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EQUALITY PERFECT GRAPHS AND DIGRAPHS

STEPHAN DOMINIQUE ANDRES

Abstract. In the graph colouring game introduced by Bodlaender [7],
two players, Alice and Bob, alternately colour uncoloured vertices of a
given graph G with one of k colours so that adjacent vertices receive
different colours. Alice wins if every vertex is coloured at the end. The
game chromatic number of G is the smallest k such that Alice has a
winning strategy. In Bodlaender’s original game, Alice begins. We also
consider variants of this game where Bob begins or skipping turns is
allowed [1] and their generalizations to digraphs [2]. By means of for-
bidden induced subgraphs (resp. forbidden induced subdigraphs), for
several pairs (g1, g2) of such graph (resp. digraph) colouring games g1
and g2, which define game chromatic numbers χg1 and χg2 , we charac-
terise the classes of graphs (resp. digraphs) such that, for any induced
subgraph (resp. subdigraph) H, the game chromatic numbers χg1(H)
and χg2(H) of H are equal.

1. Introduction

The following graph colouring game was introduced by Bodlaender [7].
Two players, Alice and Bob, alternately colour vertices of a given simple,
undirected graph with colours from a given colour set, so that adjacent
vertices receive distinct colours. If at the end of the game when no further
moves are possible, all vertices are coloured, Alice wins. Otherwise, if an
uncoloured vertex is surrounded by neighbours in all colours, Bob wins.

In Bodlaender’s original game, which we denote by gA, Alice moves first.
It is also convenient to consider the game gB, where Bob moves first.

The game chromatic number of a graph G is the smallest number of
colours such that Alice has a winning strategy in the graph colouring game.
We denote it by χgA(G) or χgB (G), depending on which game (gA or gB)
we consider.

If we consider the question of characterising the class of graphs G with

χgA(G) = χgB (G),
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we cannot expect to obtain a class of graphs with an interesting structure,
since, for any graph G, if we add a large clique C of size

s ≥ ∆(G) + 1 ≥ max{χgA(G), χgB (G)},

where ∆(G) denotes the maximum degree of G, then

χgA(G ∪ C) = s = χgB (G ∪ C).

Therefore we consider a slightly modified problem. A graph G is equality
perfect if, for any induced subgraph H of G,

χgA(H) = χgB (H).

We will characterise the class of equality perfect graphs. It turns out that
this class is equal to the class of [B,B]-perfect graphs that were characterised
by forbidden induced subgraphs and by an explicit structural characterisa-
tion in [4].

Moreover, we consider other variants of the graph colouring game, where
skipping turns is allowed for one of the players, and define equality per-
fectness more generally between any pair of such games. For some of these
pairs, we characterise the equality perfect graphs by a set of forbidden in-
duced subgraphs, for the other pairs we provide partial results. In some
cases we obtain the class of trivially perfect graphs, which appears in sev-
eral contexts.

Finally, we extend the characterisations to digraph colouring games and
propose a similar problem for marking games.

2. Preliminaries

The graph colouring game [X,Y ] with parameter X ∈ {A,B} and pa-
rameter Y ∈ {A,B,−} is defined as follows. Given an initially uncoloured,
simple, undirected, finite graph G = (V,E) and a set C of colours, two
players, Alice and Bob, alternately colour uncoloured vertices with a colour
from C such that adjacent vertices receive distinct colours. The player de-
noted by X ∈ {A,B} begins first, where “A” means “Alice” and “B” means
Bob for short. The parameter Y ∈ {A,B,−} denotes whether Alice (A),
Bob (B), or none of the players (−) has the right to skip any number of
turns, respectively. In particular, this right includes the right to skip the
first turn. The game ends if no move is possible. Alice wins if every vertex
is coloured at the end of the game. Otherwise there is a surrounded vertex,
i.e., an uncoloured vertex with neighbours in every colour. In the latter case,
Bob wins. Thus, for any (X,Y ), the game [X,Y ] is a maker-breaker game,
where Alice is the maker who tries to make a complete colouring whereas
the breaker, Bob, tries to prevent such a situation. We remark that the
standard graph colouring games gA and gB defined in the introduction are
the special cases gA = [A,−] and gB = [B,−], respectively.
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The game chromatic number χ[X,Y ](G) of G with regard to the game
[X,Y ] is the smallest size |C| of a colour set C such that Alice has a winning
strategy for the graph colouring game [X,Y ] played on G.

Determining good upper bounds for the maximum game chromatic num-
bers of several classes of graphs has received considerable attention. Among
the many classes of graphs that have been investigated are forests [12], cac-
tuses [19], outerplanar graphs [14], planar graphs [6, 15, 26], other graphs
of fixed genus [15, 25], line graphs of k-degenerate graphs [8], line graphs of
planar graphs and line graphs of other graphs admitting some special kind
of decomposition [10], and incidence graphs of graphs admitting some very
general kind of decomposition [11].

The tightness of some of these bounds (resp. lower bounds) have also been
considered, e.g., for the class of forests [7], planar graphs and k-trees [22],
or planar graphs with large girth [9].

It is well-known that the difference between the game chromatic numbers
of a graph for different games can be arbitrarily large. A popular example
which first was mentioned by Kierstead [15] is the graph Kn,n −M , which
is a complete bipartite graph with bipartitions of size n in which a perfect
matching M is deleted. Here Alice wins with 2 colours in the game gB,
but needs n colours to win in the game gA (cf. Figure 1). On the other
hand, if we add an isolated vertex v to Kn,n −M , the situation switches:
on (Kn,n −M) ∪K1, Alice wins with 2 colours in the game gA, but needs
n colours to win in the game gB. This shows that this type of game is very
sensitive with regard to rule changes (resp. small changes in the play graph).

(a) Alice begins (b) Bob begins

Figure 1. In the depictions of Kn,n−M , the vertices of the
left bipartite class are denoted by vi, those of the right bipar-
tite class by wi, respectively (i = 1, . . . , n), where vi and wj

are adjacent if and only if i 6= j. (a) In game [A,−], when-
ever Alice colours vi, Bob colours wi with the same colour.
For the remaining vertices new colours are needed. With less
than n colours, Alice cannot win. (b) In game [B,−] played
with 2 colours, if Bob colours say v1 with colour 1, then Al-
ice colours w1 with colour 2. All colours of the remaining
vertices are fixed now, thus Alice wins with 2 colours.

Therefore it is interesting to characterise those graphs, for which the game
chromatic number for a pair of games is equal for any induced subgraphs.



162 STEPHAN DOMINIQUE ANDRES

Formally, we define for any pairs (X,Y ), (X ′, Y ′) ∈ {A,B} × {A,B,−}
that a graph G is ([X,Y ], [X ′, Y ′])-equality perfect if, for any induced sub-
graph H of G,

χ[X,Y ](H) = χ[X′,Y ′](H).

An ([A,−], [B,−])-equality perfect graph is also called simply equality per-
fect. The class of all ([X,Y ], [X ′, Y ′])-equality perfect graphs is denoted
by

EP ([X,Y ], [X ′, Y ′]).

It turns out that this notion is strongly related to the notion of game-
perfect graphs. For (X,Y ) ∈ {A,B}× {A,B,−}, a graph G is game-perfect
with regard to the game [X,Y ] (or [X,Y ]-perfect for short) if, for any induced
subgraph H of G,

χ[X,Y ](H) = ω(H),

where ω(H) denotes the size of a largest clique in H. The class of all game-
perfect graphs with regard to the game [X,Y ] is denoted by

GP [X,Y ].

Obviously, for any graph H,

(2.1) χ[B,B](H)

{
≥ χ[A,B](H) ≥ χ[A,−](H) ≥
≥ χ[B,−](H) ≥ χ[B,A](H) ≥

}
χ[A,A](H) ≥ χ(H),

where χ(H) denotes the chromatic number of H. Together with the inequal-
ity χ(H) ≥ ω(H), the inequalities (2.1) imply immediately

(2.2) GP [B,B]

{
⊆ GP [A,B] ⊆ GP [A,−] ⊆
⊆ GP [B,−] ⊆ GP [B,A] ⊆

}
GP [A,A] ⊆ P,

where P denotes the class of perfect graphs. In fact, GP [A,B] = GP [A,−]
and the other inclusions in (2.2) are proper [4].

Game-perfect graphs were introduced in [1]. Forbidden induced subgraph
characterisations and explicit structural characterisations of the four classes
GP [B,B], GP [A,B], GP [A,−], and GP [B,−] and partial characterisations
of the other two classes GP [B,A] and GP [A,A] are known [4, 5, 17].

Before we formulate the characterisation of [B,B]-perfect graphs we fix
some notation. By G we denote the complement of a graph G. Now, let
G1 = (V1, E1) and G2 = (V2, E2) be two graphs and G′2 = (V ′2 , E

′
2) an

isomorphic copy of G2 with V1 ∩ V ′2 = ∅. The disjoint union of the graphs
G1 and G2 is defined as the graph G1 ∪ G2 := (V1 ∪ V ′2 , E1 ∪ E′2), i.e., the
graph where G1 and G′2 are disconnected. The join of the graphs G1 and G2

is defined as the graph

G1 ∨G2 := G1 ∪G2,

i.e., the graph where G1 and G′2 are completely connected. By Pn, Cn,
and Kn we denote the path, cycle, and the complete graph with n vertices,
respectively.
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Theorem 2.1 ([4, Thm. 3]). Let G be a graph. Then the following condi-
tions are equivalent.

(i) G ∈ GP [B,B].
(ii) G neither contains P4, nor C4, nor the split 3-star K2∨K3, nor the

double fan K1 ∨ (P3 ∪ P3) (see Figure 2) as an induced subgraph.
(iii) Every component of G is an ear animal

K1 ∨ (Km1 ∪ . . . ∪Kmk
∪ (Kh ∨ (Ke1 ∪Ke2)))

for some k, h, e1, e2,m1, . . . ,mk ≥ 0 (see Figure 3).

P4 C4 split 3-star
K2 ∨K3

double fan
K1 ∨ (P3 ∪ P3)

Figure 2. Forbidden configurations in game-perfect graphs
for the game [B,B].

Figure 3. An ear animal.

A graph is trivially perfect if it neither contains P4 nor C4 as an induced
subgraph. We denote the class of all trivially perfect graphs by TP . By a
result of Wolk [20, 21], TP is the class of comparability graphs of forests of
rooted trees. Golumbic [13] showed that TP is the class of all graphs where,
for each induced subgraph, the stability number and the number of maximal
cliques are equal, which motivated him to give trivially perfect graphs its
name.

Since Bob wins Bodlaender’s graph colouring game with two colours on
P4 and C4,

GP [B,B]
(2.2)

⊆ GP [A,−] ⊆ TP.
However, there are many [B,−]-perfect graphs that are not trivially perfect:
P4, C4, the bull, or the house are among the smallest examples.

Trivially perfect graphs admit a decomposition based on a tree, which
relies on the following result of Wolk [21]. A central vertex of a graph G is
a vertex adjacent to every other vertex of G.
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Lemma 2.2 ([21, p. 18f]). Every connected trivially perfect graph has a
central vertex.

Let G = (V,E) be a trivially perfect graph. The clique module decom-
position forest of G is constructed recursively from G using Lemma 2.2 as
follows. In each component of G we replace the nonempty complete graph
consisting of all central vertices of the component by a single vertex. The
set of these central vertices is called layer L0. For any i ≥ 1, if we delete the
vertices of all layers Lj , j < i, the remaining graph is trivially perfect by the
definition of trivially perfect graphs, thus by Lemma 2.2 all of its compo-
nents contain at least one central vertex. For any such component, we again
replace the complete graph consisting of all central vertices of the compo-
nent by a single vertex. The set of these central vertices is called layer Li.
Keeping the adjacencies of the original graph G, the graph obtained by this
procedure is a comparability graph of a forest of rooted trees each vertex of
which represents a maximal clique module, i.e., an inclusion-wise maximal
clique K such that, for every vertex v ∈ V \K, v is either completely con-
nected or not at all connected to K. If we delete the transitive edges in this
graph, we obtain a unique forest, which is the clique module decomposition
forest. We will use this clique module decomposition in the proof of Theo-
rem 2.3 (ii) and (iv). The clique module decomposition forest is related to
the notion of elimination trees. In elimination trees each vertex of a clique
module is eliminated one by one, which, in general, is not unique, since the
vertices of a clique module can be chosen in an arbitrary order, whereas in
the clique module decomposition the whole clique is replaced by a vertex.
Elimination trees have been used for several problems, e.g., for the Cholesky
factorization of sparse square matrices [16].

We can now formulate our main result in the case of undirected graphs.
In (iii) and (iv) of Theorem 2.3, let D be the class of disconnected graphs.

Theorem 2.3. The structure of equality perfect graphs with regard to some
pairs of games can be described as follows.

(i) EP ([A,A], [B,B]) = GP [B,B],
EP ([A,−], [B,−]) = GP [B,B],
EP ([A,B], [B,−]) = GP [B,B],
EP ([A,−], [B,A]) = GP [B,B],
EP ([A,B], [B,A]) = GP [B,B].

(ii) EP ([A,A], [A,−]) = TP ,
EP ([A,A], [A,B]) = TP ,
EP ([B,A], [B,B]) = TP ,
EP ([B,−], [B,B]) = TP .

(iii) EP ([A,−], [B,B]) ∩ D = GP [B,B] ∩ D,
EP ([A,A], [B,−]) ∩ D = GP [B,B] ∩ D.

(iv) EP ([A,−], [A,B]) ∩ D = TP ∩ D,
EP ([B,A], [B,−]) ∩ D = TP ∩ D.
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We remark that in Theorem 2.3 only 13 of the 15 possible pairs of games
have been considered. Some partial results for the pairs {[B,A], [A,A]} and
{[A,B], [B,B]}, which are missing in Theorem 2.3, are given in Section 5.

3. Equality Perfect Graphs: Proof of Theorem 2.3

The relation between equality perfectness and game-perfectness is given
by the following simple but fundamental observation, the corollary of which
will be frequently used in the proof of Theorem 2.3.

Observation 3.1. For any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−},
GP [X,Y ] ∩GP [X ′, Y ′] ⊆ EP ([X,Y ], [X ′, Y ′]).

Proof. Let G ∈ GP [X,Y ]∩GP [X ′, Y ′] and H be an induced subgraph of G.
Then

χ[X,Y ](H) = ω(H) = χ[X′,Y ′](H),

thus G ∈ EP ([X,Y ], [X ′, Y ′]). �

Corollary 3.2. For any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−},
GP [B,B] ⊆ EP ([X,Y ], [X ′, Y ′]).

Proof. GP [B,B]
(2.2)

⊆ GP [X,Y ]∩GP [X ′, Y ′]
Obs. 3.1
⊆ EP ([X,Y ], [X ′, Y ′]). �

The proof of Theorem 2.3 uses the following three lemmata.

Lemma 3.3. Let G be the split 3-star K2∨K3 or the double fan K1∨(P3∪P3)
and Y ∈ {A,B,−}. Then

(a) χ[A,Y ](G) = 3,
(b) χ[B,Y ](G) = 4.

Lemma 3.4. Let G be P4 or C4. Then

(a) χ[B,−](G) = χ[B,A](G) = χ[A,A](G) = 2,
(b) χ[A,−](G) = χ[A,B](G) = χ[B,B](G) = 3.

Lemma 3.5. Let G be P4 ∪K1, C4 ∪K1, the 4-fan P4 ∨K1, or the 4-wheel
C4 ∨K1. Then

(a) χ[A,−](G) = χ[B,A](G) = χ[A,A](G) = ω(G),
(b) χ[B,−](G) = χ[A,B](G) = χ[B,B](G) = ω(G) + 1.

Lemma 3.3, Lemma 3.4, and Lemma 3.5 are (mainly) proved by describing
explicit winning strategies with ω(G) colours for Alice in case (a) and for
Bob in case (b), respectively. We first make two obvious remarks that will be
implicitly used in all the proofs of the lemmata without further mentioning.

Remark 3.6. For any graph G, Bob wins any variant of the colouring game
with k < ω(G) colours.

Remark 3.7. For any graph G with maximum degree ∆, Alice wins any
variant of the colouring game with k ≥ ∆ + 1 colours.
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Proof of Lemma 3.3. (a) A winning strategy for Alice with 3 colours in a
game, where Alice begins, played on the split 3-star, is the following. In
her first move, Alice colours a vertex of degree 4 with the first colour. No
matter what Bob does, with her next move Alice can create a situation in
which both vertices of degree 4 are coloured. Since the other two or three
vertices can be coloured in any case, she wins.

A winning strategy for Alice with 3 colours in a game, where Alice begins,
played on the double fan is the following. In her first move, Alice colours
the central vertex with the first colour. If Bob colours an end vertex of a P3

in the graph of the remaining uncoloured vertices, Alice colours the other
end vertex of the same P3 with the same colour. Otherwise, she colours the
central vertex of a P3. By this strategy, the end vertices of the two P3 will
have the same colour, thus Alice wins.

(b) A winning strategy for Bob with 3 colours in a game, where Bob
begins, played on the split 3-star, is the following. In his first move, Bob
colours a vertex of degree 2 with the first colour. No matter what Alice does,
with his next move Bob can create a situation in which two of the vertices
of degree 2 are coloured differently. Since at least one of the two vertices of
degree 4 cannot be coloured any more, Bob wins. This proves the inequality
χ[B,Y ](K2 ∨K3) ≥ 4.

In order to prove the inverse inequality χ[B,Y ](K2∨K3) ≤ 4, we describe a
winning strategy for Alice with 4 colours on the split 3-star: If Bob colours a
vertex of degree 4, she colours the second vertex of degree 4. If Bob colours
a vertex of degree 2, she colours another vertex of degree 2 with the same
colour. After this pair of moves, it is impossible for a vertex of degree 4 to
be surrounded by vertices of all colours.

A winning strategy for Bob with 3 colours in a game, where Bob begins,
played on the double fan, is the following. In his first move, Bob colours the
upper left vertex with colour 1. To prevent Bob from colouring the upper
right vertex with colour 2, Alice must colour the upper right vertex with
colour 1. Then Bob colours the lower left vertex with colour 2, and in the
same way, Alice must colour the lower right vertex with colour 2. Then Bob
colours a vertex of degree 3 with colour 3 and wins, since the central vertex
cannot be coloured. This proves the inequality χ[B,Y ](K1 ∨ (P3 ∪ P3)) ≥ 4.

In order to prove the inverse inequality χ[B,Y ](K1 ∨ (P3 ∪ P3)) ≤ 4, we
describe a winning strategy for Alice with 4 colours on the double fan: No
matter what Bob does, in her first move Alice can create a situation such that
the central vertex is coloured. After that she wins since every uncoloured
vertex has degree at most 3 and there are 4 colours available. �

Proof of Lemma 3.4. (a) In the games where Alice can force Bob to begin,
Bob must colour a vertex of G and Alice colours a vertex at distance 2 with
the same colour. Therefore only 2 colours are needed.
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(b) In the games, where Bob can force Alice to begin, Alice must colour
a vertex of G and Bob colours a vertex at distance 2 with a different colour.
Then a third colour is needed to complete the colouring. �

Proof of Lemma 3.5. (a) In the games where Alice can force Bob to begin
the colouring of the induced P4 (resp. C4), whenever Bob colours a vertex of
the P4 (resp. C4), Alice colours a vertex at distance 2 with the same colour.
Therefore only ω(G) colours are needed.

(b) In the games where Bob can force Alice to begin the colouring of the
induced P4 (resp. C4), at some point, Alice must colour a vertex of the (P4

resp. C4) and Bob colours a vertex at distance 2 with a different colour.
Then at least ω(G) + 1 colours are needed to complete the colouring. �

The following key lemma states that the game chromatic number of triv-
ially perfect graphs depends only on the player who is starting.

Lemma 3.8. Let G ∈ TP . Then skipping turns is not an advantage for the
first player, i.e.,

χ[X,Y ](G) = χ[X,X](G)

for any X ∈ {A,B}, Y ∈ {A,B,−}.

The idea of the proof of Lemma 3.8 consists in describing a strategy for
Alice for the game [X,B] under the assumption that she has a winning
strategy for the game [X,A], which Alice will use as a basis for her strategy.
Whenever her basic strategy does not tell her what to do, she uses the
clique module decomposition of G and chooses an uncoloured vertex v from
a clique module from the layer Li with the smallest i such that Li contains
an uncoloured vertex, and she colours v with any feasible colour. It can
be shown that there is such a feasible colour and that this colouring does
not help Bob to surround a vertex, in particular Bob cannot exploit this
colouring of v to surround any other vertex later.

Proof of Lemma 3.8. Let F be the clique module decomposition forest of G.
F consists of trees which are rooted in the clique modules of layer L0. For
these roots we can define the parent, children, predecessors, and successors
of a clique module. For a vertex v of G, let M(v) be the vertex of F (i.e.,
the clique module of G) that contains the vertex v. Furthermore, let B(v)
be the branch of F which is rooted in the clique module M(v) and contains
M(v) and all its successors. We will use the clique module decomposition
and this notation frequently in the proof.

Let X ∈ {A,B}. Since, by (2.1), χ[X,A](G) ≤ χ[X,−](G) ≤ χ[X,B](G),
we only have to prove that if Alice has a winning strategy with k colours
in the game [X,A] on the trivially perfect graph G, she also has a winning
strategy with at most k colours in the game [X,B]. Assume Alice has a
winning strategy in the game [X,A]. Alice will use the same strategy for
the game [X,B] whenever this is possible. That means her basic strategy
for the game [X,A] tells her which vertex she should choose in the real
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game [X,B], and, if possible, she takes the same colour for this vertex as
her strategy tells her, otherwise she chooses any feasible colour. However, it
might be impossible to apply her basic strategy if, by her strategy she should
skip, or if by her strategy she should colour a vertex already coloured, or if
her strategy does not apply since Bob skips. In all these cases she considers
the layers Li of vertices defined in the construction of the clique module
decomposition forest of G and colours a vertex v in the layer Li with the
smallest label i among all layers with uncoloured vertices.

We consider the case that Alice cannot apply her basic strategy to choose
a vertex and we first have to prove that

Alice has a feasible colour to perform this move.

This follows from the fact that in the imagined game [X,A] the vertex v
would be still uncoloured and, since Alice has a winning strategy for the
imagined game, even later Alice will have a feasible colour for v in the
game [X,A], thus she has a feasible colour now (at the time when the move
is performed) in the game [X,A]. Since, by Alice’s strategy, all neighbours
of v that have been coloured in the game [X,B] but not in the imagined
game [X,A] lie in the same clique consisting of M(v) and all its predecessor
clique modules in F , there are no two nonadjacent such neighbours with
distinct colours. Note that an additional colour in the game [X,B] would
only be needed if there are two nonadjacent neighbours of an uncoloured
vertex which are coloured by different colours in the game [X,B] but will
be coloured with the same colours in the game [X,A]. As there are no such
nonadjacent neighbours of v whatsoever, since all such neighbours form a
clique, there must be a feasible colour for v in the game [X,B], as well.

Secondly, we have to prove that

Colouring v does not help Bob to surround a vertex.

In particular this means that Bob cannot exploit this colouring of v later to
surround any other vertex. Let u be an uncoloured neighbour of v. We will
prove that every neighbour z of u is adjacent to v. This will prove our second
assertion since, as already argued above, only the existence of nonadjacent
neighbours of an uncoloured vertex may lead to surrounding the uncoloured
vertex. We distinguish several cases.

The vertex u cannot be a member of a layer Lj with j < i, since, when
Alice colours v, every vertex in such a layer Lj is already coloured by Alice’s
strategy.

In case u is a member of layer Li, then, by the definition of F , u belongs
to M(v), since members of other clique modules in Li are nonadjacent to v.
By the definition of a clique module, u and v have the same neighbours.

In case u is a member of layer Lj with j > i, the vertex u must be in
a clique module corresponding to a vertex of B(v). Each neighbour z of u
must lie either also in a clique module corresponding to a vertex of B(v)
or in a predecessor clique module of M(v). In the first subcase M(z) is a
successor of M(v). Since v is a central vertex for the graph induced by the
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vertices of the clique modules of B(v), v is adjacent to z. In the second
subcase z is a central vertex of the graph induced by the vertices of the
clique modules of B(z), and M(v) is a vertex of B(z), in particular z is
adjacent to v.

This completes the discussion of the case that Alice cannot apply her
strategy to choose a vertex.

Figure 4. Proof of the third assertion in the proof of Lemma 3.8.

Now we consider the case that Alice is forced to use a different colour in
the game [X,B] than in the game [X,A]. As a third assertion we have to
prove that

If Alice is forced to use a different colour in the game [X,B]
than in the game [X,A] this does not help Bob surround a
vertex.

Assume the contrary, an uncoloured vertex v in layer Li is going to be
surrounded by this type of move, i.e., some vertex w1 in a clique module
of B(v) is coloured by colour 1 and a vertex w2 in another clique module
of B(v) should be coloured by colour 1 by Alice’s strategy for the game
[X,A], but cannot be coloured by this colour in the real game [X,B], thus
Alice colours w2 with colour 2. We assume that the layer Li of vertex v is
such that i is minimal, and among all vertices that have a property like w2

corresponding to v, w2 is chosen to be in a layer Lj with minimal j. Since
w2 cannot be coloured with colour 1, there must be a clique module on the
path in F from B(v) to B(w2) that contains a vertex x that is coloured
with colour 1 in the real game [X,B] (see Figure 4). Since [X,A] cannot
be coloured with colour 1 in the imagined game [X,A], there are only two
reasons how that can happen: either (I) x also had to be coloured in a
different colour than by Alice’s strategy for game [X,A] or (II) the vertex x
was chosen in some move because Alice could not apply her basic strategy.

Case (I) contradicts the minimality of the layers of v and w2.
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Case (II), which is shown in Figure 4, implies that when x was chosen,
vertex v was already coloured since it is in a lower layer than x, which
contradicts the fact that v is not coloured.

Therefore our assumption is wrong and the lemma is proven. �

After these preparations we prove our main result.

Proof of Theorem 2.3. (i) Let EP be one of the five classes

EP ([A,A], [B,B]), EP ([A,−], [B,−]),

EP ([A,B], [B,−]), EP ([A,−], [B,A]), or

EP ([A,B], [B,A]),

see Figure 5 (a).
By Corollary 3.2, GP [B,B] ⊆ EP .
For the other implication, let G ∈ EP . By Lemma 3.3, G neither contains

the split 3-star nor the double fan as an induced subgraph. By Lemma 3.4,
G neither contains P4 nor C4 as an induced subgraph. This implies by
Theorem 2.1 that G ∈ GP [B,B].
(ii) Let EP be one of the four classes EP ([A,A], [A,−]), EP ([A,A], [A,B]),
EP ([B,A], [B,B]), or EP ([B,−], [B,B]), see Figure 5(b).

Let G ∈ TP be a trivially perfect graph and H be a subgraph of G. Then
H is trivially perfect. By Lemma 3.8, for any X ∈ {A,B}, Y ∈ {A,B,−},

χ[X,Y ](H) = χ[X,X](H),

i.e., G ∈ EP ([X,X], [X,Y ]). In particular, G ∈ EP .
For the other implication, let G ∈ EP . By Lemma 3.4, G neither contains

P4 nor C4 as an induced subgraph. Thus, by definition, G ∈ TP .
(iii) Let EP be one of the classes EP ([A,−], [B,B]) or EP ([A,A], [B,−]),
see Figure 5(c).

In line with (i), by Corollary 3.2, GP [B,B] ⊆ EP . Thus

GP [B,B] ∩ D ⊆ EP ∩ D.
For the other implication, let G ∈ EP ∩ D. By Lemma 3.3, G neither

contains the split 3-star nor the double fan as an induced subgraph. By
Lemma 3.5, G neither contains P4∪K1 nor C4∪K1 as an induced subgraph.
Since, by assumption, G has at least two components, this means that none
of the components of G contains a P4 or a C4. This implies by Theorem 2.1
that G ∈ GP [B,B]. Thus G ∈ GP [B,B] ∩ D.
(iv) Let EP be one of the classes EP ([A,−], [A,B]) or EP ([B,A], [B,−]),
see Figure 5(d).

Let G ∈ TP be a trivially perfect graph and H be a subgraph of G. Then
H is trivially perfect. By Lemma 3.8, for anyX ∈ {A,B}, Y, Y ′ ∈ {A,B,−},

χ[X,Y ](H) = χ[X,X](H) = χ[X,Y ′](H),

i.e., G ∈ EP ([X,Y ], [X,Y ′]). In particular, G ∈ EP . Thus

TP ∩ D ⊆ EP ∩ D.
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(a)

The pairs of games separated
by Lemma 3.3 and Lemma 3.4
in (i) of Theorem 2.3.

(b)

The pairs of games (with the
same player beginning) sepa-
rated by Lemma 3.4 in (ii) of
Theorem 2.3.

(c)

The pairs of games separated
by Lemma 3.3 and Lemma 3.5
in (iii) of Theorem 2.3. Pairs
with dashed lines are already
contained in (i).

(d)

The pairs of games (with the
same player beginning) sepa-
rated by Lemma 3.5 in (iv)
of Theorem 2.3. Pairs with
dashed lines are already con-
tained in (ii).

Figure 5.

For the other implication, let G ∈ EP ∩ D. By Lemma 3.5, G neither
contains P4∪K1 nor C4∪K1 as an induced subgraph. Since, by assumption,
G has at least two components, this means that none of the components of G
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contains P4 or C4. Therefore every component of G is trivially perfect. Thus
G ∈ TP ∩ D. �

From Theorem 2.3, using Theorem 2.1, we immediately get the following
characterisation of equality perfect graphs for some pairs of games by sets
of forbidden induced subgraphs.

Corollary 3.9. A graph is equality perfect

(i) with regard to a pair of games as in Theorem 2.3 (i) if and only if
it contains no induced P4, C4, split 3-star, or double fan;

(ii) with regard to a pair of games as in Theorem 2.3 (ii) if and only if
it contains no induced P4 or C4.

4. Equality Perfect Digraphs

In this section we consider digraphs without loops and multiple arcs,
however, pairs of antiparallel arcs (v, w) and (w, v) are allowed. If we regard
such pairs as undirected edges, a natural generalization of graph colouring
to digraphs is given by the dichromatic number introduced by Neumann-
Lara [18]. The dichromatic number of a digraph D is the smallest number
of induced acyclic digraphs that cover all vertices of D.

Two digraph colouring games motivated by this notion were proposed.
In the strong digraph colouring game s[X,Y ] introduced in [2], Alice and
Bob alternately colour uncoloured vertices of a given digraph D with a
colour c from a given colour set such that c is different from the colours of
the previously coloured in-neighbours. In the weak digraph colouring game
w[X,Y ] introduced by Yang and Zhu [23], Alice and Bob alternately colour
uncoloured vertices of a given digraph D with a colour from a given colour
set such that no monochromatic directed cycles are created. In both types
of games, X ∈ {A,B} denotes the player who begins, Y ∈ {A,B,−} is the
player who is allowed to skip (if Y 6= −), and Alice wins if every vertex is
coloured at the end. The smallest number of colours such that Alice has
a winning strategy in the game s[X,Y ] and w[X,Y ] is the game chromatic
number χs[X,Y ] and χw[X,Y ] of D, respectively. Note that both the strong
and the weak game chromatic number of a symmetric digraph S are equal
to the game chromatic number of its underlying graph GS . In the following,
we identify GS with S.

We define the classes EPs([X,Y ], [X ′, Y ′]) of strongly equality perfect di-
graphs and EPw([X,Y ], [X ′, Y ′]) of weakly equality perfect digraphs with
regard to the pair ([X,Y ], [X ′, Y ′]) with X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−}
as the classes of those digraphs for which, for any induced subdigraph H,

χs[X,Y ](H) = χs[X′,Y ′](H) or χw[X,Y ](H) = χw[X′,Y ′](H),

respectively. Notions of game-perfect digraphs have been introduced in [3].
Observation 3.1 can be generalized with these notions to digraphs.
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Lemma 4.1. Let Y ∈ {A,B,−} and ~P2 be the directed path on two vertices.
Then

(a) χs[A,Y ](~P2) = 1,

(b) χs[B,Y ](~P2) = 2.

Proof. (a) Playing with one colour, Alice colours the terminal vertex of the
single arc and wins, since the other vertex can be coloured with the same
colour.

(b) Playing with one colour, Bob colours the initial vertex of the single arc
and wins, since the other vertex cannot be coloured with the same colour. �

Corollary 4.2. For any Y, Y ′ ∈ {A,B,−}, the class EPs([A, Y ], [B, Y ′])
is contained in the class of undirected graphs (symmetric digraphs).

Proof. Let D ∈ EPs([A, Y ], [B, Y ′]). By Lemma 4.1, D is symmetric. �

Theorem 4.3. The structure of strongly equality perfect digraphs with re-
gard to some pairs of games can be described as follows.

(i) EPs([A,A], [B,B]) = EP ([A,A], [B,B]) = GP [B,B],
EPs([A,−], [B,−]) = EP ([A,−], [B,−]) = GP [B,B],
EPs([A,B], [B,−]) = EP ([A,B], [B,−]) = GP [B,B],
EPs([A,−], [B,A]) = EP ([A,−], [B,A]) = GP [B,B],
EPs([A,B], [B,A]) = EP ([A,B], [B,A]) = GP [B,B].

(ii) EPs([A,A], [B,−]) = EP ([A,A], [B,−]),
EPs([A,−], [B,B]) = EP ([A,−], [B,B]),
EPs([A,A], [B,A]) = EP ([A,A], [B,A]),
EPs([A,B], [B,B]) = EP ([A,B], [B,B]).

Proof. Combining Corollary 4.2 with Theorem 2.3 (i) we obtain the state-
ments of Theorem 4.3 (i). The statements of Theorem 4.3 (ii) are immediate
from Corollary 4.2. �

Corollary 4.4. A digraph is strongly equality perfect with regard to a pair
of games as in Theorem 4.3 (i) if and only if it contains no induced P4, C4,

split 3-star, double fan, or directed path ~P2.

5. Final remarks and Open Problems

For the classes not mentioned in Theorem 2.3 (i) or (ii), or in Theo-
rem 4.3 (i), partial lists of minimal forbidden induced subgraphs (resp. par-
tial lists of minimal forbidden induced subdigraphs) result from our work.
However, we do not know whether these lists are complete.

Problem 5.1. Let C be the class of connected graphs. Characterise the
classes

EP ([A,−], [B,B]) ∩ C, EP ([B,−], [A,A]) ∩ C.
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T3 S3

Figure 6. The triple triangle T3 and the triple sword S3.

Lemma 5.2. Let Y ∈ {A,B,−}, T3 be the triple triangle, and S3 be the
triple sword which are depicted in Figure 6.

(a) χ[A,Y ](T3) = χ[A,Y ](S3) = 3.
(b) χ[B,Y ](T3) = χ[B,Y ](S3) = 4.

Proof. (a) We describe a winning strategy for Alice for the game [A, Y ]
played on the graphs T3 or S3 with 3 colours. Both graphs have two adjacent
vertices of degree at least 4, which we call middle vertices, all other vertices
are of degree at most 2, thus can be coloured in any case. In her first move
Alice colours a middle vertex with colour 1. No matter what Bob does, by
her next move Alice can achieve a situation where both middle vertices are
coloured, therefore she wins.

(b) We describe a winning strategy for Bob for the game [B, Y ] played
on the triple triangle T3 with 3 colours. In his first move, Bob colours the
bottom vertex with colour 1. By symmetry, we distinguish only three cases.

• If Alice colours a vertex v of degree 4 with colour 2, Bob colours a
vertex at distance 2 from v with colour 3 and wins.
• If Alice colours a vertex w of degree 2 with colour 1 or 2 instead,

Bob colours a vertex at distance 3 from w with the other colour 2
or 1, respectively. Now the neighbour z with degree 4 of the vertex
coloured with 2 is threatened: if one of its two uncoloured neigh-
bours is coloured with colour 3, then Bob will win. Alice can only
prevent him from colouring one of them unless she colours z. But if
she colours z, necessarily with colour 3, Bob colours the uncoloured
vertex at distance 2 from z with colour 2, which results in a win for
him, since the second vertex of degree 4 is surrounded.
• If Alice skips, Bob colours a vertex w of degree 2 with colour 2. In

the same way as in the second case, Alice is forced to colour the
neighbour z of w with degree 4 with colour 3, which enables Bob to
win if he colours a vertex at distance 2 from z.

We describe a winning strategy for Bob for the game [B, Y ] played on
the triple sword S3 with 3 colours, which is similar to the previous strategy.
In his first move, Bob colours the top vertex of degree 2 with colour 1. To
prevent Bob from winning by colouring the bottom vertex of degree 2 with
another colour, Alice must colour this bottom vertex with colour 1. But
then Bob colours another vertex of degree 2 with colour 2. Now the vertex
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of degree 5 is threatened: To prevent a situation in which it cannot be
coloured, Alice must colour it with colour 3. Then Bob colours the vertex
of degree 1 with colour 2 and wins. �

From Lemma 3.3, Lemma 3.5, and Lemma 5.2 we know that the split
3-star, the double fan, P4 ∪ K1, C4 ∪ K1, the 4-fan P4 ∨ K1, the 4-wheel
C4∨K1, the triple triangle T3, and the triple sword S3 are forbidden induced
subgraphs for the classes occurring in Problem 5.1.

Problem 5.3. Let C be the class of connected graphs. Characterise the
classes

EP ([A,−], [A,B]) ∩ C, EP ([B,A], [B,−]) ∩ C.

From Lemma 3.5 we know that P4 ∪ K1, C4 ∪ K1, the 4-fan P4 ∨ K1,
and the 4-wheel C4 ∨ K1 are forbidden induced subgraphs for the classes
occurring in Problem 5.3.

Problem 5.4. Characterise the graph classes EP ([A,B], [B,B]) as well as
EP ([B,A], [A,A]).

From Lemma 3.3 and Lemma 5.2 we know that the split 3-star, the dou-
ble fan, the triple triangle T3, and the triple sword S3 are forbidden induced
subgraphs for the classes EP ([B,A], [A,A]) and EP ([A,B], [B,B]) occur-
ring in Problem 5.4. Both classes seem to have a rich and rather compli-
cated structure. We notice that the T3 and S3 also occur as two of the
minimal forbidden induced subgraphs for [B,A]-perfect and [B,−]-perfect
graphs [5, 17].

For Y ∈ {A,B,−}, let

Y :=

 B if Y = A,
− if Y = −,
A if Y = B.

Our results encourage us to formulate the following, surprisingly unintu-
itive conjecture:

Conjecture 5.5 (Duality Conjecture). Let

(X,Y ), (X ′, Y ′) ∈ {A,B} × {A,B,−}.
Then

EP ([X,Y ], [X ′, Y ′]) = EP
([
X,Y

]
,
[
X ′, Y ′

])
.

Problem 5.6. Characterise the classes

EPs([A,B], [A,−]) and EPs([B,A], [B,−]).

Problem 5.7. Characterise the classes

EPs([A,A], [A,−]), EPs([A,A], [A,B]),

EPs([B,A], [B,B]), EPs([B,−], [B,B]).
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Lemma 5.8. Let sg1 be one of the games s[A,A], s[B,A], or s[B,−] and
sg2 be one of the games s[A,−], s[A,B], or s[B,B]. Let D be one of the
digraphs depicted in Figure 7. Then

(a) χsg1(D) = 2.
(b) χsg2(D) = 3.

P ′′4 P ′4 C ′′4 C ′4 C+
4

Figure 7. Some digraphs based on P4 or C4. In the figure,
an undirected edge vw represents the two antiparallel arcs
(v, w) and (w, v).

Proof. (a) In line with the proof of Lemma 3.4, we describe a winning strat-
egy for Alice with 2 colours for a game where she can force Bob to begin. No
matter which vertex Bob colours in his first move, Alice colours the vertex
at distance 2 from it with the same colour and wins.

(b) In line with the proof of Lemma 3.4, we describe a winning strategy
for Bob with 2 colours for a game where he can force Alice to begin. If Alice
colours a vertex, Bob colours the vertex at distance 2 from it with the other
colour and wins. �

The pairs of games occurring in Problem 5.7 have been characterised in
the case of undirected graphs in Theorem 2.3 (ii). From Lemma 5.8 we
know that the digraphs depicted in Figure 7 belong to the list of forbidden
induced nongraphical digraphs.

We have not investigated the classes of weakly equality perfect digraphs,
which seem to be rich classes and an interesting subject of further research.

Problem 5.9. Characterise the classes

EPw([X,Y ], [X ′, Y ′])

for any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−}.
Many results concerning game chromatic numbers were obtained through

a marking game introduced by Zhu [24], which defines the game colouring
number colA(G) and colB(G) of a graph G depending on whether Alice (A)
or Bob (B) begins the game. We define a graph to be marking equality
perfect if, for any induced subgraph, colA(H) = colB(H).

Problem 5.10. Characterise the class of marking equality perfect graphs by
means of forbidden induced subgraphs.

It is easy to see that for the diamond K2∨K2 the game colouring number
is 3 if Alice begins and 4 if Bob begins (cf. [4]), thus the diamond is one of
the forbidden induced subgraphs in marking equality perfect graphs.
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