of
proof was motivated by Cohn [1] and some results there are directly cited,
especially the results on quasi-polynomials.

2. Notes

In what follows, we let ζ := e2πi/(4n+2) and ξ := e2πi/(2n+1), where i is the
imaginary unit

√
−1. Then we have ζ = −ξn+1 and the cyclotomic fields

Q2(ζ)=Q2(ξ). We use | · |2 to denote the unique extension of the 2-adic
absolute value to Q2(ξ) (see [6, Chapter II] for more details).

We call a polynomial in n and (−1)n a quasi-polynomial. A well-known
fact says that every quasi-polynomial over Q is uniformly continuous under
the 2-adic metric (see [1, page 5]). We will apply this fact many times in
Subsection 3.2.

3. Main results and proofs

3.1. Some lemmas. In this subsection, we prove three lemmas which are
similar to [1, Lemmas 2 and 3].

Lemma 3.1. For any 1 ≤ i, j ≤ 2n+ 1, let αi,j := ξi + ξ−i + ξj + ξ−j and
βi,j := ξi + ξ−i − ξj − ξ−j. Then we have

|4 + αi,j |2 =


1
8 , if i = j = 2n+ 1;
1
2 , if i = j < 2n+ 1;
1
2 , if i+ j = 2n+ 1;

1, otherwise.

and

|4− βi,j |2 =


1
4 , if i = j;
1
4 , if i+ j = 2n+ 1;

1, otherwise.

Proof. (1) The number 4 +αi,j is an algebraic integer in Q2(ξ), so its 2-adic
absolute value is at most 1. We first notice that αi,j = ξi + ξ−i + ξj + ξ−j =
(ξi+ ξj)(ξi+j +1)ξ−iξ−j . In order for 4+αi,j to reduce to 0 modulo 2, there
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must be ξi + ξj ≡ 0 (mod 2) or ξi+j + 1 ≡ 0 (mod 2), which implies that
i = j or i+ j = 2n+ 1.

On one hand, i = j implies that 4+αi,j = 4+2(ξi+ξ−i). In order to have
|4 + αi,j |2 < 1/2, there must be ξi + ξ−i ≡ 0 (mod 2), which implies that
i = 2n+ 1, i.e., |4 + α2n+1,2n+1|2 = 1/8. On the other hand, i+ j = 2n+ 1

implies that 4+αi,j = 4+(ξi+ ξ−i+ ξ2n+1−i+ ξ−(2n+1−i)) = 4+2(ξi+ ξ−i).
In order to have |4+αi,j |2 < 1/2, there must be ξi+ξ−i ≡ 0 (mod 2), which
implies that i = 2n+ 1 as above. But this is impossible since i+ j = 2n+ 1
and i, j ≥ 1.

(2) The number 4−βi,j is also an algebraic integer in Q2(ξ), so its 2-adic
absolute value is at most 1. We first notice that βi,j = ξi + ξ−i− ξj − ξ−j =
(ξi − ξj)(ξi+j − 1)ξ−iξ−j . In order for 4 − βi,j to reduce to 0 modulo 2,
there must be ξi − ξj ≡ 0 (mod 2) or ξi+j − 1 ≡ 0 (mod 2), which implies
that i = j or i + j = 2n + 1. In these two cases, we have βi,j = 0. Hence
|4 + βi,j |2 = (1/2)2 = 1/4. �

Lemma 3.2. In the notation of Lemma 3.1, the number of domino tilings
of a 2(2n+ 1)× 2(2n+ 1) torus can be written as 24n+2g(n)2 + 28n+2h′(n),
where

g(n) =
∏

1≤i<j≤2n+1,
i+j 6=2n+1

(4 + αi,j),(3.1)

h′(n) =
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(4− βi,j).(3.2)

Furthermore, we have g(n), h′(n) ∈ Z, and g(n) ≡ h′(n) ≡ 1 (mod 2).

Remark: Lemma 3.4 will show that g(n) ≡ 1 (mod 4).

Proof. By taking k = l = 4n + 2 in Kasteleyn’s formula (1.2), we get that
the number of domino tilings in our situation is
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We replace sin (2j−1)π
4n+2 and sin 2jπ

4n+2 by − sin (2j−4n−3)π
4n+2 and − sin (2j−4n−2)π

4n+2

respectively whenever 2n+ 2 ≤ j ≤ 4n+ 2 in (3.3). Note that when j runs
over 2n+ 2, 2n+ 3, . . . , 4n+ 2, the corresponding 2j− 1− (4n+ 2) runs over
1, 3, 5, . . . , 4n+1. Do a similar analysis for 2j−(4n+2). Thus formula (3.3)
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becomes
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Note that the first two summands in above summation are equal. According
to the Euler formula eiθ = cos θ + i sin θ, and our notation ζ = −ξn+1,
formula (3.4) can be simplified as

2n+1∏
i=1

2n+1∏
j=1

(
4− β(2n+2)i,(n+1)(2j−1)

)
+

1

2
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i=1

2n+1∏
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(
4 + α(n+1)(2i−1),(n+1)(2j−1)

)
,

(3.5)

where αi,j , βi,j are the same as Lemma 3.1. By ξ2n+1 = 1, we have ξ(2n+2)i =

ξi, and ξ(n+1)(2j−1) = ξ−(n+1)+j . It is easy to check that when j runs
over 1, 2, . . . , 2n + 1, the corresponding −(n + 1) + j runs over −n,−n +
1, . . . ,−1, 0, 1, . . . , n − 1, n which constitutes a complete set of residues to
the modulus 2n+ 1. Thus formula (3.5) is equal to

(3.6)
2n+1∏
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2n+1∏
j=1

(4− βi,j) +
1

2
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i=1

2n+1∏
j=1

(4 + αi,j) .

Now by application of Lemma 3.1, we move the divisor 2 forward in each
summand of (3.6). It follows that

2n+1∏
i=1

2n+1∏
j=1

(4− βi,j) = 28n+2
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(4− βi,j),

and
2n+1∏
i=1

2n+1∏
j=1

(4 + αi,j)(3.7)

= 24n+3
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(4 + αi,j) = 24n+3
∏

1≤i<j≤2n+1,
i+j 6=2n+1

(4 + αi,j)
2,(3.8)

where we used the fact αi,j = αj,i for the second equal sign. Hence formula
(3.6) becomes

24n+2g(n)2 + 28n+2h′(n),

where g(n) ≡ h′(n) ≡ 1 (mod 2).
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Moreover, note that both g(n) and h′(n) are algebraic integers in Q(ξ),
and they are invariant under the action of every automorphism of the Galois
extension Q(ξ)/Q. Thus we actually have g(n), h′(n) ∈ Z. �

To determining the 2-adic behavior of g and h′, we start by examining
them modulo 4. In that case, we have formulas

(3.9) g(n) ≡
∏

1≤i<j≤2n+1,
i+j 6=2n+1

αi,j (mod 4) ,

(3.10) h′(n) ≡
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

−βi,j =
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j (mod 4) ,

where there exist 4n2 product factors −βi,j in (3.10). The following lemma
tells us that the right products appearing in above two equations can actually
be evaluated explicitly.

Lemma 3.4. Following the notation as before, we have∏
1≤i<j≤2n+1,
i+j 6=2n+1

αi,j = 1, and(3.11)

∏
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∏
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β2i,j = (2n+ 1)4n.(3.12)

Proof. To prove (3.11), we first see that∏
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Here and subsequenty, we use the symbol · and write
∏
∗ ·
∏
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that (
∏
∗) · (

∏
∗′). Note that if 1 ≤ i, j ≤ n then i + j < 2n + 1, and if

i ≥ n + 1 then i + j ≥ 2n + 3 since j > i. For the factors when i ≥ n + 1
(resp. j ≥ n+1), we replace ξi by ξ−(2n+1−i) (resp. replace ξj by ξ−(2n+1−j)).
Then the above equation becomes∏
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where we have combined the factors
∏n
i=1

∏n
j=i+1 αi,j and

∏n
i=1

∏i−1
j=1 αi,j for

the last equal sign. According to [1, page 2, formula (2)], because αi,2n+1 =
2 + ξi + ξ−i = (1 + ξi)(1 + ξ−i) = (1 + ξi)(1 + ξ2n+1−i), we see that

(3.13)
n∏
i=1

αi,2n+1 =
n∏
i=1

(2 + ξi + ξ−i) =
2n∏
i=1

(1 + ξi) = 1,

where for the third equal sign in (3.13) we have substituted z = −1 into the

equality z2n+1 − 1 =
∏2n
i=0(z − ξi). Now it follows that∏

1≤i<j≤2n+1,
i+j 6=2n+1

αi,j =
n∏
i=1

n∏
j=1,
j 6=i

α2
i,j =

∏n
i=1

∏n
j=1 α

2
i,j∏n

i=1 α
2
i,i

.(3.14)

According to [1, page 5] and since αi,i = 2(ξi + ξ−i), we see that

(3.15)

n∏
i=1

αi,i = 2n
n∏
i=1

(ξi + ξ−i) = 2n(−1)b
n+1
2
c,

and

(3.16)

n∏
i=1

n∏
j=1

αi,j = 2n(−1)b
n+1
2
c.

Therefore equation (3.11) holds by substituting formulas (3.15) and (3.16)
into formula (3.14).

To prove (3.12), note that βi,j = −βj,i, and we see that

(3.17)
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j = (−1)2n
2

∏
1≤i<j≤2n+1,
i+j 6=2n+1

β2i,j =
∏

1≤i<j≤2n+1,
i+j 6=2n+1

β2i,j ,

where the first equal sign holds by the same reasons as in (3.10). Similarly
to the proof of (3.11), we can write

∏
1≤i<j≤2n+1,
i+j 6=2n+1

βi,j =

2n∏
i=1

βi,2n+1 ·
n∏
i=1

n∏
j=i+1

βi,j ·
n∏
i=1

2n∏
j=n+1,

j 6=2n+1−i

βi,j ·
2n∏

i=n+1

2n∏
j=i+1

βi,j .

Note that when i (resp. j) runs over n+ 1, n+ 2, . . . , 2n, the corresponding

2n+ 1− i (resp. 2n+ 1− j) runs over n, n− 1, . . . , 2, 1. And ξ−(2n+1−l) = ξl

for l = i, j implies that βi,j = β2n+1−i,j = βi,2n+1−j = β2n+1−i,2n+1−j . Thus
we get that ∏

1≤i<j≤2n+1,
i+j 6=2n+1

βi,j =

n∏
i=1

β2i,2n+1 ·
n∏
i=1

n∏
j=1,
j 6=i

β2i,j .(3.18)
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From βi,2n+1 = ξi + ξ−i − 2 = −(ξi − 1)(ξ−i − 1) = −(ξi − 1)(ξ2n+1−i − 1),
it follows that

n∏
i=1

βi,2n+1 = (−1)n
n∏
i=1

(ξi − 1) ·
n∏
i=1

(ξ2n+1−i − 1) = (−1)n
2n∏
i=1

(ξi − 1).

Since z2n+1 − 1 =
∏2n
i=0(z − ξi) = (z − 1)

∏2n
i=1(z − ξi),

∏2n
i=1(z − ξi) =

z2n + z2n−1 + · · · + z + 1. By substituting z = 1 into this formula, we see
that

2n∏
i=1

(ξi − 1) = 2n+ 1,(3.19)

and then
n∏
i=1

βi,2n+1 = (−1)n(2n+ 1).(3.20)

Now combining formulas (3.20) and (3.18), we have∏
1≤i<j≤2n+1,
i+j 6=2n+1

βi,j = (2n+ 1)2
n∏
i=1

n∏
j=1,
j 6=i

β2i,j .(3.21)

Note that βi,j = ξi+ξ−i−ξj−ξ−j = (ξi−j−1)(ξi+j−1)ξ−i and βj,i = −βi,j
in above (3.21), which indicates that

n∏
i=1

n∏
j=1,
j 6=i

βi,j =
∏

1≤i<j≤n
βi,j ·

∏
1≤j<i≤n

βi,j = (−1)
n(n−1)

2

∏
1≤i<j≤n

β2i,j

=

n−1∏
i=1

n∏
j=i+1

((ξi−j − 1)(ξi+j − 1)ξ−i)2

=ξ∗
n−1∏
i=1

n∏
j=i+1

((ξ2n+1+(i−j) − 1)(ξi+j − 1))2,(3.22)

where we write ξ∗ to indicate an unspecified power of ξ. Because the product
in question is real and the only real power of ξ is ξ2n+1 = 1, we will in several
cases see that ξ∗ equals 1 without having to count the ξ’s. Moreover, when
the first index i in (3.22) is fixed, the second index j runs over i + 1, i +
2, . . . , n. This yields the exponent i+ j on the right hand side of (3.22) runs
over 2i + 1, 2i + 2, . . . , n + i; and the exponent 2n + 1 + (i − j) runs over
2n, 2n− 1, . . . , n+ i+ 1. So we get that

n∏
i=1

n∏
j=1,
j 6=i

βi,j = ξ∗
n−1∏
i=1

2n∏
s=2i+1

(ξs − 1)2.(3.23)
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Now we divide the remaining proof into two cases according to the parity
of n as below.
Case (i): n ≡ 1 (mod 2). We divide the set of indices i into {1, 2, . . . , n−12 }
and {n+1

2 , n+3
2 , . . . , n−1}. Replacing ξs−1 by −ξs(ξ2n+1−s−1) on the right

hand side of (3.23) for n+1
2 ≤ i ≤ n− 1, it follows that

n−1∏
i=1

2n∏
s=2i+1

(ξs − 1) =

n−1
2∏
i=1

2n∏
s=2i+1

(ξs − 1) ·
n−1∏
i=n+1

2

2n∏
s=2i+1

(−ξs(ξ2n+1−s − 1))

= (−1)∗ξ∗

n−1
2∏
i=1

2n∏
s=2i+1

(ξs − 1) ·
n−1∏
i=n+1

2

2n−2i∏
s′=1

(ξs
′ − 1)

= (−1)∗ξ∗

n−1
2∏
i=1

2n∏
s=2i+1

(ξs − 1) ·

n−1
2∏

i′=1

2i′∏
s′=1

(ξs
′ − 1)

= (−1)∗ξ∗

n−1
2∏
i=1

2n∏
j=1

(ξj − 1)

(3.19)
===== (−1)∗ξ∗(2n+ 1)

n−1
2 ,

where s′ = 2n+ 1− s, i′ = n− i, and (−1)∗ denotes an unspecified power of
−1. Substituting above result into formula (3.23), we get that

n∏
i=1

n∏
j=1,
j 6=i

βi,j = (−1)∗ξ∗(2n+ 1)n−1.(3.24)

Furthermore, by combining formulas (3.24), (3.21), and (3.17), we get that

(3.25)
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j = ξ∗(2n+ 1)4n.

Note that the left hand side of formula (3.25) is invariant under the ac-
tion of any automorphisms belong to the Galois group Gal(Q(ξ)/Q). Thus∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j is actually a rational integer, i.e., it belongs to Z. On the

other hand, since 2n + 1 is odd, there is no power of ξ belong to Q except
ξ2n+1 = 1. This implies that the ξ∗ in (3.25) is equal to 1. Hence we prove
formula (3.12) in this case.
Case (ii): n ≡ 0 (mod 2). We divide the set of indices i into {1, 2, . . . , n2−1},
{n2 } and {n2 + 1, n2 + 2, . . . , n − 1}. Similarly to the proof of Case (i), by

replacing ξs − 1 with −ξs(ξ2n+1−s − 1) on the right hand side of (3.23) for
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n
2 + 1 ≤ i ≤ n− 1, we can prove that

n−1∏
i=1

2n∏
s=2i+1

(ξs − 1) = (−1)∗ξ∗(2n+ 1)
n
2
−1

2n∏
s=n+1

(ξs − 1).(3.26)

To determine the factor
∏
n+1≤s≤2n(ξs − 1) on the right hand side of

(3.26), note that

2n∏
s=n+1

(ξs − 1)2 =
2n∏

s=n+1

−ξs(ξ2n+1−s − 1) ·
2n∏

s=n+1

(ξs − 1)

= (−1)nξ∗
n∏
s=1

(ξs − 1) ·
2n∏

s=n+1

(ξs − 1)

= ξ∗
2n∏
s=1

(ξs − 1)

(3.19)
===== ξ∗(2n+ 1).(3.27)

Now by combining formulas (3.27), (3.26), (3.23), (3.21), and (3.17), we
also get a formula which can be written as

(3.28)
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j = ξ∗(2n+ 1)4n.

For the same reason as the proof of Case (i), the ξ∗ in (3.28) is equal to
1. Hence we also prove the formula (3.12). This completes the proof of our
lemma. �

3.2. Main results for g and h′. Now we turn to prove our main results
for g and h′, which immediately give Theorems 1.1 and 1.2 stated in the
introduction section.

Theorem 3.5. Let g(n) be the function given by (3.1). Then g(n) is uni-
formly continuous under the 2-adic metric, and its unique extension to a
function from Z2 to Z2 satisfies the functional equation g(−1− n) = g(n).

Proof. Note that we have dealt with the behavior of g modulo 4 in Lemma
3.4. Since +1 and −1 are unequal in the set of residues modulo 4, we can
simplify the proof considerably by working with g2 rather than g. Therefore,
if we can show that g2 is uniformly continuous 2-adically and satisfies g(−1−
n)2 = g(n)2, then we will prove Theorem 3.5.

From formula (3.7), we see that

(3.29) g(n)2 =
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(4 + αi,j).
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Obviously, the right hand side of (3.29) can be rewritten as∏2n+1
i=1

∏2n+1
j=1 (4 + αi,j)∏2n+1

i=1 (4 + αi,i) ·
∏

1≤i,j≤2n+1,
i+j=2n+1

(4 + αi,j)
.

According to formula (3.13),we have

2n+1∏
i=1

(4 + αi,i) = 22n+3
2n∏
i=1

(2 + ξi + ξ−i) = 22n+3
n∏
i=1

(2 + ξi + ξ−i)2 = 22n+3,

and ∏
1≤i,j≤2n+1,
i+j=2n+1

(4 + αi,j) = 22n
2n∏
i=1

(2 + ξi + ξ−i) = 22n.

Hence (3.29) becomes

(3.30) g(n)2 = 2−(4n+3)
2n+1∏
i=1

2n+1∏
j=1

(4 + αi,j).

We compute the product on the right hand side of (3.30) as follows. By
combining all terms when i = 2n+ 1, we have

2n+1∏
i=1

2n+1∏
j=1

(4+αi,j) =

n∏
i=1

n∏
j=1

(4 + αi,j) ·
n∏
i=1

2n∏
j=n+1

(4 + αi,j) ·
n∏
i=1

(4 + αi,2n+1)

·
2n∏

i=n+1

n∏
j=1

(4 + αi,j) ·
2n∏

i=n+1

2n∏
j=n+1

(4 + αi,j) ·
2n∏

i=n+1

(4 + αi,2n+1)

·
2n∏
j=1

(4 + α2n+1,j) · (4 + α2n+1,2n+1),

where 4 + α2n+1,2n+1 = 23, 4 + α2n+1,j = 6 + ξj + ξ−j and 4 + αi,2n+1 =
6+ξi+ξ−i. From now on, we denote ξj+ξ−j by γj for simplicity. Remember
that αi,j = α2n+1−i,j = αi,2n+1−j = α2n+1−i,2n+1−j . Then it follows that

2n+1∏
i=1

2n+1∏
j=1

(4 + αi,j) =23
n∏
j=1

(6 + γj)
4 ·

n∏
i=1

n∏
j=1

(4 + αi,j)
4.

And thus

g(n)2 = 2−4n
n∏
j=1

(6 + γj)
4 ·

n∏
i=1

n∏
j=1

(4 + αi,j)
4 = f(n)8

n∏
j=1

(6 + γj)
4,(3.31)

where

f(n) :=
∏

1≤i<j≤n
(4 + αi,j)
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was studied by Cohn in [1]. Cohn proved that f is uniformly continuous
under the 2-adic metric, and its unique extension to a function from Z2 to
Z2 satisfies the functional equation (1.1). This implies that

(3.32) f(−1− n)2 = f(n)2.

In what follows, we write

(3.33) g′(n) :=

n∏
i=1

(6 + γi) for γi = ξi + ξ−i.

So formula (3.31) can be witten as

g(n)2 = f(n)8g′(n)4.(3.34)

Thus in order to prove Theorem 3.5, it suffices to prove that g′ is uniformly
continuous 2-adically and satisfies a functional equation g′(−1−n) = g′(n).

We first note that the function g′ satisfies

n∏
i=1

(6 + γi) =

n∏
i=1

γi

(
1 +

6

γi

)
=

n∏
i=1

γi ·
n∏
i=1

(
1 +

6

γi

)
,(3.35)

and according to formula (3.15), where

(3.36)
n∏
i=1

γi = (−1)b
n+1
2
c.

Secondly, it is easy to check that

(3.37)
n∏
i=1

(
1 +

6

γi

)
=

n∑
r=0

6rPr (1/γ1, 1/γ2, · · · , 1/γn) ,

where P0 = 1 and Pr for 1 ≤ r ≤ n are the rth elementary symmetric polyno-
mials in 1/γ1, 1/γ2, . . . , 1/γn (see for example [4, Section 2.13]). Combining
formulas (3.33)–(3.37), we see that

(3.38) g′(n) = (−1)b
n+1
2
c

n∑
r=0

6rPr.

Note that the function n 7→ (−1)b
n+1
2
c is uniformly continuous 2-adically

and invariant under interchanging n with −1 − n (see [1, page 5]). So to
prove these properties for g′ we only need to prove them for

∑n
r=0 6rPr in

(3.38).
Since γi = ξi+ξ−i = ξ−i(1+ξ2i) for 1 ≤ i ≤ n, γi can not be congruent to

0 modulo 2. It follows that |γi|2 = 1, and thus | 1γi |2 = 1 and | 1
γi1γi2 ···γir

|2 = 1.

Hence |Pr|2 ≤ 1 by the ultrametric absolute inequality (see for example [6,
Chapter II]). So Pr for 1 ≤ r ≤ n are actually 2-adic integers in Q2(ξ).

We remark that for each 6 on the right hand side of (3.38) contributes
at least one prime factor 2, thus for any positive integer k, to determine
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r=0 6rPr modulo 2k we need only look at the first k terms, i.e., the terms

when r = 0, 1, 2, . . . , k − 1. Let

Sr(n) :=
n∑
i=1

1

γri
.

Newton’s identities (see [1, page 6] or [4, page 140, exercises 3]) say that the
elementary symmetric polynomials Pr can be expressed by these symmetric
polynomials Sr. Thus to study Pr, it is sufficient to study these Sr. Now
we define

Ur(n) :=

2n∑
i=0

1

γri
.

Note that γi = ξi + ξ−i = ξ−(2n+1−i) + ξ2n+1−i, and when i runs over
1, 2, . . . , n, the correspongding 2n+ 1− i runs over n+ 1, n+ 2, . . . , 2n. This
implies that Sr(n) =

∑n
i=1 γ

−r
i =

∑2n
i=n+1 γ

−r
i . Therefore, we get that

Ur(n) = γ−r0 + 2Sr(n) = 2−r + 2Sr(n).

According to [1, Proposition 5], the function Ur(n) is a quasi-polynomial
over Q and satisfies the functional equation Ur(−1− n) = Ur(n). It follows
that Sr is uniformly continuous 2-adically and satisfies a similar functional
equation. By combining this with formulas (3.32) and (3.34), we see that
g(n) is uniformly continuous under the 2-adic metric and satisfies the func-
tional equation g(−1− n) = g(n), which completes the proof. �

Theorem 3.6. Let h′(n) be the function given by (3.2). Then h′(n) is of the
form (2n + 1)4nh(n), where h(n) is uniformly continuous under the 2-adic
metric, and its unique extension to a function from Z2 to Z2 satisfies the
functional equation h(−1− n) = h(n).

Proof. First of all, note that 4−βi,j = −βi,j(1−4/βi,j) in (3.2), and it is easy
to check that the cardinal number #{(i, j) : 1 ≤ i 6= j ≤ 2n+1, i+j 6= 2n+1}
equals 4n2, which is even. Thus we have

h′(n) =
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j ·
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(
1− 4

βi,j

)
.

Now Lemma 3.4 says that the first factor
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

βi,j = (2n + 1)4n.

For the second factor, we write

h(n) :=
∏

1≤i 6=j≤2n+1,
i+j 6=2n+1

(
1− 4

βi,j

)
.

Similar to formula (3.37), we see that∏
1≤i 6=j≤2n+1,
i+j 6=2n+1

(
1− 4

βi,j

)
=

∑
0≤r≤4n2

(−4)rQr,
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where Q0 = 1 and Qr are the rth elementary symmetric polynomials in
1/βi,j ’s with subscripts (i, j) run over {(i, j) : 1 ≤ i 6= j ≤ 2n + 1, i + j 6=
2n+ 1}. By using Newton’s identities again, it suffices to study

Tr(n) :=
∑

1≤i 6=j≤2n+1,
i+j 6=2n+1

1

βri,j
.

Define

Vr(n) :=
∑

1≤i≤2n

1

(ξi − ξ−i)r
.

Note that when i runs over 1, 2, . . . , 2n, the corresponding ξi runs over all
(2n+ 1)st roots of unity except ξ2n+1 = 1. So we can write above Vr(n) as
the following form ∑

φ 6=1

1

(φ− φ−1)r
,

where φ runs over all (2n+ 1)st roots of unity except φ = 1. For this Vr(n),
we actually have

V 2
r (n) =

∑
φ 6=1

1

(φ− φ−1)r
·
∑
ϕ6=1

1

(ϕ− ϕ−1)r
=
∑
φ 6=1
ϕ6=1

1

(φϕ+ (φϕ)−1 − φ
ϕ −

ϕ
φ )r

.

(3.39)

Note that φϕ = φ/ϕ if and only if ϕ = 1 since ϕ can not equal −1, and φϕ =
ϕ/φ if and only if φ = 1 for the same reason. It follows that φϕ 6= (φ/ϕ)±1

on the left hand side of (3.39). We now write φϕ = ξi and φ/ϕ = ξj , and
then we have i 6= j and i+ j 6= 2n+ 1. Therefore, we get that

V 2
r (n) = Tr(n).

Hence it remains to show that Vr(n) is a quasi-polynomial and satisfies the
functional equation Vr(n) = Vr(−1− n).

We apply the following significant identity [1, page 7]

d

dx
log

m∏
k=1

(x− xk) = −
m∑
k=1

(
1

xk
+

1

x2k
x+

1

x3k
x2 + · · ·

)
(3.40)

by taking xk = ξk − ξ−k for k = 1, 2, . . . , 2n. Then the coefficient of xr−1

on the right hand side of (3.40) is exactly −Vr(n) with r = 1, 2, . . . . For the
left side, we have

2n∏
k=1

(
x− 2i sin

2kπ

2n+ 1

)
=

8 cos((2n+ 1) arcsin( x2i)− 1)

(2n+ 1)x2
,(3.41)

where i is the imaginary unit. We obtain equality (3.41) by comparing roots
of both sides and their limits when x tends to 0, where we also use the
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identity ∏
1≤i≤2n

(ξi − ξ−i) =
∏

1≤i≤2n
ξ−i ·

∏
1≤i≤2n

(ξ2i − 1)
(3.19)

===== 2n+ 1.

It is easy to compute that

d

dx
log

2n∏
k=1

(
x− 2i sin

2kπ

2n+ 1

)
(3.42)

=
(2n+ 1)i

2(1 + x2

4 )1/2

sin((2n+ 1) arcsin( x2i))

cos((2n+ 1) arcsin( x2i))− 1
− 2

x
,(3.43)

Denote the right hand side of formula (3.43) by Dn(x). On one hand, it is
immediate that Dn(x) = D−1−n(x). This implies that Vr(n) = Vr(−1 − n)
for r = 1, 2, . . . . On the other hand, by computing the Taylor expansion of
Dn(x) directly, we see that every coefficient Vr(n) in (3.40) is a polynomial
with respect to n over Q. Hence the functions Vr(n) are quasi-polynomials
and thus uniformly continuous under the 2-adic metric. Here we remark
that the imaginary unit on the right hand side of (3.43) is eliminated by the
Taylor expansion of sin((2n+ 1) arcsin(x/2i)). This finishes the proof. �

Acknowledgements

The authors thank the referees for their careful readings of the manuscript
and many valuable suggestions that helped improving the presentation of
this paper.

References

1. H. Cohn, 2-adic behavior of numbers of domino tilings, Electron. J. Combin. 6 (1999),
Research Paper 14, 7.

2. H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. Amer.
Math. Soc. 14 (2001), no. 2, 297–346.
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