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BOUNDS ON r-IDENTIFYING CODES IN q-ARY LEE

SPACE

RAMALINGAM DHANALAKSHMI AND CHINNAPILLAI DURAIRAJAN

Abstract. Identifying codes are used to locate malfunctioning proces-
sors in multiprocessor systems. In this paper, we study identifying codes
in a q-ary hypercube which is used in parallel processing. Computing
upper and lower bounds of Mr,q(n), the smallest cardinality among all
r-identifying codes in Zn

q with respect to the Lee metric, is an important
research problem in this area. Using our constructions, we produce ta-
bles for upper and lower bounds for Mr,q(n). The upper and the lower
bounds of Mr,4(n) known only when r = 1 but using our results, we
compute the bounds for Mr,4(n) for all r ≥ 1. Also we improve upon
the currently known upper bounds of M1,4(n) due to J. L. Kim and S.
J. Kim. Upper bounds of Mr,q(n) for q > 4 are known previously for
some cases of n. We improve some of these bounds and we also compute
bounds for all n by using our results.

1. Introduction

Let Zq denote the ring of integer residues modulo the positive integer q.
For an element α ∈ Zq, denote by 〈α〉 the smallest nonnegative integer m
such that α = m · 1, where 1 stands for the multiplicative unity in Zq. The
Lee weight wL(α) of an element α ∈ Zq, is defined by

wL(α) =

{
〈α〉 if 0 ≤ 〈α〉 ≤ q

2

q − 〈α〉 otherwise.

Also the Lee distance dL(α, β) between two elements α, β ∈ Zq is defined
by dL(α, β) = wL(α− β). Note that dL(α, β) = dL(β, α).

The Lee space Zn
q is the Cartesian product of Zq taken n times. We will
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use the vector notation (x1, . . . , xn) for words in the ring Zn
q . For a word

x = (x1, . . . , xn) in Zn
q , the Lee weight wL(x) is defined by

wL(x) =

n∑
i=1

wL(xi),

and for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Zn
q , the Lee distance be-

tween x and y is defined by

dL(x, y) =

n∑
i=1

dL(xi, yi) =

n∑
i=1

wL(xi − yi).

We say that x r-covers y in Zn
q if dL(x, y) ≤ r. Since the Lee distance

function is a metric, y being r-covered by x is equivalent to x being r-covered
by y. For x ∈ Zn

q , we set

Br(x) = {y ∈ Zn
q | dL(x, y) ≤ r}

as the closed ball in Zn
q with center at x and radius r and it is called the

Lee ball with radius r centered at x. The cardinality of the Lee ball Br(x) is
known to be independent of the element x and it is denoted by VL(n, r, q).
For a positive integer q, by the theory of Lee codes [1], we have

VL(n, r, q = 2s) =

b r
s
c∑

i=0

(−1)i
(
n

i

) r−si∑
j=0

2j
(
n

j

)(
r − si
j

)
,

VL(n, r, q = 2s+ 1) =

r∑
i=0

(
n+ 1

i

) b rs c∑
j=0

(−2)j
(
n

j

)(
n− j

r − j(s+ 1)− i

)
.

For more details on Lee metric, see [10].
In 1998, Karpovsky, Chakrabarty, and Levitin [2] introduced identifying

codes with respect to various metrics including the Lee metric. The initial
application for identifying codes was for fault diagnosis in multiprocessor
systems.

Consider a q-ary n-dimensional nonbinary cube. In parallel processing,
this cube has a lot of applications. In this model, each processor has two
neighbors in each dimension. Therefore each processor is connected to 2n
neighbors. Similar practical architectures are Intel’s Paragon architecture
[7] and MIT-Intel J-Machine [4].

While applying identifying codes, testers are positioned in the system
so that faults can be localized to a unique processor. It is also applied in
environmental monitoring, sensor networks, and location detection in hostile
environments. More details of applications of identifying codes are given in
[9].

A nonempty subset C of Zn
q is called a code of length n. The I-set of a

word x ∈ Zn
q with respect to the code C is defined to be

Ir(x) = Br(x) ∩ C.
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A code C is an r-covering code in Zn
q if Ir(x) 6= ∅ for all x ∈ Zn

q . Equiv-
alently, C is an r-covering code if ∪c∈CBr(c) = Zn

q . Code C is said to be
an r-separating code if Ir(x) 6= Ir(y) for all x, y ∈ Zn

q with x 6= y and an
r-identifying code if it is both r-covering and r-separating.

The smallest possible cardinality of an r-identifying code of length n is
denoted by Mr,q(n) whenever such a code exists for these parameters (see
Theorem 2.1). Note that such a code C does not exist for all r ≥ nbq/2c
because Ir(x) = C for all x ∈ Zn

q .
Lower and upper bounds for Mr,q(n) are given in [2] and [8] for various

values of r, q, and n. In this paper, we improve upon the various upper
bounds of Mr,q(n) which are already known in the literature. Also we com-
pute a lot of new lower and upper bounds for the parameters which were
not discussed before in the literature. Using our constructions in Section 2
and Section 4, we produce the tables for upper and lower bounds of Mr,q(n)
in Section 3 and Section 4, respectively.

2. Upper bounds for r-identifying codes

With respect to the Hamming metric, r-identifying codes of length n exist
only when r < n. For the Lee metric, we have the following more general
result. When q = 2, as these two metrics are equivalent, this is the same as
the above.

Theorem 2.1. Zn
q is an r-identifying code for all r ≤ nbq/2c − 1.

Proof. Let C = Zn
q and x ∈ Zn

q . Then Ir(x) is nonempty because x ∈ Ir(x).
Let y ∈ Zn

q with y 6= x. We have to find z ∈ Zn
q such that z ∈ Ir(x)4 Ir(y)

where 4 stands for the symmetric difference. Let xk, yk, and zk be the
kth coordinates of x, y, and z, respectively. Since x 6= y, there exists an
i ∈ {1, 2, . . . , n} such that xi 6= yi. By Euclidean division, there exist two
integers s and s′ such that r = sbq/2c + s′ with either s′ = 0 or 0 < s′ <
bq/2c. We know that r ≤ nbq/2c − 1. Therefore s < n.

Choose z as follows: choose zi ∈ Zq with dL(zi, xi) ≤ s′ and dL(zi, yi) > s′.
Such an element exists because s′ < b q2c and choose exactly s coordinates
in {1, 2, . . . , n} \ {i} and set zj = yj + b q2c for all j in the above chosen
s coordinates and for the remaining coordinates of z, take zk as xk. Then
dL(x, z) ≤ sb q2c+dL(zi, xi) ≤ sb q2c+s

′ = r and dL(y, z) ≥ sb q2c+dL(yi, zi) >
sb q2c+ s′ = r. Hence, the result follows. �

By [3, 6], it is known that deciding whether a code is r-identifying is co-
NP-complete and constructing good identifying codes is difficult. Therefore
one cannot find an r-identifying code of larger length using computer. So
we use Theorems 2.2, 2.7, 2.17, 2.18, and 2.20 to construct an r-identifying
code of length n+ k starting with an r-identifying code of length n. This is
established in Section 3.2 and Tables 3, 4, and 5 of Section 3.5.

Recall that if A and B are subsets of Zn
q and Zm

q respectively, then A⊕B =

{xy : x ∈ A and y ∈ B} ⊆ Zn
q ⊕Zm

q ' Zn+m
q .
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Our next theorem generalizes a result of J. L. Kim and S. J. Kim (See
Corollary 2.3).

Theorem 2.2. Let r and k be any two positive integers with r ≤ kbq/2c −
1, and let C be an r-identifying code of length n. Then C ⊕ Zk

q is an r-
identifying code of length n+ k.

Proof. Let xa ∈ Zn
q ⊕ Zk

q ' Zn+k
q . Since x ∈ Zn

q and C is an r-identifying
code in Zn

q , there exists an element c ∈ C such that dL(x, c) ≤ r. Then

ca ∈ C ⊕ Zk
q with dL(xa, ca) = dL(x, c) ≤ r. This implies that ca ∈ Ir(xa).

Therefore Ir(xa) 6= ∅. Next we have to prove that Ir(xa) 6= Ir(yb) for all
xa 6= yb. Suppose x 6= y. As C is an r-identifying code in Zn

q and x, y ∈ Zn
q

with x 6= y, there exists an element c ∈ C such that dL(x, c) ≤ r and
dL(y, c) > r (or vice versa). This implies that dL(xa, ca) = dL(x, c) ≤ r
and dL(yb, ca) = dL(y, c) + dL(b, a) ≥ dL(y, c) > r (or vice versa). Then
ca ∈ Ir(xa) but ca /∈ Ir(yb) (or vice versa). Therefore Ir(xa) 6= Ir(yb) when
x 6= y.

If x = y, then a 6= b because xa 6= yb. Since C is an r-identifying code in
Zn

q and x ∈ Zn
q , there exists an element c ∈ C such that dL(x, c) = m ≤ r.

Since r−m ≤ r ≤ kbq/2c− 1, by Theorem 2.1, Zk
q is an (r−m)-identifying

code. Since a, b ∈ Zk
q with a 6= b, there exists an element p ∈ Zk

q with
dL(p, a) ≤ r − m and dL(p, b) > r − m (or vice versa). This implies that
dL(xa, cp) = dL(x, c)+dL(a, p) ≤ m+r−m = r and dL(xb, cp) = dL(x, c)+
dL(b, p) > m + r − m = r (or vice versa). Therefore cp ∈ Ir(xa) but
cp /∈ Ir(xb) (or vice versa). Hence, the result follows. �

Corollary 2.3 (J. L. Kim and S. J. Kim [8]). Let q ≥ 4. If C is a 1-
identifying code in Zn

q , then so is C ⊕Zq in Zn+1
q .

Proof. Take k = 1, r = 1, and q ≥ 4. Therefore kbq/2c−1 ≥ 1·2−1 = 1 = r.
The result follows from Theorem 2.2. �

The following corollary is a direct consequence of Theorem 2.2.

Corollary 2.4. For r ≤ kbq/2c − 1,

Mr,q(n+ k) ≤ qkMr,q(n).

The following examples show that r cannot be any larger in Theorem 2.2.

Example 2.5. For q = 4, n = 4, k = 1, and r = 2,

C = {0000, 0002, 2001, 0102, 1111, 0220, 2210, 2003, 1130, 1022, 1013, 1302,

3121, 1222, 0331, 3311, 3203, 2330, 2123, 3232, 3323, 0200}

is a 2-identifying code in Z4
4 but C ⊕ Z4 is not a 2-identifying code in Z5

4

because I2(22100) = I2(22103) = {22100, 22101, 22102, 22103}.
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Example 2.6. For q = 5, n = 3, k = 1, and r = 2,

C = {000,001, 130, 022, 311, 221, 203,

420, 402, 114, 223, 142, 341, 314, 433, 304}

is a 2-identifying code in Z3
5 but C ⊕ Z5 is not a 2-identifying code in Z4

5

because I2(1300) = I2(1304) = {1300, 1301, 1302, 1303, 1304}.

The following theorem is true for all cases of r. When r < kbq/2c, this is
same as Theorem 2.2 because the condition given in Theorem 2.7 is satisfied
by all r-identifying codes in Zn

q . So here we deal with the missing cases for
r, namely r ≥ kbq/2c in Theorem 2.2.

Theorem 2.7. Let r ≥ kbq/2c and let k ≥ 1. Let C ⊆ Zn
q be an r-

identifying code. Then C ⊕ Zk
q is an r-identifying code if and only if for

every x ∈ Zn
q , there exists c ∈ C with r − kbq/2c+ 1 ≤ dL(x, c) ≤ r.

Proof. Assume that C⊕Zk
q is an r-identifying code and suppose to the con-

trary that there exists an element x ∈ Zn
q such that for all c ∈ C, dL(x, c) <

r − kbq/2c + 1 or r < dL(x, c). This implies that Ir(x) = Ir−kbq/2c(x) (If
c ∈ Ir(x), dL(x, c) ≤ r. Then by our supposition, dL(x, c) ≤ r − kbq/2c.
Therefore c ∈ Ir−kbq/2c(x). The other inclusion is trivial). Now we find

Ir(xa) for any a ∈ Zk
q . For all y ∈ Zk

q and c ∈ Ir(x), dL(xa, cy) =
dL(x, c) + dL(a, y) ≤ r − kbq/2c + kbq/2c = r because Ir(x) = Ir−kbq/2c(x)

and ∀a ∈ Zk
q , dL(a, y) ≤ kbq/2c. Therefore

Ir(xa) = {cy : c ∈ Ir−kb q
2
c(x), y ∈ Zk

q}.

For all b, d ∈ Zk
q with b 6= d we have,

Ir(xb) = {cy : c ∈ Ir−kb q
2
c(x), y ∈ Zk

q} = Ir(xd),

a contradiction to our assumption that C ⊕Zk
q is an r-identifying code.

Now we assume that ∀x ∈ Zn
q , ∃c ∈ C with r− kbq/2c+ 1 ≤ dL(x, c) ≤ r.

We have to prove that C⊕Zk
q is an r-identifying code. Let xa ∈ Zn+k

q . Since
x ∈ Zn

q and C is an r-identifying code, there exists c ∈ C with dL(x, c) ≤ r.
Then dL(xa, ca) = dL(x, c) ≤ r. Therefore ca ∈ Ir(xa). This implies that
Ir(xa) 6= ∅, and therefore C ⊕Zk

q is an r-covering in Zn+k
q .

Let xa, x′b ∈ Zn+k
q with xa 6= x′b. We have to prove that Ir(xa) 6= Ir(x

′b).
If x 6= x′, since C is an r-identifying code in Zn

q and x, x′ ∈ Zn
q , there exists

an element c ∈ C with dL(x, c) ≤ r and dL(x′, c) > r (or vice versa). Then
dL(xa, ca) = dL(x, c) ≤ r and dL(x′b, ca) = dL(x′, c) + dL(b, a) ≥ dL(x′, c) >
r. Therefore ca ∈ Ir(xa) but ca /∈ Ir(x′b) (or vice versa).

Next, consider the case when x = x′. As xa 6= x′b, a 6= b. By our
assumption, there exists an element c ∈ C with r− kbq/2c+ 1 ≤ dL(x, c) =
d ≤ r. This implies that r − d ≤ kbq/2c − 1. By Theorem 2.1, Zk

q is an

(r − d)-identifying code. This implies that there exists an element y ∈ Zk
q

such that dL(y, a) ≤ r − d and dL(y, b) > r − d (or vice versa). Then
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dL(xa, cy) = dL(x, c) +dL(a, y) ≤ d+ r−d = r and dL(x′b, cy) = dL(x′, c) +
dL(b, y) > d + r − d = r. Therefore, cy ∈ Ir(xa) but cy /∈ Ir(x′b) (or vice
versa). This completes the proof. �

The next three lemmas are related to the cardinality of the intersection
of Lee balls. These are used later to find r-identifying codes in Lee spaces.

Lemma 2.8. Let q = 2s be any positive even integer and r any positive
integer. Let x0 = 000 · · · 0 and y0 = 100 · · · 0 be elements of Zn

q . Then

|Br(x0) ∩Br(y0)|

= 2

min{r,s}∑
k=1

b r−k
s
c∑

i=0

(−1)i
(
n− 1

i

) r−k−si∑
j=0

2j
(
n− 1

j

)(
r − k − si

j

)
.

Proof. To find the cardinality of Br(x0) ∩ Br(y0), we divide the elements
of Br(x0) ∩ Br(y0) into 2 min{r, s} disjoint classes with respect to the first
coordinate and compute the number of elements in each of these classes. The
sum of the cardinalities of these classes gives the cardinality of Br(x0) ∩
Br(y0). Since dL(x0, y0) = 1, both x0 and y0 belong to Br(x0) ∩ Br(y0).
Therefore Br(x0) ∩Br(y0) is nonempty.

Suppose z is an element of Br(x0)∩Br(y0) and the first coordinate of z is
−(k − 1) or k. Here k varies from 1 to min{r, s} because dL(z, x0) ≤ r and
distance between any two elements in Zq = Z2s is less than or equal to s.
Then the first coordinate of z has distance k either with the first coordinate
of x0 or with the first coordinate of y0 because dL(0, k) = k, dL(1, k) ≤
k, dL(0,−(k − 1)) ≤ k, and dL(1,−(k − 1)) = k. Since the remaining
coordinates of x0 and y0 are the same and z is an element of Br(x0)∩Br(y0),
the remaining coordinates of z have at most r−k distance with the remaining
n− 1 coordinates of x0. Therefore there are VL(n− 1, r− k, q) (See Section
1 for the definition of VL(n− 1, r − k, q)) elements in Br(x0) ∩ Br(y0) with
first coordinate as −(k − 1) and there are VL(n− 1, r − k, q) elements with
first coordinate as k. Therefore we have

|Br(x0) ∩Br(y0)|

= 2

min{r,s}∑
k=1

VL(n− 1, r − k, q)

= 2

min{r,s}∑
k=1

b r−k
s
c∑

i=0

(−1)i
(
n− 1

i

) r−k−si∑
j=0

2j
(
n− 1

j

)(
r − k − si

j

)
.

Hence, the result follows. �

Lemma 2.9. For both even and odd integer q and for any distinct elements
x, y of Zn

q , |Br(x) ∩ Br(y)| ≤ |Br(x0) ∩ Br(y0)| (where x0 and y0 are as in
Lemma 2.8).
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Figure 1.

Proof. Let dL(x, y) = i ≥ 1. Then without loss of generality, we can take
x = 000 · · · 0. Clearly 11 · · · 1︸ ︷︷ ︸

i times

00 · · · 0 has a larger intersection with x than

22 · · · 2︸ ︷︷ ︸
k times

11 · · · 1︸ ︷︷ ︸
i−2k times

00 · · · 0. So it is enough to take y = 11 · · · 1︸ ︷︷ ︸
i times

00 · · · 0. From

Figure 1 it is clear that for proving |Br(x)∩Br(y)| ≤ |Br(x0)∩Br(y0)|, it is
enough to prove that |(Br(x)∩Br(y))\Br(y0)| ≤ |(Br(x0)∩Br(y0))\Br(y)|.
Since Br(x) ∩ Br(y) ⊆ Br(x), we have (Br(x) ∩ Br(y)) \ Br(y0) ⊆ Br(x) \
Br(y0). Therefore |(Br(x)∩Br(y))\Br(y0)| ≤ |Br(x)\Br(y0)|. This implies
that for proving |(Br(x)∩Br(y))\Br(y0)| ≤ |(Br(x0)∩Br(y0))\Br(y)|, it is
enough to prove that |Br(x)\Br(y0)| ≤ |(Br(x0)∩Br(y0))\Br(y)|. Therefore
we need to prove that there exists a one-to-one map φ from Br(x) \Br(y0)
to (Br(x0) ∩ Br(y0)) \ Br(y). We define the map φ as follows: for c ∈
Br(x) \Br(y0), set φ(c) = c′ = c′1c

′
2 · · · c′n where

c′k =

{
−(ck − 1) if k ∈ {2, 3, . . . , i+ 1}
ck otherwise.

(2.1)

We first prove that c′ ∈ (Br(x0)∩Br(y0)) \Br(y). Since c ∈ Br(x), dL(c, x)
= m ≤ r. Therefore

dL(c′, x) =
∑

k/∈{2,...,i+1}

dL(c′k, xk) +
∑

k∈{2,...,i+1}

dL(c′k, xk)

=
∑

k/∈{2,...,i+1}

dL(ck, xk) +
∑

k∈{2,...,i+1}

(dL(ck, xk)− 1)

=
n∑

k=1

dL(ck, xk)− i

= dL(c, x)− i
= m− i ≤ r.

Now as x = x0, dL(c′, x0) = dL(c′, x) = m− i ≤ r. Therefore c′ ∈ Br(x0).
Also by the triangle inequality, dL(c′, y0) ≤ dL(c′, x0) + dL(x0, y0) = (m −
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i) + 1 ≤ m ≤ r. Then c′ ∈ Br(y0). This implies that c′ ∈ Br(x0) ∩ Br(y0).
Now if dL(ck, yk) = j, then dL(c′k, yk) = j + 1 for all k ∈ {2, 3, . . . , i + 1}.
Therefore

dL(c′, y) =
∑

k/∈{2,...,i+1}

dL(c′k, yk) +
∑

k∈{2,...,i+1}

dL(c′k, yk)

=
n∑

k=1

dL(ck, yk) + i

= dL(c, y) + i.

By the choice of c, c /∈ Br(y0), and hence r < dL(c, y0) ≤ dL(c, y)+dL(y, y0)
= dL(c, y) + i− 1 = dL(c′, y)− 1. This implies that dL(c′, y) > r. Therefore
c′ ∈ (Br(x0) ∩Br(y0)) \Br(y).

Finally we prove that the mapping φ is one-to-one. Let c, c̃ ∈ Br(x) \
Br(y0) with c 6= c̃. For proving φ is one-to-one, we need to prove that
φ(c) 6= φ(c̃) i.e., c′ 6= c̃′. For proving this, we need to prove that for at least
one k ∈ {1, 2, . . . , n}, c′k 6= c̃k

′. Since c 6= c̃, there exists k ∈ {1, 2, . . . , n} such
that ck 6= c̃k. If k ∈ {2, . . . , i+1}, then by equation (2.1), c′k = −(ck−1) and
c̃k
′ = −(c̃k − 1). Since ck 6= c̃k, then c′k 6= c̃k

′. Otherwise, k /∈ {2, . . . , i+ 1}.
Then by equation (2.1), c′k = ck and c̃k

′ = c̃k. Therefore c′k 6= c̃k
′. In both

of the two cases, c′ 6= c̃′. Hence, the result follows. �

Lemma 2.10. Let q = 2s be any positive even integer and r, any positive
integer. Let

m = 1 + 2

min{r,s}∑
k=1

b r−k
s
c∑

i=0

(−1)i
(
n− 1

i

) r−k−si∑
j=0

2j
(
n− 1

j

)(
r − k − si

j

)
.

Then in Zn
q , the intersection of any m distinct Lee balls of radius r is either

empty or consists of a single word.

Proof. Let c1, c2, . . . , cm be any m words in Zn
q with

⋂m
i=1Br(ci) 6= ∅. Then

there exists an element x ∈ Zn
q with x ∈

⋂m
i=1Br(ci). Suppose there exists

y ∈ Zn
q such that y ∈

⋂m
i=1Br(ci) with y 6= x. Then x, y ∈ Br(ci) for all i

and hence ci ∈ Br(x) ∩ Br(y) for all i with 1 ≤ i ≤ m. This implies that
|Br(x) ∩ Br(y)| ≥ m. This is a contradiction since by Lemmas 2.8 and 2.9,
we have

|Br(x) ∩Br(y)| < m.

Therefore, our assumption is wrong and we conclude that
⋂m

i=1Br(ci) con-
sists of a single word. �

The following two examples show the sharpness of the above lemma.
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Example 2.11. For q = 4, r = 3, and n = 3, let us take

X = {010, 200, 110, 020, 300, 210, 120, 030, 021, 310, 220, 211, 130, 121, 320,

311, 230, 221, 023, 330, 321, 231, 222, 213, 123, 331, 322, 313, 223, 323,

233, 333}.

Here the number of Lee balls, namely, |X| = 32 while m = 33. We find that⋂
x∈X B3(x) = {220, 320} consisting of more than one point.

Example 2.12. For q = 6, r = 4, and n = 2, let us take

Y = Z2
6 \ {32, 42, 23, 33, 43, 53, 34, 44}.

Here the number of Lee balls, namely, |Y | = 28 while m = 29. We find that⋂
y∈Y B4(y) = {00, 10} consisting of more than one point.

In our next theorem, we provide a sufficient condition for a subset in Zn
q

to be an r-identifying code.

Theorem 2.13. Let q = 2s be any positive even integer and r, any positive
integer. Let

m = 1 + 2

min{r,s}∑
k=1

b r−k
s
c∑

i=0

(−1)i
(
n− 1

i

) r−k−si∑
j=0

2j
(
n− 1

j

)(
r − k − si

j

)
.

Let C ⊆ Zn
q be such that |Ir(x)| ≥ m for all x ∈ Zn

q . Then C is an r-
identifying code.

Proof. Let x ∈ Zn
q . Since |Ir(x)| ≥ m, Ir(x) 6= ∅ and hence Ir(x) contains at

least m codewords, say, c1, c2, . . . , cm. Then x ∈ ∩mi=1Br(ci). Therefore, by
Lemma 2.10, ∩mi=1Br(ci) = {x}. Suppose that there exists y 6= x in Zn

q such
that Ir(y) = Ir(x). Then {x, y} ⊂ ∩mi=1Br(ci), a contradiction to Lemma
2.10. Therefore, Ir(y) 6= Ir(x) for any two distinct x, y in Zn

q . Hence C is
an r-identifying code. �

We will see the importance of the above theorem in Corollary 2.14 and
Corollary 2.16 given below. Specifically, Corollary 2.16 provides the sub-
sets in Zn

q which are all r-identifying codes for all r ∈ {1, . . . , nbq/2c − 2}.
Corollary 2.14 provides a sufficient condition on a subset X of Zn

q so that
its complement is an r-identifying code.

Corollary 2.14. Let q = 2s be any even positive integer and r, any positive
integer. If X ⊆ Zn

q with |X| ≤ k = VL(n, r, q)−m, where m is as in Theorem
2.13, then Zn

q \X is an r-identifying code.

Proof. By assumption, X ⊆ Zn
q with |X| ≤ k. Let C = Zn

q \ X and x ∈
Zn

q . Recall that Ir(x) = Br(x) ∩ C. If X ⊆ Br(x) then |Br(x) ∩ C| ≥
VL(n, r, q) − k = m. Otherwise |Br(x) ∩ C| > VL(n, r, q) − k = m. In any
case, |Ir(x)| ≥ m. By Theorem 2.13, C is an r-identifying code. �
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HHHHs
r 3 4 5 6

2
4
3n

3 − 4n2

+ 11
3 n− 2

2
3n

4 − 10
3 n

3

+ 35
6 n

2 − 25
6 n

4
15n

5 − 2n4 + 17
3 n

3

− 15
2 n

2 + 137
30 n− 2

4
45n

6 − 14
15n

5 + 35
9 n

4

− 49
6 n

3 + 406
45 n

2 − 49
10n

3
4
3n

3 − 2n2

+ 5
3n− 2

2
3n

4 − 4
3n

3

+ 4
3n

2 − 5
3n

4
15n

5 − 2
3n

4 + 2
3n

3

− 4
3n

2 + 31
15n− 2

4
45n

6 − 4
15n

5 + 2
9n

4

− 2
3n

3 + 197
90 n

2 − 77
30n

4
4
3n

3 − 2n2

+ 8
3n− 2

2
3n

4 − 4
3n

3

+ 10
3 n

2 − 11
3 n

4
15n

5 − 2
3n

4 + 8
3n

3

− 16
3 n

2 + 61
15n− 2

4
45n

6 − 4
15n

5 + 14
9 n

4

− 14
3 n

3 + 286
45 n

2 − 61
15n

Table 1. VL(n, r, q)−m given in Corollary 2.14

For small values of s and r, the values of VL(n, r, q = 2s) −m are given
in Table 1.

Remark 2.15. In Table 1, the first box shows that if s = 2 so that q =
2s = 4, and r = 3, Zn

4 \X is a 3-identifying code if |X| ≤ (4/3)n3 − 4n2 +
(11/3)n− 2. Table 2 shows that for q = 4, n = 4, Z4

4 \X is a 3-identifying
code if |X| ≤ 34.

n s = 2 s = 3
r = 3 r = 4 r = 5 r = 3 r = 4 r = 5

4 34 34 20 58 100 130
5 83 125 125 123 275 475
6 164 329 461 224 614 1316
7 285 714 1286 369 1197 3057

Table 2. The integer k given in Corollary 2.14

Corollary 2.16. Let q = 2s be any even positive integer. Then Zn
q \X is

an r-identifying code for all r ∈ {1, . . . , n(q/2) − 2} where X is a subset of
Zn

q with |X| ≤ minr=1,...,n(q/2)−2{VL(n, r, q) −m} and m is as in Theorem
2.13.

Proof. Direct consequence of Corollary 2.14. �

If an r-identifying code C satisfies the condition in Theorem 2.7, then
by using that code, we can find r-identifying codes of greater lengths. But
then even if C fails to satisfy the condition in Theorem 2.7, we can still find
r-identifying codes of greater lengths. This is motivated by Theorem 3 of
[3] for the Hamming metric.

In [3], the authors proved their theorem by using the fact that Fn
2 \

{00 · · · 0} is an r-separating code for all r ∈ {0, 1, . . . , n − 1}. Now in our
case, we obtain larger r-identifying codes for all r ∈ {1, . . . , n(q/2) − 2} by
using Corollary 2.16.

Theorem 2.17. Let q be an even positive integer. Let r1 ≥ k · (q/2) ≥
r2 ≥ 0 with k · (q/2) ≥ 3 and let C be an r1-identifying code of length n
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and Xk,r2 = {x ∈ Zn
q | dL(x, c) ≤ r1 − k · (q/2) + r2 or dL(x, c) > r1 + r2

for all c ∈ C}. Choose Yk,r2 ⊆ Zn
q such that for every x ∈ Xk,r2 , there

exists y ∈ Yk,r2 with r1 + r2 − k · (q/2) + 2 ≤ dL(x, y) ≤ r1 + r2 − 1. Then

C ′ = (C ⊕Zk
q )∪ (Yk,r2 ⊕ (Zk

q \X)) is an (r1 + r2)-identifying code of length

n+ k where X ⊆ Zk
q with |X| = minr=1,...,k(q/2)−2{VL(k, r, q)−m} and m is

as in Theorem 2.13.

Proof. The proof that C ′ is an (r1 + r2)-covering code is similar to that of
Theorem 3 of [3]. Now we have to prove that C ′ is an (r1 + r2)-separating
code. Take x, y ∈ Zn+k

q (x 6= y). Here x = x1x2, y = y1y2 with x1, y1 ∈
Zn

q , x2, y2 ∈ Zk
q . We have four cases to consider:

Case 1: x1 6= y1 and x2 6= y2.
Because C is an r1-identifying code in Zn

q and x1, y1 ∈ Zn
q with x1 6= y1,

there exists c ∈ C with dL(x1, c) ≤ r1 and dL(y1, c) > r1. If r2 ≤
k · (q/2) − 1, look at the proof of Theorem 2.1 where it is shown that
Zn

q is an r-separating code. In that proof x and y are taken as arbitary

elements. By applying that proof, we can produce an element in Zk
q

which has distance less than or equal to r2 from x2 and distance strictly
greater than r2 from y2 and vice versa. Therefore we can have v ∈ Zk

q

with dL(x2, v) ≤ r2 and dL(y2, v) > r2.
If r2 = k · (q/2) then set

v = y2 +
q

2

q

2
· · · q

2︸ ︷︷ ︸
k times

so that dL(v, y2) = k ·(q/2) = r2 and dL(v, x2) ≤ r2. In both of the above
two subcases, dL(x, cv) = dL(x1x2, cv) = dL(x1, c) + dL(x2, v) ≤ r1 + r2,
and dL(y, cv) = dL(y1y2, cv) = dL(y1, c) + dL(y2, v) > r1 + r2. Therefore
cv ∈ Ir1+r2(x) but cv /∈ Ir1+r2(y).

Case 2: x1 6= y1, x2 = y2.
Again, C is an r1-identifying code in Zn

q and x1, y1 ∈ Zn
q with x1 6= y1.

There exists c ∈ C with dL(x1, c) ≤ r1 and dL(y1, c) > r1. Now we have
to find v ∈ Zk

q with dL(x2, v) = r2. By Euclidean division on integers,
there exist m and r such that r2 = m(q/2) + r with 0 ≤ r < (q/2). Since
r2, q/2, and r are nonnegative, m is nonnegative. Also m ≤ k because
r2 ≤ k · (q/2). If m = k then r = 0 and r2 = k · (q/2). Then set

v = x2 +
q

2

q

2
· · · q

2︸ ︷︷ ︸
k times

.

Therefore dL(v, x2) = k · (q/2) = r2. If m < k, set

v = x2 +
q

2
· · · q

2︸ ︷︷ ︸
m

r︸︷︷︸
1

00 · · · 0︸ ︷︷ ︸
k−m−1

.
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Then dL(v, x2) = m · (q/2) + r = r2. In both of the above two subcases,
dL(v, x2) = r2. Then dL(x, cv) = dL(x1x2, cv) = dL(x1, c) + dL(x2, v) ≤
r1 + r2, and dL(y, cv) = dL(y1y2, cv) = dL(y1, c) + dL(y2, v) > r1 + r2.
Therefore cv ∈ Ir1+r2(x) but cv /∈ Ir1+r2(y).

Case 3: x2 6= y2 and x1 = y1 /∈ Xk,r2 .
Apply a similar argument as in the proof of Theorem 3 of [3].

Case 4: x2 6= y2 and x1 = y1 ∈ Xk,r2 .
By the construction of Yk,r2 , there is a vector z ∈ Yk,r2 such that r1+r2−
k · (q/2) + 2 ≤ dL(z, x1) ≤ r1 + r2− 1. Let r = r1 + r2− dL(z, x1). Then
dL(z, x1) = r1 + r2 − r. Therefore r1 + r2 − k · (q/2) + 2 ≤ r1 + r2 − r ≤
r1 + r2 − 1. This implies that 1 ≤ r ≤ k · (q/2) − 2. By Corollary 2.16,
Zk

q \X is an r-identifying code. Therefore there is a vector v ∈ Zk
q \X

which is within distance r from x2 but not from y2, or vice versa. Then
dL(zv, x1x2) = dL(z, x1) + dL(v, x2) ≤ dL(z, x1) + r = r1 + r2, and
dL(zv, x1y2) = dL(z, x1)+dL(v, y2) > dL(z, x1)+r = r1+r2 or vice versa,
with zv ∈ Yk,r2⊕(Zk

q \X) ⊆ C ′. In both the cases, Ir1+r2(x) 6= Ir1+r2(y).
Hence, the result follows.

�

In particular, if r2 = 0, we have the following theorem.

Theorem 2.18. Let q be an even positive integer. Let r1 ≥ k ·(q/2) ≥ 3 and
let C be an r1-identifying code of length n and Xk = {x ∈ Zn

q | dL(x, c) ≤
r1 − k · (q/2) or dL(x, c) > r1 for all c ∈ C}. Choose Yk ⊆ Zn

q such that for
every x ∈ Xk, there exists y ∈ Yk with r1− k · (q/2) + 2 ≤ dL(x, y) ≤ r1− 1.
Then C ′ = (C ⊕ Zk

q ) ∪ (Yk ⊕ (Zk
q \ X)) is an r1-identifying code of length

n + k where X ⊂ Zk
q with |X| = minr=1,...,k·(q/2)−2{VL(k, r, q) −m} and m

as in Theorem 2.13.

The following corollary is a direct consequence of the last two theorems.

Corollary 2.19. Let q be an even positive integer. Let r1 ≥ k ·(q/2) ≥ r2 ≥
0 and k · (q/2) ≥ 3. We then have

(1) Mr1,q(n + k) ≤ qkMr1,q(n) + (qk − minr=1,...,k(q/2)−2{VL(k, r, q) −
m})|Yk|

(2) Mr1+r2,q(n+ k) ≤ qkMr1,q(n) + (qk −minr=1,...,k(q/2)−2{VL(k, r, q)−
m})|Yk,r2 |

where m is as in Theorem 2.13, Yk comes from Theorem 2.18, Yk,r2 from
2.17.

If q is an even integer greater than or equal to 6, then k · (q/2) ≥ 3.
Therefore we can find codes of greater length using Theorem 2.18 for these
parameters. This is established in (1) of Section 3.2.

In the cases when q = 4 and q = 5, we can use the following theorem for
finding codes of greater length. This is established in Section 3.2 and Table
3 and Table 4 of Section 3.5.

Using the fact that Z4 \{0} and Z5 \{0} are both 0-separating codes and
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1-separating codes, one can prove the following theorem, in a way similar to
that of Theorem 2.18.

Theorem 2.20. Let q ∈ {4, 5}. Let r1 ≥ bq/2c = 2 and let C be an
r1-identifying code of length n and X1 = {x ∈ Zn

q | dL(x, c) ≤ r1 − bq/2c
or dL(x, c) > r1 for all c ∈ C}. Choose Y ′1 ⊆ Zn

q such that for every
x ∈ X1, there exists y ∈ Y ′1 with r1 − bq/2c + 1 ≤ dL(x, y) ≤ r1. Then
C ′ = (C ⊕Zq) ∪ (Y ′1 ⊕ (Zq \ {0})) is an r1-identifying code of length n+ 1.

Corollary 2.21. Let q ∈ {4, 5}. Let r1 ≥ bq/2c = 2. We then have

Mr1,q(n+ 1) ≤ qMr1,q(n) + (q − 1)|Y ′1 |.

3. Tables for upper bounds of Mr,q(n)

Using our constructions in Section 2, we produce tables for upper bounds
of Mr,q(n) for 1 ≤ r ≤ 5, 2 ≤ n ≤ 7, and q ∈ {4, 5, 6} (see Tables 3, 4, and
5 in Section 3.5). The upper bounds obtained by using the results in [2]
and [8] are written in bold letters in the tables. We improve some of these
bounds using our results. This can be viewed in the tables. The bounds
are produced by using our results of previous section (see Section 3.2). The
bounds for these new parameters have not been considered earlier. For small
lengths, we can compute the codes by using the following Greedy algorithm.

3.1. Greedy Algorithm. For a subset C of Zn
q , we define NCL(C) and

NSL(C) as the number of vectors which are not r-covered and not r-
separated by C, respectively, and the evaluation function fL(C) as NCL(C)
+NSL(C). The Greedy algorithm is as follows.

(1) Start with C = ∅.
(2) Compute fL(C)− fL(C ∪ {m}) for all m ∈ Zn

q .
(3) Choose m which maximizes fL(C)− fL(C ∪ {m}).
(4) Replace C by C ∪ {m}.
(5) Continue the process until fL(C) = 0.

The upper bounds obtained using the above Greedy algorithm are marked
as ‘a’ in Tables 3, 4, and 5 of Section 3.5.

3.2. Applications of the Theorems in Section 2. After getting codes of
small length up to 4 by using the Greedy algorithm, we apply the theorems
in Section 2 for finding codes of greater length using a computer. The
upper bounds obtained by Theorem 2.2, Theorem 2.7, and Theorem 2.20
are marked as ‘b’,‘c’, and ‘d’, respectively, in Tables 3, 4, and 5 of Section
3.5.

We then produce X1, Y1 of Theorem 2.18 and Y ′1 of Theorem 2.20 with
the aid of a computer. For all computations in this section, k = 1. Here
elements of Zn

q are represented by the corresponding decimal numbers, for

example 0231 in Z4
5 is represented by 66 = 0× 53 + 2× 52 + 3× 51 + 1× 50.
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In Z3
8,

{0,6, 34, 89, 123, 136, 148, 152, 175, 256, 258, 263, 289, 299, 343, 359,

387, 403, 424, 425, 436, 449, 486}

is a 4-identifying code of cardinality 23 with X1 = {224} and Y1 = {221}.
Here

(3.1) M4,8(4) ≤ 8 · 23 + 8 · 1 = 192.

In Z4
4, there is a 2-identifying code of cardinality 22 with X1 = {1111,

2210, 1130, 3121, 0331, 3311, 2330, 2123, 3323} and Y ′1 = {0001, 2120, 3320,
1100}.
(3.2) Here M2,4(5) ≤ 4 · 22 + 3 · 4 = 100.

In Z4
4, there is a 3-identifying code of cardinality 14 with X1 = {1022,

1333, 3332} and Y ′1 = {0032}. Here

(3.3) M3,4(5) ≤ 4 · 14 + 3 · 1 = 59.

In Z5
4, there is a 4-identifying code of cardinality 24 with X1 = {20023}

and Y ′1 = {10000}. Here

(3.4) M4,4(6) ≤ 4 · 24 + 3 · 1 = 99.

In Z3
5, there is a 2-identifying code of cardinality 16 with X1 = {130, 022,

420, 142, 433} and Y ′1 = {020, 032}. Here

(3.5) M2,5(4) ≤ 5 · 16 + 4 · 2 = 88.

In Z3
5, there is a 3-identifying code of cardinality 11 with X1 = {422} and

Y ′1 = {020}. Here

(3.6) M3,5(4) ≤ 5 · 11 + 4 · 1 = 59.

3.3. Removing Codewords. For several codes, the cardinality can be fur-
ther reduced by simply removing some of the codewords which are superflu-
ous. These are marked in the tables as ‘*’. The codewords are identified by
actual verification of the fact that if m is such a codeword, then the code
C \ {m} is also an r-identifying code.

3.4. Applications of Theorem 9 of Karpovsky et al. [2]. After getting
codes of small length by using Sections 3.1, 3.2, and 3.3, we apply Theorem 9
of [2] for finding codes of greater length. The upper bounds obtained in this
section are marked as ‘**’ in Tables 3, 4, and 5 of Section 3.5. The following
are the bounds obtained by using Sections 3.1, 3.2, 3.3, and Theorem 9 of
[2].

• M2,4(7) ≤M1,4(4) ·M1,4(3) = 67× 21 = 1407
• M3,4(6) ≤M1,4(2) ·M2,4(4) = 7× 22 = 154
• M3,4(7) ≤M1,4(3) ·M2,4(4) = 21× 22 = 462
• M4,4(6) ≤M2,4(3) ·M2,4(3) = 8× 8 = 64
• M4,4(7) ≤M2,4(3) ·M2,4(4) = 8× 22 = 176
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Table 3. Upper bounds for Mr,4(n)

n M1,4(n) M2,4(n) M3,4(n) M4,4(n) M5,4(n)

2 7a7e,i(optimal) 7a 15a - -
3 21a28e 8a 7a 20a 63a

4 67∗68a112e 22a 14a 14a 22a

5 266∗268b448e 92∗100d 51∗59d 24∗56c 28∗88c

6 1064b1792e 352b 154∗∗ 64∗∗ 46∗112c

7 4256b7168e 1407∗∗ 462∗∗ 176∗∗ 112∗∗

• M5,4(7) ≤M2,4(3) ·M3,4(4) = 8× 14 = 112
• M2,5(6) ≤M1,5(3) ·M1,5(3) = 39× 39 = 1521
• M2,5(7) ≤M1,5(4) ·M1,5(3) = 195× 39 = 7605
• M3,5(5) ≤M1,5(2) ·M2,5(3) = 10× 16 = 160
• M3,5(6) ≤M1,5(3) ·M2,5(3) = 39× 16 = 624
• M3,5(7) ≤M1,5(3) ·M2,5(4) = 39× 73 = 2847
• M4,5(6) ≤M2,5(3) ·M2,5(3) = 16× 16 = 256
• M4,5(7) ≤M2,5(3) ·M2,5(4) = 16× 73 = 1168
• M5,5(6) ≤M2,5(3) ·M3,5(3) = 16× 11 = 176
• M5,5(7) ≤M1,5(2) ·M4,5(5) = 10× 52 = 520
• M2,6(5) ≤M1,6(2) ·M1,6(3) = 14× 54 = 756
• M2,6(6) ≤M1,6(3) ·M1,6(3) = 54× 54 = 2916
• M2,6(7) ≤M1,6(4) ·M1,6(3) = 324× 54 = 17496
• M3,6(5) ≤M1,6(2) ·M2,6(3) = 14× 27 = 378
• M3,6(6) ≤M1,6(3) ·M2,6(3) = 54× 27 = 1458
• M3,6(7) ≤M1,6(3) ·M2,6(4) = 54× 149 = 8046
• M4,6(5) ≤M1,6(2) ·M3,6(3) = 14× 16 = 224
• M4,6(6) ≤M2,6(3) ·M2,6(3) = 27× 27 = 729
• M4,6(7) ≤M2,6(3) ·M2,6(4) = 27× 149 = 4023
• M5,6(6) ≤M2,6(3) ·M3,6(3) = 27× 16 = 432
• M5,6(7) ≤M2,6(3) ·M3,6(4) = 27× 75 = 2025

3.5. Tables. We give our results for 1 ≤ r ≤ 5 and 2 ≤ n ≤ 7 in the Lee
Spaces Zn

4 , Zn
5 , and Zn

6 . For some parameters, give two upper bounds, the
first one is from Section 3.2 and the second from Section 3.3. The upper
bounds computed by us (resp. others) are written in normal (resp. bold)
fonts. In the tables below, we write optimal when the exact value is known.
The superscripts denote the sections whose results have been employed to
determine the values. The description of the superscript are given at the
end of Table 5.

4. Lower bounds for r-identifying codes

Lower bounds for r-identifying codes with respect to the Lee metric are
given in [2, 8]. In [2], it is shown that M1,q(n) ≥ qn/(n+ 1) for q > 4 and
the lower bounds for M1,3(n) and M1,4(n) are given in [8]. But for r ≥ 2,
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n M1,5(n) M2,5(n) M3,5(n) M4,5(n) M5,5(n)

2 10f 6a 11a - -
3 39a 16a 11a 15a 33∗35a

4 195b 73∗88d100f 42∗59d 18a 20a

5 975b 365c 160∗∗ 52∗90c 38∗100c

6 4875b 1521∗∗ 624∗∗1000f 256∗∗ 176∗∗

7 24375b 7605∗∗ 2847∗∗ 1168∗∗ 520∗∗

Table 4. Upper bounds for Mr,5(n)

n M1,6(n) M2,6(n)

2 14a16k 9a9g

3 54g,j(optimal) 27a

4 324h 149∗162b324g

5 1701l 756∗∗

6 8748l 2916∗∗

7 34992g,j(optimal) 17496∗∗

n M3,6(n) M4,6(n) M5,6(n)
2 9a 14a 35a

3 16a27g 13a 16a

4 75∗96c 48∗78c81g 29∗96c

5 378∗∗ 224∗∗ 117∗174c243g

6 1458∗∗5832g 729∗∗ 432∗∗

7 8046∗∗ 4023∗∗ 2025∗∗

Table 5. Upper bounds for Mr,6(n)

*-Section 3.3 **-Section 3.4 a-Section 3.1
b-Theorem 2.2 c-Theorem 2.7 d-Theorem 2.20
e-(iii) of [8, Theorem 3.7] f-(1) [2, Corollary 9] g-(3) [2, Corollary 9]
h-[2, Corollary 5] i-[8, Theorem 3.6] j-[2, Theorem 6]
k-[8, Corollary 3.9] l-[2, Theorem 7]

the lower bounds for Mr,4(n) are not known previously in the literature. In
this section, we compute lower bounds for Mr,4(n) for all r by using the idea
in Theorem 2.1 of [5] for the Hamming metric. For this we need to prove
the following two lemmas, Lemma 4.2 and Lemma 4.3. First we define some
notation similar to those given in [5].

For x ∈ Zn
q , define

Pr,n(x, i) = max
C⊆Zn

q

|{y ∈ Zn
q |C is an r-identifying code satisfying

|Ir(x)| = i and Ir(y) ⊆ Ir(x), |Ir(y)| = 2}|.

Since each word of Zn
q plays the same role, Pr,n(0, i) = Pr,n(x, i) for all x ∈

Zn
q where 0 is the all-zero vector. Therefore we can set Pr,n(0, i) = Pr,n(i).
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Remark 4.1.

Pr,n(i) ≤ min

{(
i

2

)
, VL(n, 2r, 4)

}
.

Lemma 4.2. In Zn
4 , with respect to the Lee metric,

|Br(x) ∩Br(y)| =
b r
2
c∑

i=0

(
r − k

2

i

)( r−2i∑
l=0

(
r − k

2 − i
l

)
2l
(

k

r − 2i− l

))
for all x, y ∈ Zn

4 with dL(x, y) = 2r and x and y differ in r+(k/2) coordinate
places such that in each of r − (k/2) of these places, they differ by 2 while
in each of the remaining k places, they differ by 1.

Proof. Without loss of generality we take

x = 00 · · · 0︸ ︷︷ ︸
r− k

2

00 · · · 0︸ ︷︷ ︸
k

00 · · · 0︸ ︷︷ ︸
n−r− k

2

,

y = 22 · · · 2︸ ︷︷ ︸
r− k

2

11 · · · 1︸ ︷︷ ︸
k

00 · · · 0︸ ︷︷ ︸
n−r− k

2

.

We have to find the number of elements of Zn
4 belonging to Br(x) ∩ Br(y).

Suppose z is such an element. Then dL(x, z) ≤ r and dL(z, y) ≤ r. If
dL(x, z) < r, then by triangle inequality dL(x, y) < 2r, a contradiction.
Therefore dL(z, x) = r. If dL(z, y) < r, again by the triangle inequality
dL(x, y) < 2r, a contradiction. Therefore dL(z, y) = r and dL(z, x) = r. As

z, y ∈ Zr− k
2

4 ⊕Zk
4 ⊕Z

n−r− k
2

4 , set z = z′z′′z′′′ and y = y′y′′y′′′,

where z′, y′ ∈ Zr− k
2

4 , z′′, y′′ ∈ Zk
4, and z′′′, y′′′ ∈ Zn−r− k

2
4 .

If wL(z′′′) = m ≥ 1, then either dL(z, x) 6= r or dL(z, y) 6= r (if dL(z, x) =
r, then we have wL(z′) + wL(z′′) = r − m because wL(z) = wL(z − x) =
dL(z, x) = r. Also wL(y′) + wL(y′′) = 2r. Therefore dL(z, y) > r), a
contradiction to the fact that dL(z, x) = r and dL(z, y) = r. Therefore
m = 0. This implies that z′′′ is the all-zero word.

Suppose z′ has i coordinates as 2 where 0 ≤ i ≤ br/2c. The reason
for the upper bound of i is dL(z, x) = r. Now dL(z, x) ≥ 2i. Consider the
remaining coordinates of z′ and the coordinates belonging to z′′. From these
coordinates, we can choose at most r− 2i coordinate positions and fill them
with weight one words and leave the remaining coordinates as zero because
we already have wL(z) ≥ 2i.

Suppose l coordinates from the remaining r − (k/2)− i coordinates of z′

with 0 ≤ l ≤ r − 2i are filled with either 1 or 3. In these l coordinates,
1 may occur in any of the p-coordinates where 0 ≤ p ≤ l. Therefore we

have
∑l

p=0

(
l
p

)
= 2l choices. Suppose r − 2i − l coordinates from the k
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coordinates of z′′ are filled with 1. The remaining coordinates of z are zero
because wL(z) = r. Therefore we have

|Br(x) ∩Br(y)| =
b r
2
c∑

i=0

(
r − k

2

i

)( r−2i∑
l=0

(
r − k

2 − i
l

)
2l
(

k

r − 2i− l

))
.

�

Lemma 4.3. For each nonnegative even integer k and nonnegative integer
r,

b r
2
c∑

i=0

(
r − k

2

i

)( r−2i∑
l=0

(
r − k

2 − i
l

)
2l
(

k

r − 2i− l

))
=

(
2r

r

)
.

Proof. See the following: https://math.stackexchange.com/questions/

2303893. �

We thank Markus Scheuer (https://math.stackexchange.com/users/
1320\07/markus-scheuer) and Marko Riedel (http://pnp.mathematik.
uni-stuttga\rt.de/iadm/Riedel/) for their help proving Lemma 4.3.

By using Lemma 4.2 and Lemma 4.3, we can prove the following theorem
in a similar way to the proof of Theorem 2.1 of [5].

Theorem 4.4. Let C ⊆ Zn
4 be an r-identifying code. Let

a = min
i=3,...,VL(n,r,4)

{
2 +

(i− 2)(
(
2r
r

)
− 1)(

2r
r

)
+ Pr,n(i)− 1

}
.

Then

|C| ≥Mr,4(n) ≥ a · 4n

VL(n, r, 4) + a− 1
.

In Table 6, we use the upper bounds of Pr,n(i) from Remark 4.1 to find
the lower bounds for Mr,4(n) by using Theorem 4.4.

From Tables 3 and 6, we have

M2,4(3) = 8, M1,4(2) = 7, 18 ≤M1,4(3) ≤ 21,

4 ≤M2,4(2) ≤ 7, 17 ≤M2,4(4) ≤ 22, 5 ≤M3,4(3) ≤ 7.

Remark 4.5: By Theorem 4.4, we can find the lower bounds of Mr,4(n) for
all r. These bounds were not previously known for r ≥ 2. For small values of
r, lower bounds are given in Table 6. When r = 1, our lower bounds are the
same as the lower bounds obtained in [8]. But if there is any improvement
in the upper bound of Pr,n(i), it will simultaneously improve, by Theorem
4.4, the lower bound of Mr,4(n). Therefore improving the upper bound of
Pr,n(i) is to be considered as an important open problem in this area.
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n M1,4(n) M2,4(n) M3,4(n) M4,4(n) M5,4(n)
2 6 4 3 - -
3 18 8 5 4 3
4 56 17 8 5 4
5 183 42 17 8 5
6 623 115 35 16 8
7 2164 334 81 32 15
8 7654 1015 209 65 29
9 27434 3195 571 149 59
10 99392 10327 1636 371 119
11 363287 34096 4862 979 269
12 1337719 114512 14869 2703 656
13 4956905 390142 46539 7727 1690
14 18467305 1345475 148497 22718 4541
15 69125011 4688575 481632 68377 12611

Table 6. Lower bounds for Mr,4(n) by using Theorem 4.4
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