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COMBINATORIAL RESULTS FOR ORDER-PRESERVING

PARTIAL INJECTIVE CONTRACTION MAPPINGS

BAYO MUSA AHMED, NADIA ALDHAMRI, FATMA AL-KHAROUSI,
GEORG KLEIN, AND ABDULLAHI UMAR

Abstract. Let In be the symmetric inverse semigroup on
Xn = {1, 2, . . . , n}. Let OCIn be the subsemigroup of In consisting
of all order-preserving injective partial contraction mappings, and let
ODCIn be the subsemigroup of In consisting of all order-preserving and
order-decreasing injective partial contraction mappings of Xn. In this
paper, we investigate the cardinalities of some equivalences onOCIn and
ODCIn which lead naturally to obtaining the order of these semigroups.
Then, we relate the formulae obtained to Fibonacci numbers. Simi-
lar results about ORCIn, the semigroup of order-preserving or order-
reversing injective partial contraction mappings, are deduced.

1. Introduction and Preliminaries

Let Xn = {1, 2, . . . , n} and In be the partial one-to-one transformation
semigroup on Xn under composition of mappings. Then In is an inverse
semigroup, that is, for all α ∈ In there exists a unique α′ ∈ In such that
α = αα′α and α′ = α′αα′. The importance of In, commonly known as
the symmetric inverse semigroup or monoid, to inverse semigroup theory is
similar to the importance of the symmetric group Sn to group theory. Every
finite inverse semigroup S is embeddable in In, an analogue to Cayley’s
theorem for finite groups. Thus, just as the study of symmetric, alternating,
and dihedral groups has significantly contributed to group theory, the study
of various subsemigroups of In lead to significant contributions to the theory
of semigroups. For instance, see Borwein et al. [6], Fernandes [8], Fernandes
et al. [9], Garba [10], Laradji and Umar [14], and Umar [19, 20].
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We shall denote the domain of α ∈ In by Domα. A transformation
α ∈ In is said to be order-preserving if for all x, y in Domα, x ≤ y implies
xα ≤ yα. A transformation α ∈ In is said to be order-reversing if for all x, y
in Domα, x ≤ y implies xα ≥ yα. A transformation α ∈ In is an isometry
if it is distance-preserving, i.e, for all x, y in Domα, |x− y| = |xα− yα|. A
transformation α ∈ In is a contraction if for all x, y in Domα, |xα− yα| ≤
|x−y|. A transformation is said to be order-decreasing if for all x in Domα,
xα ≤ x.

Analogous to Al-Kharousi et al. [2, 3], we investigate the combinato-
rial properties of OCIn and ODCIn, thereby complementing the results in
Al-Kharousi et al. [1] which deals primarily with the algebraic and rank
properties of OCIn. In the present section, we introduce basic definitions
and terminology, and we quote some elementary results from Al-Kharousi
et al. [1, 2] that will be needed subsequently. In section 2, we thoroughly
investigate the combinatorial properties of OCIn, the semigroup of order-
preserving partial injective contraction mappings of the finite chain Xn. We
obtain a formula for F (n; p), the number of transformations with height p.
Then we refine this formula obtaining F (n; p,m), the number of transfor-
mations with height p and m fixed points.

We recall that the Fibonacci sequence, denoted by Fn, is defined recur-
sively such that each number is the sum of the two preceding ones, starting
from 0 and 1. The order of OCIn is obtained and expressed in terms of
two consecutive Fibonacci numbers, and it is shown that this is Sequence
A094864 in The On-Line Encyclopedia of Integer Sequences [18]. In sec-
tion 3, we study the combinatorial properties of ODCIn, the semigroup of
order-preserving and order-decreasing partial injective contraction mappings
of the finite chain Xn. The investigations go along the lines of the ones in
section 2 in the case of OCIn. The order of ODCIn, as a function of n, is
shown to be Sequence A001519 in The On-Line Encyclopedia of Integer Se-
quences [18]. In section 4, we study combinatorial properties of ORCIn, the
semigroup of order-preserving or order-reversing partial injective contraction
mappings of the finite chain Xn.

For standard concepts in semigroup and symmetric inverse semigroup
theory, we refer to Howie [13] and Lipscomb [15].

We define the set of all partial injective contractions of Xn as

CIn = {α ∈ In : ∀x, y ∈ Domα, | xα− yα |≤| x− y |}.
We define the set of all order-preserving partial injective contractions of Xn

as

OCIn = {α ∈ CIn : ∀x, y ∈ Domα, x ≤ y =⇒ xα ≤ yα}.
We define the set of all order-preserving or order-reversing partial injective
contractions of Xn as

ORCIn = {α ∈ CIn : ∀x, y ∈ Domα, x ≤ y =⇒ xα ≤ yα,

or ∀x, y ∈ Domα, x ≤ y =⇒ xα ≥ yα}.

http://oeis.org/A094864
http://oeis.org/A001519
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We define the set of all order-preserving and order-decreasing injective con-
tractions of Xn as

ODCIn = {α ∈ OCIn : ∀x ∈ Domα, xα ≤ x}.

From these definitions, we can deduce the following.

Lemma 1.1. CIn, OCIn, ORCIn and ODCIn are subsemigroups of In.
□

Let α be an arbitrary element in In. The height or rank of α is defined
as h(α) = | Imα|. The right waist of α is defined as w+(α) = max(Imα).
Similarly, the left waist of α is defined as w−(α) = min(Imα). The right
shoulder of α is defined asϖ+(α) = max(Domα). Similarly, the left shoulder
of α is defined as ϖ−(α) = min(Domα). The fix of α is denoted by f(α),
and defined as f(α) = |F (α)|, where F (α) = {x ∈ Xn : xα = x}.

For a given transformation semigroup S, we define

F (n; p) = |{α ∈ S : h(α) = p}|.

The gap of an ordered tuple a = (a1, a2, . . . , ap) is the ordered (p− 1)-tuple

g(a) = (a2 − a1, a3 − a2, . . . , ap − ap−1) .

Accordingly, for

α =

(
a1 a2 · · · ap
a1α a2α · · · apα

)
with 1 ≤ a1 < a2 < · · · < ap ≤ n, let the gap of the domain of α be

g(Domα) = (a2 − a1, a3 − a2, . . . , ap − ap−1) ,

and let the gap of the image of α be

g(Imα) = (a2α− a1α, a3α− a2α, . . . , apα− ap−1α) .

For example, if

α =

(
1 3 5
3 5 6

)
, β =

(
1 2 3 5
3 4 5 6

)
∈ OCI6,

then
g(Domα) = (2, 2), g(Imα) = (2, 1), g(Domβ) = (1, 1, 2) and
g(Imβ) = (1, 1, 1). For

α =

(
a1 a2 · · · ap
a1α a2α · · · apα

)
with 1 ≤ a1 < a2 < · · · < ap ≤ n, let di = ai+1α− aiα for i = 1, 2, . . . , p− 1.
Then the gap of the image set of α is the ordered (p− 1)-tuple
(d1, d2, . . . , dp−1). Similarly, we let ti = ai+1 − ai for i = 1, 2, . . . , p− 1.
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Then the gap of the domain set of α is the ordered (p− 1)-tuple
(t1, t2, . . . , tp−1). With these definitions, it is clear that

p− 1 ≤
p−1∑
i=1

|di| ≤ n− 1 and p− 1 ≤
p−1∑
i=1

ti ≤ n− 1.

Here we state some well-known identities which we will use in the proofs of
the results in the following sections. We adopt the convention that

(
n
k

)
= 0

if k > n or if k or n are negative.

Lemma 1.2.

(i) The number of compositions of n into p positive parts is
(
n−1
p−1

)
, (See

[17, p. 151]).
(ii) Let d(n, p) be the number of distinct ordered p-tuples: (r1, r2, . . . , rp)

with ri ≥ 0 for 1 ≤ i ≤ p and
∑p

i=1 ri = n. Then, d(n, p) is the
number of compositions of n into p nonnegative parts. That is,

d(n, p) =

(
n+ p− 1

p− 1

)
,

(See [7, p. 589]).

The Vandermonde convolution identity states that for integers m,n, r,
r∑

k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)
,

(See [17, p. 8]). Using this identity we can deduce the following result.

Lemma 1.3. For r, s, t ∈ N such that r > s,
r−s∑
i=0

(
r − i

s

)(
i+ t

t

)
=

(
r + t+ 1

s+ t+ 1

)
,

(See [17, 3(b), p. 8]).

The following result can be proved by straightforward induction.

Lemma 1.4. For nonnegative integers n and r,
n∑

j=r

(
j

r

)
=

(
n+ 1

r + 1

)
.

2. Combinatorial results for OCIn

Let A = {(a1, a2, . . . , am)|ai ∈ {1, 2, . . . , n} for 1 ≤ i ≤ m} be a set of or-
dered tuples with fixed length m. Define a relation R on the set A as follows:
For a = (a1, a2, . . . , am) in A and b = (b1, b2, . . . , bm) in A,

a R b ⇔ |ai| ≤ |bi|, for all 1 ≤ i ≤ m.

Lemma 2.1. A transformation α is a contraction if and only if
g(Imα) R g(Domα).
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Proof. The result follows from the definition of a contraction. □

For a tuple r = (r1, r2, . . . , rp) with 1 ≤ r1 < r2 < · · · < rp ≤ n, let

ar = {α ∈ OCIn| Imα = r}.

Let g(r) = (d1, d2, . . . , dp−1) and
∑

di = q. Then

Lemma 2.2.

|ar| =
(
n− q + p− 1

p

)
.

Proof. The number of maps in OCIn with image r is equal to the number
of possible domain sets which we obtain by summing over the number of

possible expansions of the image set by inserting i extra spaces,
(
i+p−2
p−2

)
,

multiplied by the number of possible transversal shifts, n− q − i.

|ar| =

n−1−q∑
i=0

(n− q − i)

(
i+ p− 2

p− 2

)

=

n−1−q∑
i=0

(
n− q − i

1

)(
i+ p− 2

p− 2

)
=

(
n− q + p− 1

p

)
(by Lemma 1.3).

□

Corollary 2.3. Let r = (r1, r2, . . . , rp) with 1 ≤ r1 < r2 < · · · < rp ≤ n and
g(r) = (d1, d2, . . . , dp−1). Let s = (s1, s2, . . . , sp) with 1 ≤ s1 < s2 < · · · <
sp ≤ n and g(s) = (d′1, d

′
2, . . . , d

′
p−1). If

∑p−1
i=1 di =

∑p−1
i=1 d′i then |ar| = |as|.

Proof. The result follows from Lemma 2.2, since |ar| depends only on∑
di = q and p. □

Theorem 2.4. Let S = OCIn. Then for p ≥ 1,

F (n; p) = n

(
n+ p− 1

2p− 1

)
+ (1− p)

(
n+ p

2p

)
.

Proof. From the results above, we can count F (n; p) by summing over pos-
sible images and their possible domains as follows.

F (n; p)

=
n−1∑

q=p−1

(
q − 1

p− 2

)
(n− q)

(
n− q + p− 1

p

)

=

n−p∑
i=0

(
p− 2 + i

p− 2

)
[(n− p+ 1)− i]

(
n− i

p

)
(i = q − p+ 1)
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= (n− p+ 1)

(
n+ p− 1

2p− 1

)
−

n−p∑
i=0

i

(
n− i

p

)(
p+ i− 2

p− 2

)
(by Lemma 1.3)

= (n− p+ 1)

(
n+ p− 1

2p− 1

)
−

n−p∑
i=1

(p− 1)

(
n− i

p

)
(p+ i− 2) · · · (i+ 1)i

(p− 1)!

= (n− p+ 1)

(
n+ p− 1

2p− 1

)
−

n−p∑
i=1

(p− 1)

(
n− i

p

)(
p+ i− 2

p− 1

)

= (n− p+ 1)

(
n+ p− 1

2p− 1

)
− (p− 1)

(
n+ p− 1

2p

)
(by Lemma 1.3)

= n

(
n+ p− 1

2p− 1

)
+ (1− p)

(
n+ p− 1

2p− 1

)
+ (1− p)

(
n+ p− 1

2p

)

= n

(
n+ p− 1

2p− 1

)
+ (1− p)

(
n+ p

2p

)
.

□

The height, h(α), the right and left shoulder, ϖ+(α) and ϖ−(α), the right
and left waist, w+(α) and w−(α), and the fix, f(α), are defined in section 1.
To compute F (n; p,m), the number of maps in OCIn with height p and m
fixed points, we introduce further notation.

Let

f−(α) = min{x ∈ Domα : xα = x}

and

f+(α) = max{x ∈ Domα : xα = x}.

Let

h−(α) = |Domα ∩ {1, 2, . . . , f−(α)− 1}|

and

h+(α) = |Domα ∩ {f+(α) + 1, f+(α) + 2, . . . , n}|.

Lemma 2.5. Let α ∈ OCIn. The set of fixed points of α is convex with
respect to Domα. That is, if x ∈ Domα such that f−(α) ≤ x ≤ f+(α),
then xα = x.

Proof. The result follows from the contraction property, as shown by
Adeshola and Umar [4, Lemma 1.1]. □
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For a semigroup S, we define

F (n; l−, l+, λ−, λ+,m,m−,m+, p, p−, p+) =

= |{α ∈ S : (ϖ−(α) = l−) ∧ (ϖ+(α) = l+) ∧ (w−(α) = λ−)∧

∧ (w+(α) = λ+) ∧ (f(α) = m) ∧ (f−(α) = m−) ∧ (f+(α) = m+)∧

∧ (h(α) = p) ∧ (h−(α) = p−) ∧ (h+(α) = p+)}|.

Theorem 2.6. Let S = OCIn. If m = p, then F (n; p,m) =
(
n
m

)
. If m < p,

then

F (n; p,m) = (p−m− 1)

(
n+ p−m− 2

2p−m

)
+ 2

(
n+ p−m− 1

2p−m

)
.

Proof. The case m = p is clear. For m < p and m ̸= 0, as in the proof of
Lemma 2.2, the maps can be counted by considering the number of possi-
bilities of obtaining a domain set by expanding the image set. Due to the
contraction condition and since there are fixed points, right or left shifts of
the domain set are not possible.

Along the lines of Al-Kharousi et al., [1], a transformation α ∈ OCIn can
be split into three parts, an increasing part, followed by a fixed part, and
then a decreasing part. If a mapping has all three parts, then the set of
fixed points is nonempty and occurs in the middle. In this case the number
of spaces available for expansion on the left of m− is λ− − l−. One of these
spaces necessarily needs to be inserted just before m−. Thus effectively we
need to take into account all the possibilities of separating λ−−l−−1 objects
with p−− 1 separators. These p−− 1 separators correspond to the elements
in the image which are between the smallest one and the smallest of the
fixed points. We need to multiply the number of possibilities of distributing
these p− − 1 image points by the number of possibilities of expanding the
image set, and then take the sum over all possible λ−. Using Lemma 1.3,
we obtain

m−−p−∑
λ−=l−+1

(
m− − λ− − 1

p− − 1

)(
λ− − l− − 1 + p− − 1

p− − 1

)
=

(
m− − l− + p− − 2

2p− − 1

)
.

Since p+ = p − m − p−, a similar calculation allows one to determine the
number of possibilities of expanding the image set on the right of the fixed
points as (

l+ −m+ + (p−m− p−)− 2

2(p−m− p−)− 1

)
.

For given m− and m+, the number of possibilities to distribute the fixed
points is (

m+ −m− − 1

m− 2

)
.
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The total number of transformations in OCIn with the three parts (an
increasing, a fixed, and a decreasing part) is obtained by multiplying these
three expressions and summing over all possible l+, l−,m+, m− and p−.
Lemmas 1.4 and 1.3 will be applied repeatedly.

p−m−1∑
p−=1

n−(p−p−)∑
m−=p−+2

n−(p−m−p−)−1∑
m+=m−+m−1

m−−p−−1∑
l−=1

n∑
l+=m++(p−m−p−)+1(

m− − l− + p− − 2

2p− − 1

)(
l+ −m+ + (p−m− p−)− 2

2(p−m− p−)− 1

)(
m+ −m− − 1

m− 2

)

=

p−m−1∑
p−=1

n−(p−p−)∑
m−=p−+2

n−(p−m−p−)−1∑
m+=m−+m−1

(
m+ −m− − 1

m− 2

)
m−−p−−1∑

l−=1

(
m− − l− + p− − 2

2p− − 1

)
n∑

l+=m++(p−m−p−)+1

(
l+ −m+ + (p−m− p−)− 2

2(p−m− p−)− 1

)

=

p−m−1∑
p−=1

n−(p−p−)∑
m−=p−+2

n−(p−m−p−)−1∑
m+=m−+m−1(

m+ −m− − 1

m− 2

)(
m− − 1 + p− − 1

2p−

)(
n−m+ + (p−m− p−)− 1

2(p−m− p−)

)

=

p−m−1∑
p−=1

n−(p−p−)∑
m−=p−+2

(
m− + p− − 2

2p−

)
n−(p−m−p−)−1∑
m+=m−+m−1

(
m+ −m− − 1

m− 2

)(
n−m+ + (p−m− p−)− 1

2(p−m− p−)

)

=

p−m−1∑
p−=1

n−(p−p−)∑
m−=p−+2

(
m− + p− − 2

2p−

)(
n−m− + (p−m− p−)− 1

2(p− p−)−m− 1

)

=

p−m−1∑
p−=1

(
n+ p−m− 2

2p−m

)
= (p−m− 1)

(
n+ p−m− 2

2p−m

)
.

Now we consider the cases where the fixed points are at the beginning or
the end. Here we do the case where they are at the beginning, the other
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case is similar. In the case under consideration, p− = 0. Using Lemmas
1.4 and 1.3, we obtain the total number of transformations in OCIn with a
fixed part followed by a decreasing part.

n−(p−m)−1∑
m+=m

n∑
l+=m++(p−m)+1

(
m+ − 1

m− 1

)(
l+ −m+ + (p−m)− 2

2(p−m)− 1

)

=

n−(p−m)−1∑
m+=m

(
m+ − 1

m− 1

) n∑
l+=m++(p−m)+1

(
l+ −m+ + (p−m)− 2

2(p−m)− 1

)

=

n−(p−m)−1∑
m+=m

(
m+ − 1

m− 1

)(
n−m+ + (p−m)− 1

2(p−m)

)
=

(
n+ p−m− 1

2p−m

)
.

Finally, we need to consider the case where there are no fixed points.
Again we do this by expanding the image set in order to obtain the domain
set. If all points in the image which come before the (i + 1)th point are
shifted to the left by inserting j + 1 spaces, we get the following number of
possibilities (

j + (i− 1)

i− 1

)
.

If all the elements in the image which come after the ith point are shifted
to the right by inserting k + 1 spaces, this gives the following number of
possibilities (

k + (p− i− 1)

p− i− 1

)
.

Given λ− and λ+, the number of possible images is(
λ+ − λ− − 1

p− 2

)
.

Summing over all possible λ− and λ+, using Lemmas 1.4 and 1.3, we obtain

p−1∑
i=1

n−1∑
λ+=p+1

λ+−p+1∑
λ−=2

λ−−2∑
j=0

n−λ+−1∑
k=0(

λ+ − λ− − 1

p− 2

)(
j + (i− 1)

i− 1

)(
k + (p− i− 1)

p− i− 1

)

=

p−1∑
i=1

n−1∑
λ+=p+1

λ+−p+1∑
λ−=2

(
λ+ − λ− − 1

p− 2

)
λ−−2∑
j=0

(
j + (i− 1)

i− 1

) n−λ+−1∑
k=0

(
k + (p− i− 1)

p− i− 1

)
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=

p−1∑
i=1

n−1∑
λ+=p+1

λ+−p+1∑
λ−=2

(
λ+ − λ− − 1

p− 2

)(
λ− + i− 2

i

)(
n− λ+ + p− i− 1

p− i

)

=

p−1∑
i=1

n−1∑
λ+=p+1

(
λ+ + i− 2

i+ p− 1

)(
n− λ+ + p− i− 1

p− i

)

=

p−1∑
i=1

(
n+ p− 2

2p

)
= (p− 1)

(
n+ p− 2

2p

)
.

Here also there are additional cases to consider, namely when all elements
in the image are shifted to the left to obtain the domain, or all elements
in the image are shifted to the right to obtain the domain. We will do the
case where all elements in the image are shifted to the right and double the
number. Using Lemmas 1.4 and 1.3, we obtain

n−1∑
λ+=p

λ+−p+1∑
λ−=1

n−λ+−1∑
k=0

(
λ+ − λ− − 1

p− 2

)(
k + p− 1

p− 1

)

=
n−1∑
λ+=p

λ+−p+1∑
λ−=1

(
λ+ − λ− − 1

p− 2

) n−λ+−1∑
k=0

(
k + p− 1

p− 1

)

=
n−1∑
λ+=p

(
λ+ − 1

p− 1

)(
n− λ+ + p− 1

p

)
=

(
n+ p− 1

2p

)
.

When p = 1 and m = 0, then it is clear that F (n; p,m) = n(n− 1).
The result of the theorem is obtained by taking the sum of all cases. □

Remark: F (n; p) of OCIn can be obtained from the expression F (n; p,m)
in Theorem 2.6 by summing over all possible values of m.

It turns out that the order of OCIn can be related to Fibonacci numbers.
We need the following proposition to show the relation.

Proposition 2.8. The alternating Fibonacci numbers can be evaluated by
the following formulae.

(i)

F2n+1 =
∑
p≥0

(
n+ p

2p

)
.

This is Sequence A001519 in The On-Line Encyclopedia of Integer
Sequences [18] and satisfies the recurrence relation

an = 3an−1 − an−2,

with a0 = 1 = F1 and a1 = 2 = F3.

http://oeis.org/A001519
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(ii)

F2n =
∑
p≥0

(
n+ p− 1

2p− 1

)
.

This is Sequence A001906 in The On-Line Encyclopedia of Integer
Sequences [18] and satisfies the recurrence relation

an = 3an−1 − an−2,

with a0 = 0 = F0 and a1 = 1 = F2.

□

The order of OCIn can be determined using the formula for F (n; p) ob-
tained in Theorem 2.4.

Theorem 2.9. The order of OCIn, as a function of n, is equal to

hn =
3n− 1

5
F2n − n− 5

5
F2n+1.

This is Sequence A094864 in The On-Line Encyclopedia of Integer Se-
quences [18] and satisfies the recurrence relation

hn = 6hn−1 − 11hn−2 + 6hn−3 − hn−4,

with h0 = 1, h1 = 2, h2 = 6, h3 = 18.

Proof. We use the formula in Theorem 2.4 and sum over all possible p. For
p = 0, the order is 1, since the empty map is the only element with height
0.

hn = |OCIn|

= 1 +
n∑

p=1

(
n

(
n+ p− 1

2p− 1

)
+ (1− p)

(
n+ p

2p

))

= 1 + n
n∑

p=1

(
n+ p− 1

2p− 1

)
+

n∑
p=1

(
n+ p

2p

)
−

n∑
p=1

p

(
n+ p

2p

)

= 1 + n
∑
p≥0

(
n+ p− 1

2p− 1

)
+

∑
p≥0

(
n+ p

2p

)
− 1

−
n∑

p=1

p

(
n+ p

2p

)

= n
∑
p≥0

(
n+ p− 1

2p− 1

)
+
∑
p≥0

(
n+ p

2p

)
−

n∑
p=1

p

(
n+ p

2p

)

= nF2n + F2n+1 −
n∑

p=1

p

(
n+ p

2p

)
︸ ︷︷ ︸

bn

.

http://oeis.org/A001906
http://oeis.org/A094864
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We obtain a recurrence relation on the sequence bn as follows.

bn =
n∑

p=1

p

(
n+ p

2p

)
=

n∑
p=1

2p

2

(n+ p)!

(2p)!(n− p)!

=
n∑

p=1

1

2

(n+ p)!

(2p− 1)!(n− p)!
=

n∑
p=1

(n+ p)

2

(n+ p− 1)!

(2p− 1)!(n− p)!

=
n

2

n∑
p=1

(n+ p− 1)!

(2p− 1)!(n− p)!
+

n∑
p=1

p

2

(n+ p− 1)!

(2p− 1)!(n− p)!

=
n

2

n∑
p=1

(
n+ p− 1

2p− 1

)
+

1

4

n∑
p=1

(2p− 1 + 1)
(n+ p− 1)!

(2p− 1)!(n− p)!

=
n

2
F2n +

1

4

n∑
p=1

(2p− 1)
(n+ p− 1)!

(2p− 1)!(n− p)!
+

1

4

n∑
p=1

(n+ p− 1)!

(2p− 1)!(n− p)!

=
n

2
F2n +

1

4

n∑
p=1

(n+ p− 1)!

(2p− 2)!(n− p)!
+

1

4

n∑
p=1

(
n+ p− 1

2p− 1

)

=
n

2
F2n +

1

4

n∑
p=1

(n+ p− 1)
(n+ p− 2)!

(2p− 2)!(n− p)!
+

1

4
F2n

=
2n+ 1

4
F2n +

1

4

n∑
p=1

(n+ p− 1)

(
n+ p− 2

2p− 2

)

=
2n+ 1

4
F2n +

n

4

n∑
p=1

(
n+ p− 2

2p− 2

)
+

1

4

n∑
p=1

(p− 1)

(
n+ p− 2

2p− 2

)

=
2n+ 1

4
F2n +

n

4

n−1∑
p=0

(
n− 1 + p

2p

)
+

1

4

n−1∑
p=0

p

(
n− 1 + p

2p

)

=
2n+ 1

4
F2n +

n

4
F2n−1 +

1

4
bn−1.

This recurrence relation can be used to eliminate bn from the above formula
for hn as follows.

hn = nF2n + F2n+1 − bn,

hn−1 = (n− 1)F2n−2 + F2n−1 − bn−1.
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Thus we can express hn in terms of hn−1, and after some simplifications
which merely involve using the property Fn = Fn−1 + Fn−2, we obtain

hn =
1

4
hn−1 +

n+ 2

4
F2n +

1

2
F2n+1.

Since h0 = 1, h1 = 2, h2 = 6, h3 = 18, it is straightforward to verify that hn
is Sequence A094864 in The On-Line Encyclopedia of Integer Sequences [18]
which was studied by Barcucci et al. [5] and Rinaldi and Rogers [16]. A
closed formula for this sequence is

hn =
3n− 1

5
F2n − n− 5

5
F2n+1.

□

3. Combinatorial results for ODCIn

In this section, we will obtain results analogous to the ones obtained in
section 2 for the semigroup ODCIn. For a semigroup S, we define

F (n; k−, k+, l+, p) = |{α ∈ S : (w−(α) = k−) ∧ (w+(α) = k+)∧

∧ (ϖ+(α) = l+) ∧ (h(α) = p)}|.

Lemma 3.1. Let S = ODCIn, then

F (n; k−, k+, l+, p) =

(
l+ − k+ + p− 1

p− 1

)(
k+ − k− − 1

p− 2

)
.

Proof. The number of possible images is
(
k+−k−−1

p−2

)
. This number needs to

be multiplied by the number of possible pre-images, which depends on k+

and l+. Because of the decreasing property, there is only one direction in
which the image set can be expanded to obtain the domain set, namely to
the right. There are l+−k+ extra spaces and p−1 separators, so the number

of possibilities to expand the domain set is(
l+ − k+ + p− 1

p− 1

)
.

□

This allows us to find the number of maps in ODCIn of height p.

Theorem 3.2. Let S = ODCIn. Then

F (n; p) =

(
n+ p

2p

)
.

Proof. Using the expression from Lemma 3.1, we obtain

F (n; k+, l+, p) =

k+−p+1∑
k−=1

(
l+ − k+ + p− 1

p− 1

)(
k+ − k− − 1

p− 2

)

http://oeis.org/A094864
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=

(
l+ − k+ + p− 1

p− 1

) k+−p+1∑
k−=1

(
k+ − k− − 1

p− 2

)

=

(
l+ − k+ + p− 1

p− 1

)(
k+ − 1

p− 1

)
(by Lemma 1.4).

Summing over all possible right waists and right shoulders, using Lemma 1.3,
we obtain

F (n; p) =

n∑
l+=p

l+∑
k+=p

F (n; k+, l+, p)

=

n∑
l+=p

l+∑
k+=p

(
l+ − k+ + p− 1

p− 1

)(
k+ − 1

p− 1

)

=
n∑

l+=p

(
l+ + p− 1

2p− 1

)
=

(
n+ p

2p

)
.

□

We can extend these results to compute F (n; p,m) as follows.

Lemma 3.3. Let S = ODCIn. For m < p,

F (n; k−, k+, l+,m, p) =

(
l+ − k+ + p−m− 2

p−m− 1

)(
k+ − k− − 1

p− 2

)
.

Proof. The proof is analogous to the one of Lemma 3.1. If there are m fixed

points, because of the contraction and decreasing properties, these are the
first m. There are l+ − k+ extra spaces and p −m − 1 separators. One of
these spaces is used to ensure that there are no more than m fixed points,
i.e., it is inserted after the last of the fixed points. Thus the number of

possibilities to expand the domain set is(
l+ − k+ + p−m− 2

p−m− 1

)
.

□

This allows us to find the number of maps in ODCIn of height p with m
fixed points.

Theorem 3.4. Let S = ODCIn. If m = p, then F (n; p,m) =
(
n
p

)
. If

m < p, then

F (n; p,m) =

(
n+ p−m− 1

2p−m

)
.
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Proof. The case m = p is clear. For m < p, we repeat the procedure in
the proof of Theorem 3.2, using the expression from Lemma 3.3. Note that
because m ̸= p, the case k+ = l+ is excluded. Thus we get

F (n; k+, l+, p,m) =

k+−p+1∑
k−=1

(
l+ − k+ + p−m− 2

p−m− 1

)(
k+ − k− − 1

p− 2

)

=

(
l+ − k+ + p−m− 2

p−m− 1

)(
k+ − 1

p− 1

)
(by Lemma 1.4).

Then we sum over all possible right waists and right shoulders. Using
Lemmas 1.3 and 1.4, we obtain

F (n; p,m) =

n∑
l+=p+1

l+−1∑
k+=p

F (n; k+, l+,m, p)

=

n∑
l+=p+1

l+−1∑
k+=p

(
l+ − k+ + p−m− 2

p−m− 1

)(
k+ − 1

p− 1

)

=
n∑

l+=p+1

(
l+ + p−m− 2

2p−m− 1

)
=

(
n+ p−m− 1

2p−m

)
.

□

Remark: F (n; p) of ODCIn can be obtained from the expression F (n; p,m)
in Theorem 3.4 by summing over all possible values of m.

The order of ODCIn can be determined using the formula for F (n; p)
obtained in Theorem 3.2. It turns out that the order, as a function of n,
can be expressed in terms of a single Fibonacci number.

Theorem 3.6. |ODCIn| = F2n+1, where Fn is the nth Fibonacci number.

Proof. The result follows from Theorem 3.2 and Proposition 2.8. □

4. Combinatorial results for ORCIn

Let OCI+
n be the set of order-reversing contraction mappings of a finite

chain Xn, defined as

OCI+
n = {α ∈ CIn : ∀x, y ∈ Domα, x ≤ y =⇒ xα ≥ yα}.

Lemma 4.1. There is a bijection between OCIn and OCI+
n .

Proof. Let α ∈ OCIn. If h(α) = 1, then α ∈ OCI+
n . Let h(α) > 1 and

α =

(
a1 a2 · · · ap
a1α a2α · · · apα

)
,

where 1 ≤ a1 < a2 < · · · < ap ≤ n. By the definition of OCIn,

1 ≤ a1α < a2α < · · · < apα ≤ n.
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Let g(Domα) = (t1, t2, . . . , tp−1), and g(Imα) = (d1, d2, . . . , dp−1). Then we
have

α =

(
a1 a1 + t1 · · · a1 + t1 + · · ·+ tp−1

a1α a1α+ d1 · · · a1α+ d1 + · · ·+ dp−1

)
,

and by the contraction property, di ≤ ti for all i.
We define a function θ : OCIn → OCI+

n , with θ(α) = α′ given by

α′ =

(
a1 a1 + tp−1 · · · a1 + tp−1 + · · ·+ t1
apα apα− dp−1 · · · apα− dp−1 − dp−2 − · · · − d1

)
=

(
a1 a1 + tp−1 · · ·

a1α+ d1 + · · ·+ dp−1 a1α+ d1 + · · ·+ dp−2 · · ·

· · · a1 + tp−1 + · · ·+ t1
· · · a1α

)
.

The function θ is well defined, and since di ≥ 0 for all i, α′ is order reversing.
The gap of the domain of α′ is equal to the reverse of the gap of the domain
of α,

g(Domα′) = (tp−1, tp−2, . . . , t1) = g(Domα)R.

The gap of the image of α′ is equal to minus the reverse of the gap of the
image of α,

g(Imα′) = (−dp−1,−dp−2, . . . ,−d1) = −g(Imα)R.

Because for all i with 1 ≤ i ≤ p − 1, we have 1 ≤ di ≤ ti, it follows that
α′ ∈ OCI+

n . □

Remark: Note that ORCIn = OCIn ∪ OCI+
n and OCIn ∩ OCI+

n =
{α ∈ OCIn : h(α) ≤ 1}.

The following result follows from Theorem 2.4, Lemma 4.1, and Re-
mark 4.2.

Theorem 4.3. Let S = ORCIn. If p = 1, then F (n; p) = n2. For p > 1,

F (n; p) = 2n

(
n+ p− 1

2p− 1

)
+ (2− 2p)

(
n+ p

2p

)
.

□

We determine the number of maps with m fixed points, for a given height
p.

Theorem 4.4. Let S = ORCIn. If m = p, then F (n; p,m) =
(
n
m

)
. If

m = 1 < p, then

F (n; p,m1) = 2(p− 2)

(
n+ p− 3

2p− 1

)
+ 4

(
n+ p− 2

2p− 1

)
− n.

If 1 < m < p, then

F (n; p,m) = (p−m− 1)

(
n+ p−m− 2

2p−m

)
+ 2

(
n+ p−m− 1

2p−m

)
.
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Proof. From Lemma 4.1 and Remark 4.2, it follows that the number of maps
in OCI+

n with one fixed point is equal to the number of maps with one fixed
point in OCIn. In order to find the number of maps with one fixed point
in ORCIn, we add the number for OCIn and the number for OCI+

n , and
subtract the number of partial identities of height one, as otherwise they
would be counted twice. Using m = 1 in Theorem 2.6, this gives

F (n; p, 1) = 2(p− 2)

(
n+ p− 3

2p− 1

)
+ 4

(
n+ p− 2

2p− 1

)
− n.

In OCI+
n , there are clearly no maps with more than one fixed point. Thus

for m ≥ 2, the number of maps with m fixed points in ORCIn is equal to
the number of maps with m fixed points in OCIn. From Theorem 2.6, we
get

F (n; p,m) = (p−m− 1)

(
n+ p−m− 2

2p−m

)
+ 2

(
n+ p−m− 1

2p−m

)
.

□

We will calculate the order of ORCIn and find an expression for the order
in terms of two consecutive Fibonacci numbers. In light of Remark 4.1, we
can use results from section 2 to significantly reduce the amount of calcula-
tions.

Theorem 4.5. The order of ORCIn, as a function of n, is given by

|ORCIn| =
6n− 2

5
F2n − 2n− 10

5
F2n+1 − 1− n2.

Proof. From Theorem 2.9, we know that the order of OCIn is
3n−4

5 F2n − 4n−10
5 F2n−1. This was obtained by summing over F (n; p) for

p ≥ 1 and adding F (n; p0) = 1 for the empty map. In ORCIn, according to
Remark 4.1, the case p = 1 needs to be handled separately as well. Using
the expression from Theorem 4.3, this gives

|ORCIn| = 1 + n2 +
n∑

p=2

(
2n

(
n+ p− 1

2p− 1

)
+ (2− 2p)

(
n+ p

2p

))

= 1 + n2 +

n∑
p=1

(
2n

(
n+ p− 1

2p− 1

)
+ (2− 2p)

(
n+ p

2p

))
− 2n

(
n

1

)
= 1 + n2 + 2 (|OCIn| − 1)− 2n2

= 1 + n2 + 2
3n− 1

5
F2n − 2

n− 5

5
F2n+1 − 2− 2n2

=
6n− 2

5
F2n − 2n− 10

5
F2n+1 − 1− n2.

□



18 B.M. AHMED, N. ALDHAMRI, F. AL-KHAROUSI, G. KLEIN, AND A. UMAR

5. Acknowledgment

The authors would like to thank the referee for helpful comments and
suggestions.

References

1. F. Al-Kharousi, G. U. Garba, M. J. Ibrahim, A. T. Imam, and A. Umar, On the semi-
group of finite order-preserving partial injective contraction mappings, (Submitted).

2. F. Al-Kharousi, R. Kehinde, and A. Umar, Combinatorial results for certain semi-
groups of partial isometries of a finite chain, Australas. J. Combin. 58 (2014), 365–
375.

3. F. Al-Kharousi, R. Kehinde, and A. Umar, Combinatorial results for certain semi-
groups of order-decreasing partial isometries of a finite chain, Journal of Algebra,
Number Theory: Advances and Applications. 19(1) (2018), 29–49.

4. A. D. Adeshola, and A. Umar, Combinatorial results for certain semigroups of order-
preserving full contraction mappings of a finite chain, JCMCC. 106 (2017), 34–49.

5. E. Barcucci, R. Pinzani, and R. Sprugnoli, Directed column-convex polyominoes by
recurrence relations, Lecture Notes in Comput. Sci. 668 (1993), 282–298.

6. D. Borwein, S. Rankin, and L. Renner, Enumeration of injective partial transforma-
tions, Discrete Math. 73 (1989), 291–296.

7. S. Epp, Discrete Mathematics with Applications, 4th Edition, Brooks/Cole, Boston,
MA, 2011.

8. V. H. Fernandes, The monoid of all injective orientation-preserving partial transfor-
mations on a finite chain, Comm. Algebra 28 (2000), 3401–3426.

9. V. H. Fernandes, G. M. S. Gomes, and M. M. Jesus, The cardinal and idempotent
number of various monoids of transformations on a finite chain, Bull. Malays. Math.
Sci. Soc. 34 (2011), 79–85.

10. G. U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving map-
pings, Semigroup Forum 48 (1994), 37–49.

11. H. W. Gould, Combinatorial identities. A standardized set of tables listing 500 bino-
mial coefficient summations, Morgantown, W.Va., 1972.

12. R. P. Grimaldi, Fibonacci and Catalan numbers. An introduction, John Wiley & Sons,
2012.

13. J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society
Monographs. New series, 12. Oxford Science Publications. The Clarendon Press, Ox-
ford University Press, New York, 1995.

14. A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup,
Semigroup Forum 75 (2007), 221–236.

15. S. Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs,
46. American Mathematical Society, Providence, R. I., 1996.

16. S. Rinaldi and D. G. Rogers, How the odd terms in the Fibonacci sequence stack up,
Math. Gaz., 90 (2006), 431–442.

17. J. Riordan, Combinatorial Identities, reprint of the 1968 original, Robert E. Krieger
Publishing Co., Huntington, N.Y., 1979.

18. N .J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electroni-
cally at https://oeis.org.

19. A. Umar, On the semigroups of partial one-to-one order-decreasing finite transforma-
tions, Proc. Roy. Soc. Edinburgh, Sect. A, 123 (1993), 355–363.

20. , Some combinatorial problems in the theory of symmetric inverse semigroups,
Algebra Discrete Math. 9 (2010), 115–126.

https://oeis.org


COMBINATORIAL RESULTS FOR CONTRACTION MAPPINGS 19

Department of Mathematics, Faculty of Physical Sciences, University of
Ilorin, Nigeria

E-mail address: ahmed.bm@unilorin.edu.ng

Department of Mathematics and Statistics, Sultan Quaboos University,
Al-Khod, PC 123, Oman

E-mail address: nadias@squ.edu.om

Department of Mathematics and Statistics, Sultan Quaboos University,
Al-Khod, PC 123, Oman

E-mail address: fatma9@squ.edu.om
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