DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF NEIGHBOURHOOD CORONA OF TWO GRAPHS

SAEID ALIKHANI AND SAMANEH SOLTANI

Abstract

The distinguishing number (index) $D(G)\left(D^{\prime}(G)\right)$ of a graph G is the least integer d such that G has an vertex labelling (edge labelling) with d labels that is preserved only by a trivial automorphism. The neighbourhood corona of two graphs G_{1} and G_{2} is denoted by $G_{1} \star G_{2}$ and is the graph obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, and joining the neighbours of the i th vertex of G_{1} to every vertex in the i th copy of G_{2}. In this paper we describe the automorphisms of the graph $G_{1} \star G_{2}$. Using results on automorphisms, we study the distinguishing number and the distinguishing index of $G_{1} \star G_{2}$. We obtain upper bounds for $D\left(G_{1} \star G_{2}\right)$ and $D^{\prime}\left(G_{1} \star G_{2}\right)$.

1. Introduction

Let $G=(V, E)$ be a simple graph with n vertices. Throughout this paper, we consider only simple graphs. The set of all automorphisms of G, with the operation of composition of permutations, is a permutation group on V and is denoted by $\operatorname{Aut}(G)$. A labelling of $G, \phi: V \rightarrow\{1,2, \ldots, r\}$, is r-distinguishing, if no non-trivial automorphism of G preserves all of the vertex labels. In other words, ϕ is r-distinguishing if for every non-trivial $\sigma \in \operatorname{Aut}(G)$, there exists x in V such that $\phi(x) \neq \phi(x \sigma)$. The distinguishing number of a graph G has defined by Albertson and Collins [1] and is the minimum number r such that G has a labelling that is r-distinguishing. Similar to this definition, Kalinowski and Pilśniak [6] have defined the distinguishing index $D^{\prime}(G)$ of G which is the least integer d such that G has an edge colouring with d colours that is preserved only by a trivial automorphism. These indices have been developed in a number of papers on this subject (see, for example, $[2,7,9]$).

We use the following notation: The set of vertices adjacent in G to a vertex of a vertex subset $W \subseteq V$ is the open neighborhood $N_{G}(W)$ of W.

[^0]The closed neighborhood $G[W]$ also includes all vertices of W itself. In the case of a singleton set $W=\{v\}$, we write $N_{G}(v)$ and $N_{G}[v]$ instead of $N_{G}(\{v\})$ and $N_{G}[\{v\}]$, respectively. We omit the subscript when the graph G is clear from the context. The complement of $N[v]$ in $V(G)$ is denoted by $\overline{N[v]}$. We denote the degree of a vertex v in graph G by $d_{G}(v)$ and the distance between two vertices u and w in graph G, by $\operatorname{dist}_{G}(u, w)$. The corona of two graphs G and H which denoted by $G \circ H$ is defined in [4] and there have been some results on the corona of two graphs [3]. In [2] we have studied the distinguishing number and the distinguishing index of the corona of two graphs. In this paper we consider another variation of the corona of two graphs and study its distinguishing number and distinguishing index. Given simple graphs G_{1} and G_{2}, the neighbourhood corona of G_{1} and G_{2}, denoted by $G_{1} \star G_{2}$ and is the graph obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} and joining the neighbours of the i th vertex of G_{1} to every vertex in the i th copy of $G_{2}([5])$. Figure 1 shows $P_{4} \star P_{3}$, where P_{n} is the path of order n. Liu and Zhou in [8] determined the adjacency spectrum of $G_{1} \star G_{2}$ for arbitrary G_{1} and G_{2} and the Laplacian spectrum and signless Laplacian spectrum of $G_{1} \star G_{2}$ for regular G_{1} and arbitrary G_{2}, in terms of the corresponding spectrum of G_{1} and G_{2}. Also Gopalapillai in [5] has studied the eigenvalues and spectrum of $G_{1} \star G_{2}$, when G_{2} is regular.

Figure 1. The neighbourhood corona of $P_{4} \star P_{3}$.
In this paper, we consider the neighbourhood corona of two graphs and discuss their distinguishing number and index. In the next section, we give a complete description of the automorphisms of the neighbourhood corona of two arbitrary graphs. In Section 3, we study the distinguishing number and the distinguishing index of the neighbourhood corona of two graphs.

2. Description of automorphisms of $G_{1} \star G_{2}$

In this section, we consider the neighbourhood corona of two graphs and describe its automorphisms. Let G_{i} have order n_{i} and size $m_{i}(i=1,2)$. The neighbourhood corona $G_{1} \star G_{2}$ of G_{1} and G_{2} has $n_{1}+n_{1} n_{2}$ vertices and $m_{1}\left(2 n_{2}+1\right)+n_{1} m_{2}$ edges and when $G_{2}=K_{1}$, the graph $G_{1} \star G_{2}$ is the splitting graph which has defined in [10].

Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. For $i=$ $1,2, \ldots, n_{1}$, let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}$ denote the vertices of the i th copy of G_{2},
with the understanding that u_{j}^{i} is the copy of u_{j} for each j. It is clear that the degrees of the vertices of $G_{1} \star G_{2}$ are:

$$
\begin{equation*}
d_{G_{1} \star G_{2}}\left(v_{i}\right)=\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right), i=1,2, \ldots, n_{1}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{G_{1} \star G_{2}}\left(u_{j}^{i}\right)=d_{G_{2}}\left(u_{j}\right)+d_{G_{1}}\left(v_{i}\right), i=1,2, \ldots, n_{1}, j=1,2, \ldots, n_{2} . \tag{2.2}
\end{equation*}
$$

Now we want to know how an automorphism of $G_{1} \star G_{2}$ acts on the vertices G_{1} and the vertices of copies G_{2}. First we state and prove the following lemma.

Lemma 2.1. Let G_{1} and G_{2} be two connected graphs such that $G_{1} \neq K_{1}$ and f be an automorphism of $G_{1} \star G_{2}$ such that $f\left(v_{i}\right)=u_{j}^{k}$ for some $i, k=$ $1,2, \ldots, n_{1}$ and $j=1,2, \ldots, n_{2}$. Then $d_{G_{1}}\left(v_{k}\right)>d_{G_{1}}\left(v_{i}\right)$.
Proof. Since $f\left(v_{i}\right)=u_{j}^{k}, d_{G_{1} \nless G_{2}}\left(v_{i}\right)=d_{G_{1} \nless G_{2}}\left(u_{j}^{k}\right)$. By (2.1) and (2.2) we have $\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right)=d_{G_{2}}\left(u_{j}\right)+d_{G_{1}}\left(v_{k}\right)$. By contradiction, suppose that $d_{G_{1}}\left(v_{k}\right) \leqslant d_{G_{1}}\left(v_{i}\right)$. Hence $\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right) \leqslant d_{G_{2}}\left(u_{j}\right)+d_{G_{1}}\left(v_{i}\right)$, and so $n_{2} d_{G_{1}}\left(v_{i}\right) \leqslant d_{G_{2}}\left(u_{j}\right)$. This contradiction forces us to conclude that $d_{G_{1}}\left(v_{k}\right)>d_{G_{1}}\left(v_{i}\right)$.

By Lemma 2.1 we can prove the following corollary:
Corollary 2.2. Let G_{1} be a connected graph such that $G_{1} \neq K_{1}$ and f be an arbitrary automorphism of $G_{1} \star G_{2}$.
(i) If v is the vertex of G_{1} with the maximum degree in G_{1}, then $f(v) \in G_{1}$.
(ii) If G_{1} is a regular graph, then the restriction of f to G_{1} is an automorphism of G_{1}.

We shall obtain some results for the automorphisms of $G_{1} \star G_{2}$.
Lemma 2.3. Let G_{1} and G_{2} be two connected graphs of orders n_{1} and n_{2}, respectively, and $n_{1}>1$. Suppose that f is an automorphism of $G_{1} \star G_{2}$ such that the restriction of f to G_{1} is an automorphism of G_{1}, and also f maps the copies of G_{2} to each other. Then there exist an automorphism g of G_{1} and the automorphisms $h_{1}, \ldots, h_{n_{1}}$ of G_{2} such that $f\left(G_{2}^{i}\right)=\left(h_{i}\left(G_{2}\right)\right)^{k}$, where $v_{k}=g\left(v_{i}\right)$ and $i, k=1, \ldots, n_{1}$.
Proof. Let f be an automorphism of $G_{1} \star G_{2}$ such that the restriction of f to G_{1} is an automorphism of G_{1}, and also f maps the copies of G_{2} to each other. Let f maps the i th copy of G_{2}, G_{2}^{i}, to the j_{i} th copy of G_{2}, $G_{2}^{j_{i}}$, where $i, j_{i}=1, \ldots, n_{1}$, such that for the fixed numbers i and j_{i} we have $f\left(u_{k}^{i}\right)=u_{k^{\prime}}^{j_{i}}$, where $k, k^{\prime}=1, \ldots, n_{2}$. Then we define the automorphism h_{i} on G_{2} such that $h_{i}\left(u_{k}\right)=u_{k^{\prime}}$. To complete the proof we need to show that the map g on $V\left(G_{1}\right)$ such that $g\left(v_{i}\right)=v_{j_{i}}$ is an automorphism of G_{1}, where $i, j_{i}=1, \ldots, n_{1}$. Without loss of generality we can assume that the vertices v_{1} and v_{2} are adjacent, and show that $v_{j_{1}}$ and $v_{j_{2}}$ are adjacent.

Since the vertices v_{1} and v_{2} are adjacent, the vertex v_{1} is adjacent to each vertex of G_{2}^{2} (we show this concept by $v_{1} \sim G_{2}^{2}$). Hence $f\left(v_{1}\right) \sim\left(h_{2}\left(G_{2}\right)\right)^{j_{2}}$, and so $f\left(v_{1}\right) \sim v_{j_{2}}$ and $v_{1} \sim f^{-1}\left(v_{j_{2}}\right)$, hence $f^{-1}\left(v_{j_{2}}\right) \sim G_{2}^{1}$, and finally we have $v_{j_{2}} \sim G_{2}^{j_{1}}$. With a similar argument we can conclude that $f\left(v_{2}\right) \sim v_{j_{1}}$, so $v_{2} \sim f^{-1}\left(v_{j_{1}}\right)$, hence $f^{-1}\left(v_{j_{1}}\right) \sim G_{2}^{2}$, and thus $v_{j_{1}} \sim G_{2}^{j_{2}}$ (see Figure 2). On the other hand, since f maps G_{2}^{1} to $\left(h_{2}\left(G_{2}\right)\right)^{j_{1}}$, we

Figure 2. A piece of neighbourhood corona of G_{1} and G_{2} in the proof of Lemma 2.3.
have $d_{G_{1} \star G_{2}}\left(u_{k}^{1}\right)=d_{G_{1} \star G_{2}}\left(\left(h_{2}\left(u_{k}\right)\right)^{j_{1}}\right)$. We deduce from (2.1), (2.2), and $d_{G_{2}}\left(u_{k}\right)=d_{G_{2}}\left(h_{2}\left(u_{k}\right)\right)$, that $d_{G_{1}}\left(v_{1}\right)=d_{G_{1}}\left(v_{j_{1}}\right)$. Similarly, $d_{G_{1}}\left(v_{2}\right)=$ $d_{G_{1}}\left(v_{j_{2}}\right)$. Since the restriction of f to G_{1} is an automorphism of G_{1}, we have that $d_{G_{1}}\left(v_{1}\right)=d_{G_{1}}\left(f\left(v_{1}\right)\right)$ and $d_{G_{1}}\left(v_{2}\right)=d_{G_{1}}\left(f\left(v_{2}\right)\right)$. Then

$$
\begin{equation*}
d_{G_{1}}\left(v_{1}\right)=d_{G_{1}}\left(v_{j_{1}}\right)=d_{G_{1}}\left(f\left(v_{1}\right)\right), d_{G_{1}}\left(v_{2}\right)=d_{G_{1}}\left(v_{j_{2}}\right)=d_{G_{1}}\left(f\left(v_{2}\right)\right) . \tag{2.3}
\end{equation*}
$$

In regard to (2.3) and Figure 2, there exists vertices $v_{j_{1} 1}$ and $v_{j_{2} 1}$ adjacent to vertices $v_{j_{1}}$ and $v_{j_{2}}$, respectively. Thus the vertices $v_{j_{1} 1}$ and $v_{j_{2} 1}$ are adjacent to $G_{2}^{j_{1}}$ and $G_{2}^{j_{2}}$, respectively, and so $f^{-1}\left(v_{j_{1} 1}\right) \sim G_{2}^{1}$ and $f^{-1}\left(v_{j_{2} 1}\right) \sim G_{2}^{2}$. Hence $f^{-1}\left(v_{j_{1} 1}\right) \sim v_{1}$ and $f^{-1}\left(v_{j_{2} 1}\right) \sim v_{2}$. Since $v_{j_{1}} \sim v_{j_{1} 1}$ and $v_{j_{2}} \sim v_{j_{2} 1}$, we have $f^{-1}\left(v_{j_{1}}\right) \sim f^{-1}\left(v_{j_{1} 1}\right)$ and $f^{-1}\left(v_{j_{2}}\right) \sim f^{-1}\left(v_{j_{2}}\right)$ (see Figure 3). Note that, for every vertex $x \in N_{G}\left(v_{j_{2}}\right)$, we have $x \sim G_{2}^{j_{2}}$. So we see

Figure 3. A piece of $G_{1} \star G_{2}$ in the proof of Lemma 2.3.
that $f^{-1}(x) \sim G_{2}^{2}$, and so $f^{-1}(x) \sim v_{2}$ (a similar argument satisfies for each vertex in $\left.N_{G}\left(v_{j_{1}}\right)\right)$. In regard to Figure 3 and (2.3), we need the other vertex adjacent to $v_{j_{1}}$, call it x. If x has been chosen among the nonadjacent vertices to $G_{2}^{j_{2}}$ that has been shown in Figure 3, then with the similar argument as above, we obtain that $f^{-1}(x)$ is adjacent to v_{1}, and so (2.3) is not satisfied, again. Therefore after finite steps we should choose a vertex x adjacent to $v_{j_{1}}$, among the vertices that are adjacent to $G_{2}^{j_{2}}$, otherwise we conclude that the order of G_{1} is infinite and this is a contradiction. By Figure 3 and above information, the vertex $v_{j_{1}}$ is the only vertex that is adjacent to $G_{2}^{j_{2}}$ and is not among the adjacent vertices to $v_{j_{1}}$, in each step. Hence $v_{j_{1}} \sim v_{j_{2}}$, and the result follows.

Lemma 2.4. Let G_{1} and G_{2} be two connected graphs of order n_{1} and n_{2}, respectively, and $n_{1}>1$. If f is an automorphism of $G_{1} \star G_{2}$, then the restriction of f to G_{1} is an automorphism of G_{1}.

Proof. Since f is an automorphism, it is suffices to show that the restriction of f to G_{1} is an automorphism of G_{1}. By contradiction, suppose that $\left.f\right|_{G_{1}}$ is not an automorphism of G_{1}. Without loss of generality we assume that $f\left(v_{1}\right)=u_{1}^{2}$. Hence by Lemma 2.1, $d_{G_{1}}\left(v_{2}\right)>d_{G_{1}}\left(v_{1}\right)$. Since f preserves the degree of the vertices, $d_{G_{1} \star G_{2}}\left(v_{1}\right)=d_{G_{1} \star G_{2}}\left(u_{1}^{2}\right)$, and so by (2.1) and (2.2) we have $\left(1+n_{2}\right) d_{G_{1}}\left(v_{1}\right)=d_{G_{2}}\left(u_{1}\right)+d_{G_{1}}\left(v_{2}\right)$. Suppose that $N_{G_{1}}\left(v_{1}\right)=$ $\left\{v_{1,1}, \ldots, v_{1, s_{1}}\right\}, N_{G_{1}}\left(v_{2}\right)=\left\{v_{2,1}, \ldots, v_{2, s_{2}}\right\}$, and $N_{G_{2}}\left(u_{1}\right)=\left\{u_{1,1}, \ldots, u_{1, t}\right\}$ where $\left(1+n_{2}\right) s_{1}=t+s_{2}$ and $s_{i}=d_{G_{1}}\left(v_{i}\right), i=1,2$, and also $t=d_{G_{2}}\left(u_{1}\right)$ (see Figure 4). Since f preserves the adjacency relation, $f\left(N_{G_{1} \star G_{2}}\left(v_{1}\right)\right)=$

Figure 4. A piece of neighbourhood corona of G_{1} and G_{2} in the proof of Lemma 2.4.
$N_{G_{1} \star G_{2}}\left(u_{1}^{2}\right)$, i.e.,

$$
\left\{f\left(v_{1,1}\right), \ldots, f\left(v_{1, s_{1}}\right), f\left(u_{1}^{1,1}\right), \ldots, f\left(u_{n_{2}}^{1,1}\right), \ldots, f\left(u_{1}^{1, s_{1}}\right), \ldots, f\left(u_{n_{2}}^{1, s_{1}}\right)\right\}
$$

$$
\begin{equation*}
=\left\{u_{1,1}^{2}, \ldots, u_{1, t}^{2}, v_{2,1}, \ldots, v_{2, s_{2}}\right\} . \tag{2.4}
\end{equation*}
$$

Since $t<n_{2}$, there are vertices in the copies $G_{2}^{1,1}, \ldots, G_{2}^{1, s_{1}}$ such that they are mapped to the elements of the set $\left\{v_{2,1}, \ldots, v_{2, s_{2}}\right\}$, under the
automorphism f. Without loss of generality we can assume that $f\left(u_{i_{j}^{1, j}}^{1,}\right)=$ $v_{2, j}$, where $1 \leqslant j \leqslant s_{1}$. We continue the proof by considering two cases for s_{1} as follows:
Case 1: $s_{1}>1$.
Since v_{2} is adjacent to the vertices $v_{2,1}, \ldots, v_{2, s_{1}}$, it follows that $f^{-1}\left(v_{2}\right)$ is adjacent to the vertices $u_{i_{1}}^{1,1}, \ldots, u_{i_{s_{1}}}^{1, s_{1}}$. Since $s_{1}>1$, thus $f^{-1}\left(v_{2}\right) \in G_{1}$ and $f^{-1}\left(v_{2}\right)$ is adjacent to the vertices $v_{1,1}, \ldots, v_{1, s_{1}}$. Hence v_{2} is adjacent to the vertices $f\left(v_{1,1}\right), \ldots, f\left(v_{1, s_{1}}\right)$, and by (2.4) we have

$$
\begin{equation*}
\left\{f\left(v_{1,1}\right), \ldots, f\left(v_{1, s_{1}}\right)\right\} \subseteq\left\{v_{2, s_{1}+1}, \ldots, v_{2, s_{2}}\right\} \tag{2.5}
\end{equation*}
$$

Without loss of generality we assume that $f\left(v_{1, i}\right)=v_{2, s_{1}+i}$, where $1 \leqslant i \leqslant s_{1}$ (see Figure 5).

Figure 5. A piece of neighbourhood corona of G_{1} and G_{2} in the proof of Lemma 2.4.

Since $f^{-1}\left(v_{2}\right)$ is adjacent to the vertices $v_{1,1}, \ldots, v_{1, s_{1}}$, we can say that $f^{-1}\left(v_{2}\right)$ is adjacent to all vertices of $G_{2}^{1,1}, \ldots, G_{2}^{1, s_{1}}$, so v_{2} is adjacent to all vertices of $f\left(G_{2}^{1,1}\right), \ldots, f\left(G_{2}^{1, s_{1}}\right)$. Then by (2.4) we get

$$
\begin{equation*}
\left\{f\left(u_{1}^{1,1}\right), \ldots, f\left(u_{n_{2}}^{1,1}\right), \ldots, f\left(u_{1}^{1, s_{1}}\right), \ldots, f\left(u_{n_{2}}^{1, s_{1}}\right)\right\} \subseteq\left\{v_{2,1}, \ldots, v_{2, s_{2}}\right\} \tag{2.6}
\end{equation*}
$$

and with respect to (2.4), (2.5), and (2.6) we have a contradiction.
Case 2: $s_{1}=1$.
Since f preserves the adjacency relation,

$$
\begin{equation*}
\left\{f\left(v_{1,1}\right), f\left(u_{1}^{1,1}\right), \ldots, f\left(u_{n_{2}}^{1,1}\right)\right\}=\left\{u_{1,1}^{2}, \ldots, u_{1, t}^{2}, v_{2,1}, \ldots, v_{2, s_{2}}\right\} \tag{2.7}
\end{equation*}
$$

Since $t<n_{2}$, there exists a vertex in the copy $G_{2}^{1,1}$ such that it is mapped to an element of the set $\left\{v_{2,1}, \ldots, v_{2, s_{2}}\right\}$, under the automorphism f. Without loss of generality we can assume that $f\left(u_{i_{1}}^{1,1}\right)=v_{2,1}$. Since v_{2} is adjacent to $v_{2,1}$, so $f^{-1}\left(v_{2}\right)$ is adjacent to $u_{i_{1}}^{1,1}$, and since $f^{-1}\left(v_{2}\right) \neq$ v_{1}, so $f^{-1}\left(v_{2}\right) \in G_{2}^{1,1}$. Without loss of generality we can assume that
$f^{-1}\left(v_{2}\right)=u_{i_{1} 1}^{1,1}$ such that $u_{i_{1} 1}^{1,1}$ is adjacent to $u_{i_{1}}^{1,1}$ (see Figure 6). Since

Figure 6. A piece of neighbourhood corona of G_{1} and G_{2} in the proof of Lemma 2.4.
$v_{1,1}$ is adjacent to the vertex v_{1} and

$$
\operatorname{dist}_{G_{1} \star G_{2}}\left(v_{1,1}, u_{i_{1}}^{1,1}\right)=\operatorname{dist}_{G_{1} \nless G_{2}}\left(v_{1,1}, u_{i_{1} 1}^{1,1}\right)=2,
$$

thus $f\left(v_{1,1}\right)$ is adjacent to the vertex u_{1}^{2} and also

$$
\begin{equation*}
\operatorname{dist}_{G_{1} \star G_{2}}\left(f\left(v_{1,1}\right), v_{2}\right)=\operatorname{dist}_{G_{1} \star G_{2}}\left(f\left(v_{1,1}\right), v_{2,1}\right)=2 . \tag{2.8}
\end{equation*}
$$

Now by Equations (2.7) and (2.8) we have a contradiction. Therefore the restriction of each automorphism of $G_{1} \star G_{2}$ to G_{1} is an automorphism of G_{1}.

Corollary 2.5. Let G_{1} and G_{2} be two connected graphs of order n_{1} and n_{2}, respectively, such that $n_{1}>1$ and f an automorphism of $G_{1} \star G_{2}$. Then the restriction of f to G_{1} is an automorphism of G_{1} and also there are the automorphism g of G_{1} and the automorphisms $h_{1}, \ldots, h_{n_{1}}$ of G_{2} such that $f\left(G_{2}^{i}\right)=\left(h_{i}\left(G_{2}\right)\right)^{k}$, where $v_{k}=g\left(v_{i}\right)$ and $i, k=1, \ldots, n_{1}$.

Proof. By Lemmas 2.3 and 2.4, it is sufficient to prove that the copies of G_{2} are mapped to each other under the automorphism f and it is true because f preserves the adjacency relation on each copy of G_{2}.

The following corollary is an immediate consequence of Corollary 2.5 for graphs of the form $G \star K_{1}$.

Corollary 2.6. Let G be a connected graph of order $n>1$ and f be an arbitrary automorphism of $G \star K_{1}$. Then the restriction of f to G is an automorphism of G. Also $f\left(K_{1}^{i}\right)=K_{1}^{j_{i}}$ for some automorphism g of G such that $g\left(v_{i}\right)=v_{j_{i}}$ where $i, j_{i}=1,2, \ldots, n_{1}$.

3. Study of $D\left(G_{1} \star G_{2}\right)$ and $D^{\prime}\left(G_{1} \star G_{2}\right)$

In this section we use the results in Section 2 to study the distinguishing number and the distinguishing index of the neighbourhood corona of two graphs. First we consider the neighbourhood corona of an arbitrary graph with K_{1}. The following theorem gives an upper bound for $D\left(G \star K_{1}\right)$ and $D^{\prime}\left(G \star K_{1}\right)$.

Theorem 3.1. Let G be a connected graph of order $n>1$. We have
(i) $D\left(G \star K_{1}\right) \leqslant D(G)$,
(ii) $D^{\prime}\left(G \star K_{1}\right) \leqslant D^{\prime}(G)$.

Proof. (i) We shall define a distinguishing vertex labelling for $G \star K_{1}$ with $D(G)$ labels. First we label G in a distinguishing way with $D(G)$ labels. Next we assign the vertex $K_{1}^{v_{i}}$, the label of the vertex v_{i} where $1 \leqslant i \leqslant n$. This labelling is a distinguishing vertex labelling of $G \star K_{1}$, because if f is an automorphism of $G \star K_{1}$ preserving the labelling, then by Corollary 2.5, the restriction of f to G is an automorphism of G preserving the labelling. Since we labelled G in a distinguishing way at first, the restriction of f to G is the identity automorphism on G. On the other hand by Corollary 2.6 there exists an automorphism g of G such that $f\left(K_{1}^{v_{i}}\right)=K_{1}^{g\left(v_{i}\right)}, 1 \leqslant i \leqslant n$. Regarding the labelling of copies of K_{1}, we can obtain that g is the identity automorphism on G, and so f is the identity automorphism on $G \star K_{1}$.
(ii) We define a distinguishing edge labelling for $G \star K_{1}$ with $D^{\prime}(G)$ labels. First we label the edges of G in a distinguishing way with $D^{\prime}(G)$ labels. By (2.1) and (2.2) we know that the degree of $K_{1}^{v_{i}}$ in $G \star K_{1}$ is equal to the degree of v_{i} in G where $1 \leqslant i \leqslant n$. Now we assign the edge between $K_{1}^{v_{i}}$ and $v_{i, j}$ where $v_{i, j} \in N_{G}\left(v_{i}\right)$, the label of the edges between v_{i} and $v_{i, j}$ where $j=1, \ldots, d_{G}\left(v_{i}\right)$. This labelling is a distinguishing edge labelling of $G \star K_{1}$, because if f is an automorphism of $G \star K_{1}$ preserving the labelling, then by Corollary 2.5, the restriction of f to G is an automorphism of G preserving the labelling. Since we labelled G in a distinguishing way at first, so the restriction of f to G is the identity automorphism on G. On the other hand, by Corollary 2.6 there exists an automorphism g of G such that $f\left(K_{1}^{v_{i}}\right)=K_{1}^{g\left(v_{i}\right)}, 1 \leqslant i \leqslant n$. Regarding the labelling of the edges incident to each copies of K_{1}, we can obtain that g is the identity automorphism on G, and so f is the identity automorphism on $G \star K_{1}$.

The bounds of $D\left(G \star K_{1}\right)$ and $D^{\prime}\left(G \star K_{1}\right)$ in Theorem 3.1 are sharp. If we consider G as the star graph $K_{1, n}, n>1$, then $K_{1, n} \star K_{1}$ is a graph as shown in Figure 7. Using the degree of the vertices of $K_{1, n} \star K_{1}$ we can get the automorphism group of $K_{1, n} \star K_{1}$ and then it can be concluded that $D\left(K_{1, n} \star K_{1}\right)=n=D\left(K_{1, n}\right)$, and also $D^{\prime}\left(K_{1, n} \star K_{1}\right)=n=D^{\prime}\left(K_{1, n}\right)$.

In Theorem 3.1, the sharp upper bounds for $D\left(G \star K_{1}\right)$ and $D^{\prime}\left(G \star K_{1}\right)$ have been given, but we did not present lower bounds for these parameters. Actually, there are graphs whose distinguishing number can be arbitrarily larger than the distinguishing number of its neighbourhood corona with K_{1}.

Figure 7. The neighbourhood corona of $K_{1, n}$ and K_{1}.

In other words, we can show that there exists a connected graph G of order $n>1$ such that the value of $D\left(G \star K_{1}\right) / D(G)$ can be arbitrarily small. To do this we need the following two theorems. Recall that the friendship graph $F_{n}(n \geqslant 2)$ can be constructed by joining n copies of K_{2} with a common vertex.

Theorem 3.2 ([2]). The distinguishing number of the friendship graph F_{n} ($n \geq 2$) is

$$
D\left(F_{n}\right)=\left\lceil\frac{1+\sqrt{8 n+1}}{2}\right\rceil .
$$

Now we obtain the exact value of the distinguishing number of neighborhood corona of F_{n} with K_{1}.
Theorem 3.3. The distinguishing number of $F_{n} \star K_{1}(n \geq 2)$ is

$$
D\left(F_{n} \star K_{1}\right)=\left\lceil\sqrt{\frac{1+\sqrt{8 n+1}}{2}}\right\rceil .
$$

Proof. Let $V\left(F_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 n-1}, v_{2 n}\right\}$ where the vertex v_{0} is the central vertex and $v_{2 i-1}$ and $v_{2 i}$ are the vertices of the base of the triangles in F_{n} where $1 \leqslant i \leqslant n$. So $d_{F_{n}}\left(v_{0}\right)=2 n$ and $d_{F_{n}}\left(v_{i}\right)=2$ where $1 \leqslant i \leqslant$ $2 n$. By (2.1) and (2.2) we have $d_{F_{n} \star K_{1}}\left(v_{0}\right)=4 n$ and $d_{F_{n} \star K_{1}}\left(v_{i}\right)=4$, also $d_{F_{n} \star K_{1}}\left(K_{1}^{v_{0}}\right)=2 n$ and $d_{F_{n} \star K_{1}}\left(K_{1}^{v_{i}}\right)=2$ where $1 \leqslant i \leqslant 2 n$ (see Figure 8).

Figure 8. The graphs F_{2} and $F_{2} \star K_{1}$.

If f is an automorphism of $F_{n} \star K_{1}$, then f fixes the vertices v_{0} and $K_{1}^{v_{0}}$ (if $n=2$ we can get the same result by Corollary 2.5). So we assign the vertices v_{0} and $K_{1}^{v_{0}}$ the label 1. Let $\left(x_{i}, y_{i}, z_{i}, w_{i}\right)$ be the label of the vertices $\left(K_{1}^{v_{2 i}}, v_{2 i-1}, v_{2 i}, K_{1}^{v_{2 i-1}}\right)$ where $1 \leqslant i \leqslant n$. Suppose that $L=\left\{\left(x_{i}, y_{i}, z_{i}, w_{i}\right) \mid 1 \leqslant i \leqslant n, x_{i}, y_{i}, z_{i}, w_{i} \in \mathbb{N}\right\}$, is a labelling of the vertices of $F_{n} \star K_{1}$ except for the vertices v_{0} and $K_{1}^{v_{0}}$. If L is a distinguishing labelling of $F_{n} \star K_{1}$ then:
(i) For every $i=1, \ldots, n$, we require $x_{i} \neq w_{i}$ or $y_{i} \neq z_{i}$. Otherwise, the automorphism f_{i} of $F_{n} \star K_{1}$ such that f_{i} maps $K_{1}^{v_{2 i}}$ and $K_{1}^{v_{2 i-1}}$ to each other, two vertices $v_{2 i-1}$ and $v_{2 i}$ to each other, and fixes the remaining vertices, preserves the labelling.
(ii) For every i and j in $\{1, \ldots, n\}$, with $i \neq j$, we require $\left(x_{i}, y_{i}, z_{i}, w_{i}\right) \neq$ $\left(x_{j}, y_{j}, z_{j}, w_{j}\right)$ and $\left(x_{i}, y_{i}, z_{i}, w_{i}\right) \neq\left(w_{j}, z_{j}, y_{j}, x_{j}\right)$. Otherwise, the automorphism $f_{i j}$ and $g_{i j}$ of $F_{n} \star K_{1}$ by the following definitions preserve the labelling.

- The automorphism $f_{i j}$ maps $K_{1}^{v_{2 i}}$ and $K_{1}^{v_{2 j}}$ to each other and also $K_{1}^{v_{2 i-1}}$ and $K_{1}^{v_{2 j-1}}$ to each other. The map $f_{i j}$ maps $v_{2 i}$ and $v_{2 j}$ to each other, it also maps $v_{2 i-1}$ and $v_{2 j-1}$ to each other and fixes the remaining vertices of $F_{n} \star K_{1}$.
- The automorphism $g_{i j}$ maps $K_{1}^{v_{2 i}}$ and $K_{1}^{v_{2 j-1}}$ to each other and also $K_{1}^{v_{2 i-1}}$ and $K_{1}^{v_{2 j}}$ to each other. The map $g_{i j}$ maps $v_{2 i}$ and $v_{2 j-1}$ to each other, it also maps $v_{2 i-1}$ and $v_{2 j}$ to each other and fixes the remaining vertices of $F_{n} \star K_{1}$.
Using the label set $\{1, \ldots, s\}$ we can make at most $\left(s^{4}-s^{2}\right) / 2$ of the 4 -ary's (x, y, z, w) satisfying (i) and (ii) because the number of 4-ary's (x, y, z, w) such that $x \neq w$ is $s(s-1) s^{2}$, and the number of 4-ary's (x, y, z, w) such that $y \neq z$ is $s(s-1) s^{2}$. On the other hand, the number of 4 -ary's (x, y, z, w) such that $x \neq w$ and $y \neq z$ is $(s(s-1))^{2}$. So the maximum number of 4 -ary's (x, y, z, w) satisfying (i) is

$$
\left(s(s-1) s^{2}+s(s-1) s^{2}\right)-(s(s-1))^{2}=s^{4}-s^{2}
$$

Among these 4 -ary's we should choose the 4 -ary's satisfying (ii) too. Therefore the number of 4 -ary's (x, y, z, w) satisfying (i) and (ii) that can be made by the label set $\{1, \ldots, s\}$ is $\left(s^{4}-s^{2}\right) / 2$. Therefore $D\left(F_{n} \star K_{1}\right) \geqslant \min \{s$: $\left.\left(s^{4}-s^{2}\right) / 2 \geqslant n\right\}$. By an easy computation, we see that

$$
\min \left\{s: \frac{s^{4}-s^{2}}{2} \geqslant n\right\}=\left\lceil\sqrt{\frac{1+\sqrt{8 n+1}}{2}}\right\rceil \text {. }
$$

Now we present a distinguishing vertex labelling with this number of labels. We assign v_{0} and $K_{1}^{v_{0}}$ the label 1 . We should label the remaining vertices such that the identity automorphism preserves the labelling only. Denoting each pentagon with the vertices $K_{1}^{v_{2 i}}, v_{2 i-1}, v_{2 i}, K_{1}^{v_{2 i-1}}, v_{0}$ in $F_{n} \star K_{1}$ where $1 \leqslant i \leqslant n$, by a general pentagonshown in Figure 9 and we call it a blade and continue the labelling. At first, we want to know the maximum number

Figure 9. The considered pentagon (or a cycle of size 5) in the proof of Theorem 3.3.
of blades that can be labelled in a distinguishing way by 1 and 2 . As we can see in Figure 10, the maximum number of blades that can be labelled in distinguishing way, by 1,2 , is $\underline{6}$.

In order to preserve the labelling under the identity automorphism only, we should use another label to assign the next blade. As mentioned earlier, the maximum number of blades that can be labelled by each set $\{1,3\},\{2,3\}$ is six. Now we want to know the maximum number of blades that can be labelled by the presence of $\{1,2,3\}$ at the same time in the blade. This number is 18 . Because it is sufficient to label the blade with the labels 1 ; 2; 3 and repeat label 1. As shown in Figure 10, we can label six blades. Obviously, we can do the same by allowing repetitions of 2 and 3 . Therefore the maximum number of blades that can be labelled by the presence of $\{1,2,3\}$ at the same time is $\underline{18}$. Until now, we labelled 36 blades.

$$
\underbrace{6}_{\{1,2\}}+\underbrace{6}_{\{1,3\}}+\underbrace{6}_{\{2,3\}}+\underbrace{18}_{\{1,2,3\}}=36
$$

Figure 10. Distinguishing labelling of blades with the labels $\{1,2\}$ and $\{1,2,3\}$, respectively.

If we want to label the next blade, we should add a new label, 4. The maximum number of blades that can be labelled by each set $\{1,4\},\{2,4\},\{3,4\}$ is six. Also, the maximum number of blades that can be labelled by each set $\{1,2,4\},\{1,3,4\},\{2,3,4\}$ is eighteen. We can see that the maximum number of blades that can be labelled by presence of $\{1,2,3,4\}$ at the same time is 12 as shown in Figure 11.

Figure 11. The distinguishing labelling of blades with the labels $\{1,2,3,4\}$.

Thus we have labelled 120 blades now:

$$
36+\underbrace{6}_{\{1,4\}}+\underbrace{6}_{\{2,4\}}+\underbrace{6}_{\{2,4\}}+\underbrace{18}_{\{1,2,4\}}+\underbrace{18}_{\{1,3,4\}}+\underbrace{18}_{\{2,3,4\}}+\underbrace{12}_{\{1,2,3,4\}}=120 .
$$

Therefore the relationship between the number of labels that has been used, $\mathbf{d}\left(F_{n} \star K_{1}\right)$, and n are described by the following sequence:

$$
\left\{\mathbf{d}\left(F_{n} \star K_{1}\right)\right\}=\{0, \underbrace{2}_{6 \text {-times }}, \underbrace{3}_{30 \text {-times }}, \underbrace{4}_{84 \text {-times }}, \ldots, m, \ldots, m, \ldots\} .
$$

where the number of the repetitions m in the above sequence is $(m-1) 6+$ $\binom{m-1}{2} 18+\binom{m-1}{3} 12$, with $m \geqslant 1$.

In fact, $\mathbf{d}\left(F_{n} \star K_{1}\right)=\min \left\{k: \sum_{i=1}^{k}\left(\binom{i-1}{1} 6+\binom{m-1}{2} 18+\binom{m-1}{3} 12\right) \geqslant n\right\}$. By an easy computation, we see that

$$
\begin{aligned}
& \min \left\{k: \sum_{i=1}^{k}\left(\binom{i-1}{1} 6+\binom{m-1}{2} 18+\binom{m-1}{3} 12\right) \geqslant n\right\} \\
& =\min \left\{k:\left(k^{4}-k^{2}\right) / 2 \geqslant n\right\} \\
& =\left[\sqrt{\frac{1+\sqrt{8 n+1}}{2}}\right] .
\end{aligned}
$$

Therefore we have the result.
Now we are ready to state and prove the following theorem:
Theorem 3.4. There exists a connected graph G of order $n>1$ such that the value of $D\left(G \star K_{1}\right) / D(G)$ can be arbitrarily small.

Proof. By Theorems 3.2 and 3.3 it can be seen that

$$
\lim _{n \rightarrow \infty} \frac{D\left(F_{n} \star K_{1}\right)}{D\left(F_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left\lceil\sqrt{\frac{1+\sqrt{8 n+1}}{2}}\right\rceil}{\left\lceil\frac{1+\sqrt{8 n+1}}{2}\right\rceil}=0
$$

Therefore we have the result.

The following theorem is one of the main result of this paper and gives an upper bound for the distinguishing number of the neighbourhood corona of two arbitrary graphs:

Theorem 3.5. Let G_{1} and G_{2} be two connected graphs of orders n_{1} and n_{2}, respectively, such that $n_{1}>1$. Then $D\left(G_{1} \star G_{2}\right) \leqslant \max \left\{D\left(G_{1}\right), D\left(G_{2}\right)+M\right\}$, where

$$
\begin{aligned}
& M=\min \left\{k: \sum_{m=0}^{k} y_{m} \geqslant D\left(G_{1}\right)\right\}, \\
& y_{m}= \begin{cases}1 & m=0 \\
D\left(G_{2}\right) & m=1 \\
D\left(G_{2}\right)+\sum_{i=1}^{m-1}\binom{m-1}{i}\binom{D\left(G_{2}\right)}{i+1} & m \geqslant 2\end{cases}
\end{aligned}
$$

Proof. We define a distinguishing vertex labelling for $G_{1} \star G_{2}$ with $\max \left\{D\left(G_{1}\right), D\left(G_{2}\right)+M\right\}$ labels. First we label G_{1} with $D\left(G_{1}\right)$ labels in a distinguishing way. For the labelling of copies of G_{2}, we partition the vertices of G_{1} by the distinguishing labelling of G_{1}, i.e., we partition the vertices of G_{1} into $D\left(G_{1}\right)$ classes such that the $[i]$ th class contains the vertices of G_{1} having the label i in the distinguishing labelling of G_{1}, where $1 \leqslant i \leqslant D\left(G_{1}\right)$. Let $[i]=\left\{v_{i 1}, \ldots, v_{i s_{i}}\right\}$, where s_{i} is the size of $[i]$ th class and $1 \leqslant i \leqslant D\left(G_{1}\right)$. By this partition we label the copies of G_{2} as follows: First, we label the vertices of G_{2} with $D\left(G_{2}\right)$ labels in a distinguishing way, next we do the following changes on the labelling of G_{2}. Before the labelling of the copies of G_{2}, we introduce the notation $G_{2}^{[i]}$ for the set $\left\{G_{2}^{i 1}, \ldots, G_{2}^{i s_{i}}\right\}$, i.e., $G_{2}^{[i]}$ is the set of copies of G_{2} corresponding to the elements of the $[i]$ th class, where $1 \leqslant i \leqslant D\left(G_{1}\right)$. In fact we partition the copies of G_{2} into $D\left(G_{1}\right)$ classes, that $G_{2}^{[i]}$ is the notation of $[i]$ th class. Now we present the labelling of copies of G_{2} by the following steps:
Step 1) We label all of the copies of G_{2} which are in $G_{2}^{[1]}$, in exactly the same way as the distinguishing labelling of G_{2}.
Step 2) For the labelling of the copies in $G_{2}^{[i]}$, where $2 \leqslant i \leqslant D\left(G_{2}\right)+1$, we use of the new label $D\left(G_{2}\right)+1$ in such a way that the label $i-1$ in the all elements of $G_{2}^{[i]}$ is replaced by the new label $D\left(G_{2}\right)+1$, where $2 \leqslant i \leqslant D\left(G_{2}\right)+1$.
Step 3) For the labelling of the copies in $G_{2}^{[i]}$, where $D\left(G_{2}\right)+2 \leqslant i \leqslant$ $2 D\left(G_{2}\right)+1$, we do the same action as Step 2, with the new label $D\left(G_{2}\right)+2$, instead of the label $D\left(G_{2}\right)+1$.
Step 4) By choosing two labels among the labels $\left\{1, \ldots, D\left(G_{2}\right)\right\}$, and replacing them by the two new labels $D\left(G_{2}\right)+1$ and $D\left(G_{2}\right)+2$, we can label the elements of $\binom{D\left(G_{2}\right)}{2}$ other classes of the classes $G_{2}^{[i]}$.
Step 5) We do the same work as Step 2 with the new label $D\left(G_{2}\right)+3$ instead of labels $D\left(G_{2}\right)+1$. Next we label $2\binom{D\left(G_{2}\right)}{2}$ other classes $G_{2}^{[i]}$, with
the two new labels $D\left(G_{2}\right)+1$ and $D\left(G_{2}\right)+3$, also with the labels $D\left(G_{2}\right)+2$ and $D\left(G_{2}\right)+3$, exactly the same as Step 4 .
Step 6) Now we choose three labels among the labels $\left\{1, \ldots, D\left(G_{2}\right)\right\}$, and replace them by the three new labels $D\left(G_{2}\right)+1, D\left(G_{2}\right)+2$, and $D\left(G_{2}\right)+3$.
By continuing this method we conclude that the number of classes can be labelled with the labels $1, \ldots, D\left(G_{2}\right)+m, m \geqslant 1$, such that the label $D\left(G_{2}\right)+$ m is used in the labelling of each element of classes, is y_{m} where

$$
y_{m}= \begin{cases}1 & m=0 \\ D\left(G_{2}\right) & m=1 \\ D\left(G_{2}\right)+\sum_{i=1}^{m-1}\binom{m-1}{i}\binom{D\left(G_{2}\right)}{i+1} & m \geqslant 2\end{cases}
$$

Therefore the number of labels that have been used for the labelling of all copies of G_{2}, is $D\left(G_{2}\right)+M$ where $M=\min \left\{k: \sum_{m=0}^{k} y_{m} \geqslant D\left(G_{1}\right)\right\}$. This labelling is a distinguishing vertex labelling of $G_{1} \star G_{2}$, because if f is an automorphism of $G_{1} \star G_{2}$ preserving the labelling, then by Corollary 2.5, $\left.f\right|_{G_{1}}$ is an automorphism of G_{1} preserving the labelling. Since we labelled G_{1} in a distinguishing way at first, f is the identity automorphism on G_{1}. Regarding the labelling of copies of G_{2} and since f preserves the labelling of the copies of G_{2}, so f maps each copy of G_{2} to itself. The map f is the identity automorphism on each copy of G_{2}, because each copy of G_{2} was labelled in a distinguishing way. Therefore f is the identity automorphism on $G_{1} \star G_{2}$.

The following corollary is an immediate consequence of Theorem 3.5.
Corollary 3.6. Let G_{1} and G_{2} be two connected graphs of orders n_{1} and n_{2}, respectively, such that $n_{1}>1$. If $D\left(G_{1}\right)=1$, then $D\left(G_{1} \star G_{2}\right) \leqslant D\left(G_{2}\right)$.
Proof. It is sufficient to note that if $D\left(G_{1}\right)=1$, then the value of M in Theorem 3.5 is zero.

We end the paper by presenting an upper bound for the distinguishing index of the neighbourhood corona of two graphs:

Theorem 3.7. Let G_{1} and G_{2} be two connected graphs of orders n_{1} and n_{2}, respectively, such that $n_{1}>1$. Then $D^{\prime}\left(G_{1} \star G_{2}\right) \leqslant \max \left\{D^{\prime}\left(G_{1}\right), D^{\prime}\left(G_{2}\right)\right\}$.
Proof. We define an edge distinguishing labelling of $G_{1} \star G_{2}$ with $\max \left\{D^{\prime}\left(G_{1}\right), D^{\prime}\left(G_{2}\right)\right\}$ labels. To obtain such a labelling we first label the edge set of G_{1} and G_{2} in a distinguishing way with $D^{\prime}\left(G_{1}\right)$ and $D^{\prime}\left(G_{2}\right)$ labels, respectively. For the labelling of the edges between each copy of G_{2} and G_{1} we use of the labelling of the edge set of G_{1} as follows:

Let $N_{G_{1}}\left(v_{k}\right)=\left\{v_{k 1}, \ldots, v_{1\left|N_{G_{1}}\left(v_{k}\right)\right|}\right\}$, where $1 \leqslant k \leqslant n_{1}$. By the notation of the vertices of G_{1} and the copies of G_{2}, we assign all edges $v_{k j_{k}} u_{i}^{k}, 1 \leqslant$ $i \leqslant n_{2}$, the label of the edge $v_{k j_{k}} v_{k}$ in the distinguishing labelling of the edge set of G_{1}, where $1 \leqslant k \leqslant n_{1}$ and $1 \leqslant j_{k} \leqslant\left|N_{G_{1}}\left(v_{k}\right)\right|$. This labelling is a
distinguishing edge labelling of $G_{1} \star G_{2}$, because if f is an automorphism of $G_{1} \star G_{2}$ preserving the labelling, then by Corollary 2.5 , the restriction of f to G_{1} is an automorphism of G_{1} preserving the labelling. Since we labelled G_{1} in a distinguishing way at first, f is the identity automorphism on G_{1}. Regarding the labelling of the edges between the copies of G_{2} and G_{1} and by Corollary 2.5 , we conclude that f maps each copy of G_{2} to itself. Since we labelled each copy of G_{2} in a distinguishing way, at first, so the map f is the identity automorphism on each copy of G_{2}, and so f is the identity automorphism on $G_{1} \star G_{2}$.

References

[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), \#R18.
[2] S. Alikhani and S. Soltani, Distinguishing number and distinguishing index of certain graphs, Filomat. 31 (2017), 4393-4404.
[3] R. Frucht and F. Harary, On the corona two graphs, Aequationes Math. 4 (1970), 322-325.
[4] F. Harary, Graph theory, Addition-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, 1969.
[5] I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac Journal of Mathematics. 35 (2011), 493-500.
[6] R. Kalinowski and M. Pilsniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015), 124-131.
[7] S. Klav̌zar and X. Zhu, Cartesian powers of graphs can be distinguished by two labels, European J. Combin. 28 (2007), 303-310.
[8] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear Multilinear Alg. 62 (9) (2014), 1205-1219.
[9] F. Michael and I. Garth, Distinguishing colorings of Cartesian products of complete graphs, Discrete Math. 308 (11) (2008), 2240-2246.
[10] E. Sampathkumar, H. B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci. 25 (13) (1980), 13-16.

Department of Mathematics, Yazd University, 89195-741, Yazd, Iran
E-mail address: alikhani@yazd.ac.ir
Department of Mathematics, Yazd University, Yazd, Iran
E-mail address: s.soltani1979@gmail.com

[^0]: Received by the editors June 12, 2016, and in revised form October 3, 2018. 2000 Mathematics Subject Classification. 05C15, 05E18.
 Key words and phrases. Distinguishing index; Distinguishing number; neighborhood corona.

 Corresponding author: Saeid Alikhani.

