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DISTINGUISHING NUMBER AND DISTINGUISHING

INDEX OF

NEIGHBOURHOOD CORONA OF TWO GRAPHS

SAEID ALIKHANI AND SAMANEH SOLTANI

Abstract. The distinguishing number (index) D(G) (D′(G)) of a
graph G is the least integer d such that G has an vertex labelling (edge
labelling) with d labels that is preserved only by a trivial automor-
phism. The neighbourhood corona of two graphs G1 and G2 is denoted
by G1 ? G2 and is the graph obtained by taking one copy of G1 and
|V (G1)| copies of G2, and joining the neighbours of the ith vertex of G1

to every vertex in the ith copy of G2. In this paper we describe the au-
tomorphisms of the graph G1 ?G2. Using results on automorphisms, we
study the distinguishing number and the distinguishing index of G1?G2.
We obtain upper bounds for D(G1 ? G2) and D′(G1 ? G2).

1. Introduction

Let G = (V,E) be a simple graph with n vertices. Throughout this pa-
per, we consider only simple graphs. The set of all automorphisms of G,
with the operation of composition of permutations, is a permutation group
on V and is denoted by Aut(G). A labelling of G, φ : V → {1, 2, . . . , r},
is r-distinguishing, if no non-trivial automorphism of G preserves all of the
vertex labels. In other words, φ is r-distinguishing if for every non-trivial
σ ∈ Aut(G), there exists x in V such that φ(x) 6= φ(xσ). The distinguish-
ing number of a graph G has defined by Albertson and Collins [1] and is
the minimum number r such that G has a labelling that is r-distinguishing.
Similar to this definition, Kalinowski and Piĺsniak [6] have defined the dis-
tinguishing index D′(G) of G which is the least integer d such that G has an
edge colouring with d colours that is preserved only by a trivial automor-
phism. These indices have been developed in a number of papers on this
subject (see, for example, [2, 7, 9]).

We use the following notation: The set of vertices adjacent in G to a
vertex of a vertex subset W ⊆ V is the open neighborhood NG(W ) of W .
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The closed neighborhood G[W ] also includes all vertices of W itself. In
the case of a singleton set W = {v}, we write NG(v) and NG[v] instead of
NG({v}) and NG[{v}], respectively. We omit the subscript when the graph
G is clear from the context. The complement of N [v] in V (G) is denoted

by N [v]. We denote the degree of a vertex v in graph G by dG(v) and the
distance between two vertices u and w in graph G, by distG(u,w). The
corona of two graphs G and H which denoted by G ◦ H is defined in [4]
and there have been some results on the corona of two graphs [3]. In [2]
we have studied the distinguishing number and the distinguishing index of
the corona of two graphs. In this paper we consider another variation of the
corona of two graphs and study its distinguishing number and distinguishing
index. Given simple graphs G1 and G2, the neighbourhood corona of G1

and G2, denoted by G1 ?G2 and is the graph obtained by taking one copy of
G1 and |V (G1)| copies of G2 and joining the neighbours of the ith vertex of
G1 to every vertex in the ith copy of G2 ([5]). Figure 1 shows P4 ?P3, where
Pn is the path of order n. Liu and Zhou in [8] determined the adjacency
spectrum of G1 ? G2 for arbitrary G1 and G2 and the Laplacian spectrum
and signless Laplacian spectrum of G1 ?G2 for regular G1 and arbitrary G2,
in terms of the corresponding spectrum of G1 and G2. Also Gopalapillai in
[5] has studied the eigenvalues and spectrum of G1 ?G2, when G2 is regular.

Figure 1. The neighbourhood corona of P4 ? P3.

In this paper, we consider the neighbourhood corona of two graphs and
discuss their distinguishing number and index. In the next section, we give
a complete description of the automorphisms of the neighbourhood corona
of two arbitrary graphs. In Section 3, we study the distinguishing number
and the distinguishing index of the neighbourhood corona of two graphs.

2. Description of automorphisms of G1 ? G2

In this section, we consider the neighbourhood corona of two graphs and
describe its automorphisms. Let Gi have order ni and size mi (i = 1, 2).
The neighbourhood corona G1 ?G2 of G1 and G2 has n1 +n1n2 vertices and
m1(2n2 + 1) + n1m2 edges and when G2 = K1, the graph G1 ? G2 is the
splitting graph which has defined in [10].

Let V (G1) = {v1, v2, . . . , vn1} and V (G2) = {u1, u2, . . . , un2}. For i =
1, 2, . . . , n1, let ui1, u

i
2, . . . , u

i
n2

denote the vertices of the ith copy of G2,
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with the understanding that uij is the copy of uj for each j. It is clear that
the degrees of the vertices of G1 ? G2 are:

(2.1) dG1?G2(vi) = (n2 + 1)dG1(vi), i = 1, 2, . . . , n1,

and

(2.2) dG1?G2(uij) = dG2(uj) + dG1(vi), i = 1, 2, . . . , n1, j = 1, 2, . . . , n2.

Now we want to know how an automorphism of G1 ? G2 acts on the
vertices G1 and the vertices of copies G2. First we state and prove the
following lemma.

Lemma 2.1. Let G1 and G2 be two connected graphs such that G1 6= K1

and f be an automorphism of G1 ? G2 such that f(vi) = ukj for some i, k =

1, 2, . . . , n1 and j = 1, 2, . . . , n2. Then dG1(vk) > dG1(vi).

Proof. Since f(vi) = ukj , dG1?G2(vi) = dG1?G2(ukj ). By (2.1) and (2.2)

we have (n2 + 1)dG1(vi) = dG2(uj) + dG1(vk). By contradiction, suppose
that dG1(vk) 6 dG1(vi). Hence (n2 + 1)dG1(vi) 6 dG2(uj) + dG1(vi), and
so n2dG1(vi) 6 dG2(uj). This contradiction forces us to conclude that
dG1(vk) > dG1(vi). �

By Lemma 2.1 we can prove the following corollary:

Corollary 2.2. Let G1 be a connected graph such that G1 6= K1 and f be
an arbitrary automorphism of G1 ? G2.

(i) If v is the vertex of G1 with the maximum degree in G1, then
f(v) ∈ G1.

(ii) If G1 is a regular graph, then the restriction of f to G1 is an auto-
morphism of G1.

We shall obtain some results for the automorphisms of G1 ? G2.

Lemma 2.3. Let G1 and G2 be two connected graphs of orders n1 and n2,
respectively, and n1 > 1. Suppose that f is an automorphism of G1 ? G2

such that the restriction of f to G1 is an automorphism of G1, and also f
maps the copies of G2 to each other. Then there exist an automorphism g of
G1 and the automorphisms h1, . . . , hn1 of G2 such that f(Gi

2) = (hi(G2))
k,

where vk = g(vi) and i, k = 1, . . . , n1.

Proof. Let f be an automorphism of G1 ? G2 such that the restriction of
f to G1 is an automorphism of G1, and also f maps the copies of G2 to
each other. Let f maps the ith copy of G2, G

i
2, to the jith copy of G2,

Gji
2 , where i, ji = 1, . . . , n1, such that for the fixed numbers i and ji we

have f(uik) = ujik′ , where k, k′ = 1, . . . , n2. Then we define the automor-
phism hi on G2 such that hi(uk) = uk′ . To complete the proof we need to
show that the map g on V (G1) such that g(vi) = vji is an automorphism of
G1, where i, ji = 1, . . . , n1. Without loss of generality we can assume that
the vertices v1and v2 are adjacent, and show that vj1 and vj2 are adjacent.
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Since the vertices v1 and v2 are adjacent, the vertex v1 is adjacent to each
vertex of G2

2 (we show this concept by v1 ∼ G2
2). Hence f(v1) ∼ (h2(G2))

j2 ,
and so f(v1) ∼ vj2 and v1 ∼ f−1(vj2), hence f−1(vj2) ∼ G1

2, and fi-

nally we have vj2 ∼ Gj1
2 . With a similar argument we can conclude that

f(v2) ∼ vj1 , so v2 ∼ f−1(vj1), hence f−1(vj1) ∼ G2
2, and thus vj1 ∼ Gj2

2

(see Figure 2). On the other hand, since f maps G1
2 to (h2(G2))

j1 , we

Figure 2. A piece of neighbourhood corona of G1 and G2 in

the proof of Lemma 2.3.

have dG1?G2(u1k) = dG1?G2((h2(uk))j1). We deduce from (2.1), (2.2), and
dG2(uk) = dG2(h2(uk)), that dG1(v1) = dG1(vj1). Similarly, dG1(v2) =
dG1(vj2). Since the restriction of f to G1 is an automorphism of G1, we
have that dG1(v1) = dG1(f(v1)) and dG1(v2) = dG1(f(v2)). Then

(2.3) dG1(v1) = dG1(vj1) = dG1(f(v1)), dG1(v2) = dG1(vj2) = dG1(f(v2)).

In regard to (2.3) and Figure 2, there exists vertices vj11 and vj21 adjacent to
vertices vj1 and vj2 , respectively. Thus the vertices vj11 and vj21 are adjacent

to Gj1
2 and Gj2

2 , respectively, and so f−1(vj11) ∼ G1
2 and f−1(vj21) ∼ G2

2.
Hence f−1(vj11) ∼ v1 and f−1(vj21) ∼ v2. Since vj1 ∼ vj11 and vj2 ∼ vj21,
we have f−1(vj1) ∼ f−1(vj11) and f−1(vj2) ∼ f−1(vj21) (see Figure 3).

Note that, for every vertex x ∈ NG(vj2), we have x ∼ Gj2
2 . So we see

Figure 3. A piece of G1 ? G2 in the proof of Lemma 2.3.
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that f−1(x) ∼ G2
2, and so f−1(x) ∼ v2 (a similar argument satisfies for each

vertex in NG(vj1)). In regard to Figure 3 and (2.3), we need the other vertex
adjacent to vj1 , call it x. If x has been chosen among the nonadjacent vertices

to Gj2
2 that has been shown in Figure 3, then with the similar argument as

above, we obtain that f−1(x) is adjacent to v1, and so (2.3) is not satisfied,
again. Therefore after finite steps we should choose a vertex x adjacent to

vj1 , among the vertices that are adjacent to Gj2
2 , otherwise we conclude that

the order of G1 is infinite and this is a contradiction. By Figure 3 and above

information, the vertex vj1 is the only vertex that is adjacent to Gj2
2 and is

not among the adjacent vertices to vj1 , in each step. Hence vj1 ∼ vj2 , and
the result follows. �

Lemma 2.4. Let G1 and G2 be two connected graphs of order n1 and n2,
respectively, and n1 > 1. If f is an automorphism of G1 ? G2, then the
restriction of f to G1 is an automorphism of G1.

Proof. Since f is an automorphism, it is suffices to show that the restriction
of f to G1 is an automorphism of G1. By contradiction, suppose that f |G1

is not an automorphism of G1. Without loss of generality we assume that
f(v1) = u21. Hence by Lemma 2.1, dG1(v2) > dG1(v1). Since f preserves
the degree of the vertices, dG1?G2(v1) = dG1?G2(u21), and so by (2.1) and
(2.2) we have (1+n2)dG1(v1) = dG2(u1)+dG1(v2). Suppose that NG1(v1) =
{v1,1, . . . , v1,s1}, NG1(v2) = {v2,1, . . . , v2,s2}, and NG2(u1) = {u1,1, . . . , u1,t}
where (1 + n2)s1 = t + s2 and si = dG1(vi), i = 1, 2, and also t = dG2(u1)
(see Figure 4). Since f preserves the adjacency relation, f(NG1?G2(v1)) =

Figure 4. A piece of neighbourhood corona of G1 and G2 in

the proof of Lemma 2.4.

NG1?G2(u21), i.e.,{
f(v1,1), . . . , f(v1,s1), f(u1,11 ), . . . , f(u1,1n2

), . . . , f(u1,s11 ), . . . , f(u1,s1n2
)
}

= {u21,1, . . . , u21,t, v2,1, . . . , v2,s2}.(2.4)

Since t < n2, there are vertices in the copies G1,1
2 , . . . , G1,s1

2 such that
they are mapped to the elements of the set {v2,1, . . . , v2,s2}, under the



180 SAEID ALIKHANI AND SAMANEH SOLTANI

automorphism f . Without loss of generality we can assume that f(u1,jij
) =

v2,j , where 1 6 j 6 s1. We continue the proof by considering two cases for
s1 as follows:
Case 1 : s1 > 1.

Since v2 is adjacent to the vertices v2,1, . . . , v2,s1 , it follows that f−1(v2)

is adjacent to the vertices u1,1i1
, . . . , u1,s1is1

. Since s1 > 1, thus f−1(v2) ∈ G1

and f−1(v2) is adjacent to the vertices v1,1, . . . , v1,s1 . Hence v2 is adjacent
to the vertices f(v1,1), . . . , f(v1,s1), and by (2.4) we have

(2.5) {f(v1,1), . . . , f(v1,s1)} ⊆ {v2,s1+1, . . . , v2,s2}.
Without loss of generality we assume that f(v1,i) = v2,s1+i, where

1 6 i 6 s1 (see Figure 5).

Figure 5. A piece of neighbourhood corona of G1 and G2 in

the proof of Lemma 2.4.

Since f−1(v2) is adjacent to the vertices v1,1, . . . , v1,s1 , we can say that

f−1(v2) is adjacent to all vertices of G1,1
2 , . . . , G1,s1

2 , so v2 is adjacent to

all vertices of f(G1,1
2 ), . . . , f(G1,s1

2 ). Then by (2.4) we get

(2.6) {f(u1,11 ), . . . , f(u1,1n2
), . . . , f(u1,s11 ), . . . , f(u1,s1n2

)} ⊆ {v2,1, . . . , v2,s2},
and with respect to (2.4), (2.5), and (2.6) we have a contradiction.

Case 2 : s1 = 1.
Since f preserves the adjacency relation,

(2.7) {f(v1,1), f(u1,11 ), . . . , f(u1,1n2
)} = {u21,1, . . . , u21,t, v2,1, . . . , v2,s2}.

Since t < n2, there exists a vertex in the copy G1,1
2 such that it is mapped

to an element of the set {v2,1, . . . , v2,s2}, under the automorphism f .

Without loss of generality we can assume that f(u1,1i1
) = v2,1. Since v2

is adjacent to v2,1, so f−1(v2) is adjacent to u1,1i1
, and since f−1(v2) 6=

v1, so f−1(v2) ∈ G1,1
2 . Without loss of generality we can assume that
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f−1(v2) = u1,1i11
such that u1,1i11

is adjacent to u1,1i1
(see Figure 6). Since

Figure 6. A piece of neighbourhood corona of G1 and G2

in the proof of Lemma 2.4.

v1,1 is adjacent to the vertex v1 and

distG1?G2(v1,1, u
1,1
i1

) = distG1?G2(v1,1, u
1,1
i11

) = 2,

thus f(v1,1) is adjacent to the vertex u21 and also

(2.8) distG1?G2(f(v1,1), v2) = distG1?G2(f(v1,1), v2,1) = 2.

Now by Equations (2.7) and (2.8) we have a contradiction. Therefore
the restriction of each automorphism of G1?G2 to G1 is an automorphism
of G1.

�

Corollary 2.5. Let G1 and G2 be two connected graphs of order n1 and n2,
respectively, such that n1 > 1 and f an automorphism of G1 ? G2. Then
the restriction of f to G1 is an automorphism of G1 and also there are the
automorphism g of G1 and the automorphisms h1, . . . , hn1 of G2 such that
f(Gi

2) = (hi(G2))
k, where vk = g(vi) and i, k = 1, . . . , n1.

Proof. By Lemmas 2.3 and 2.4, it is sufficient to prove that the copies of G2

are mapped to each other under the automorphism f and it is true because
f preserves the adjacency relation on each copy of G2. �

The following corollary is an immediate consequence of Corollary 2.5 for
graphs of the form G ?K1.

Corollary 2.6. Let G be a connected graph of order n > 1 and f be an
arbitrary automorphism of G ? K1. Then the restriction of f to G is an

automorphism of G. Also f(Ki
1) = Kji

1 for some automorphism g of G such
that g(vi) = vji where i, ji = 1, 2, . . . , n1.
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3. Study of D(G1 ? G2) and D′(G1 ? G2)

In this section we use the results in Section 2 to study the distinguishing
number and the distinguishing index of the neighbourhood corona of two
graphs. First we consider the neighbourhood corona of an arbitrary graph
with K1. The following theorem gives an upper bound for D(G ? K1) and
D′(G ?K1).

Theorem 3.1. Let G be a connected graph of order n > 1. We have

(i) D(G ?K1) 6 D(G),
(ii) D′(G ?K1) 6 D′(G).

Proof. (i) We shall define a distinguishing vertex labelling for G ? K1 with
D(G) labels. First we label G in a distinguishing way with D(G) labels.
Next we assign the vertex Kvi

1 , the label of the vertex vi where 1 6 i 6 n.
This labelling is a distinguishing vertex labelling of G ? K1, because if f is
an automorphism of G ?K1 preserving the labelling, then by Corollary 2.5,
the restriction of f to G is an automorphism of G preserving the labelling.
Since we labelled G in a distinguishing way at first, the restriction of f to
G is the identity automorphism on G. On the other hand by Corollary 2.6

there exists an automorphism g of G such that f(Kvi
1 ) = K

g(vi)
1 , 1 6 i 6 n.

Regarding the labelling of copies of K1, we can obtain that g is the identity
automorphism on G, and so f is the identity automorphism on G ?K1.

(ii) We define a distinguishing edge labelling for G?K1 with D′(G) labels.
First we label the edges of G in a distinguishing way with D′(G) labels. By
(2.1) and (2.2) we know that the degree of Kvi

1 in G ? K1 is equal to the
degree of vi in G where 1 6 i 6 n. Now we assign the edge between Kvi

1
and vi,j where vi,j ∈ NG(vi), the label of the edges between vi and vi,j
where j = 1, . . . , dG(vi). This labelling is a distinguishing edge labelling of
G?K1, because if f is an automorphism of G?K1 preserving the labelling,
then by Corollary 2.5, the restriction of f to G is an automorphism of G
preserving the labelling. Since we labelled G in a distinguishing way at
first, so the restriction of f to G is the identity automorphism on G. On the
other hand, by Corollary 2.6 there exists an automorphism g of G such that

f(Kvi
1 ) = K

g(vi)
1 , 1 6 i 6 n. Regarding the labelling of the edges incident

to each copies of K1, we can obtain that g is the identity automorphism on
G, and so f is the identity automorphism on G ?K1. �

The bounds of D(G ? K1) and D′(G ? K1) in Theorem 3.1 are sharp. If
we consider G as the star graph K1,n, n > 1, then K1,n ? K1 is a graph as
shown in Figure 7. Using the degree of the vertices of K1,n ? K1 we can get
the automorphism group of K1,n ? K1 and then it can be concluded that
D(K1,n ? K1) = n = D(K1,n), and also D′(K1,n ? K1) = n = D′(K1,n).

In Theorem 3.1, the sharp upper bounds for D(G ? K1) and D′(G ? K1)
have been given, but we did not present lower bounds for these parameters.
Actually, there are graphs whose distinguishing number can be arbitrarily
larger than the distinguishing number of its neighbourhood corona with K1.
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Figure 7. The neighbourhood corona of K1,n and K1.

In other words, we can show that there exists a connected graph G of order
n > 1 such that the value of D(G ?K1)/D(G) can be arbitrarily small. To
do this we need the following two theorems. Recall that the friendship graph
Fn (n > 2) can be constructed by joining n copies of K2 with a common
vertex.

Theorem 3.2 ([2]). The distinguishing number of the friendship graph Fn

(n ≥ 2) is

D(Fn) =

⌈
1 +
√

8n+ 1

2

⌉
.

Now we obtain the exact value of the distinguishing number of neighbor-
hood corona of Fn with K1.

Theorem 3.3. The distinguishing number of Fn ? K1 (n ≥ 2) is

D(Fn ? K1) =


√

1 +
√

8n+ 1

2

 .
Proof. Let V (Fn) = {v0, v1, v2, . . . , v2n−1, v2n} where the vertex v0 is the
central vertex and v2i−1 and v2i are the vertices of the base of the triangles
in Fn where 1 6 i 6 n. So dFn(v0) = 2n and dFn(vi) = 2 where 1 6 i 6
2n. By (2.1) and (2.2) we have dFn?K1(v0) = 4n and dFn?K1(vi) = 4, also
dFn?K1(Kv0

1 ) = 2n and dFn?K1(Kvi
1 ) = 2 where 1 6 i 6 2n (see Figure 8).

Figure 8. The graphs F2 and F2 ? K1.
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If f is an automorphism of Fn ? K1, then f fixes the vertices v0 and
Kv0

1 (if n = 2 we can get the same result by Corollary 2.5). So we as-
sign the vertices v0 and Kv0

1 the label 1. Let (xi, yi, zi, wi) be the label
of the vertices (Kv2i

1 , v2i−1, v2i,K
v2i−1

1 ) where 1 6 i 6 n. Suppose that
L = {(xi, yi, zi, wi) | 1 6 i 6 n, xi, yi, zi, wi ∈ N}, is a labelling of the ver-
tices of Fn ? K1 except for the vertices v0 and Kv0

1 . If L is a distinguishing
labelling of Fn ? K1 then:

(i) For every i = 1, . . . , n, we require xi 6= wi or yi 6= zi. Otherwise,
the automorphism fi of Fn ? K1 such that fi maps Kv2i

1 and K
v2i−1

1
to each other, two vertices v2i−1 and v2i to each other, and fixes the
remaining vertices, preserves the labelling.

(ii) For every i and j in {1, . . . , n}, with i 6= j, we require (xi, yi, zi, wi) 6=
(xj , yj , zj , wj) and (xi, yi, zi, wi) 6= (wj , zj , yj , xj). Otherwise, the
automorphism fij and gij of Fn ? K1 by the following definitions
preserve the labelling.

– The automorphism fij maps Kv2i
1 and K

v2j
1 to each other and

also K
v2i−1

1 and K
v2j−1

1 to each other. The map fij maps v2i and
v2j to each other, it also maps v2i−1 and v2j−1 to each other and
fixes the remaining vertices of Fn ? K1.

– The automorphism gij maps Kv2i
1 and K

v2j−1

1 to each other and

also K
v2i−1

1 and K
v2j
1 to each other. The map gij maps v2i and

v2j−1 to each other, it also maps v2i−1 and v2j to each other
and fixes the remaining vertices of Fn ? K1.

Using the label set {1, . . . , s} we can make at most (s4− s2)/2 of the 4-ary’s
(x, y, z, w) satisfying (i) and (ii) because the number of 4-ary’s (x, y, z, w)
such that x 6= w is s(s−1)s2, and the number of 4-ary’s (x, y, z, w) such that
y 6= z is s(s − 1)s2. On the other hand, the number of 4-ary’s (x, y, z, w)
such that x 6= w and y 6= z is (s(s−1))2. So the maximum number of 4-ary’s
(x, y, z, w) satisfying (i) is

(s(s− 1)s2 + s(s− 1)s2)− (s(s− 1))2 = s4 − s2.
Among these 4-ary’s we should choose the 4-ary’s satisfying (ii) too. There-
fore the number of 4-ary’s (x, y, z, w) satisfying (i) and (ii) that can be made
by the label set {1, . . . , s} is (s4 − s2)/2. Therefore D(Fn ? K1) > min{s :
(s4 − s2)/2 > n}. By an easy computation, we see that

min

{
s :

s4 − s2

2
> n

}
=


√

1 +
√

8n+ 1

2

 .
Now we present a distinguishing vertex labelling with this number of labels.
We assign v0 and Kv0

1 the label 1. We should label the remaining vertices
such that the identity automorphism preserves the labelling only. Denoting
each pentagon with the vertices Kv2i

1 , v2i−1, v2i,K
v2i−1

1 , v0 in Fn ? K1 where
1 6 i 6 n, by a general pentagonshown in Figure 9 and we call it a blade
and continue the labelling. At first, we want to know the maximum number
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Figure 9. The considered pentagon (or a cycle of size 5) in
the proof of Theorem 3.3.

of blades that can be labelled in a distinguishing way by 1 and 2. As we
can see in Figure 10, the maximum number of blades that can be labelled
in distinguishing way, by 1, 2, is 6.

In order to preserve the labelling under the identity automorphism only,
we should use another label to assign the next blade. As mentioned earlier,
the maximum number of blades that can be labelled by each set {1, 3}, {2, 3}
is six. Now we want to know the maximum number of blades that can be
labelled by the presence of {1, 2, 3} at the same time in the blade. This
number is 18.Because it is sufficient to label the blade with the labels 1;
2; 3 and repeat label 1. As shown in Figure 10, we can label six blades.
Obviously, we can do the same by allowing repetitions of 2 and 3. Therefore
the maximum number of blades that can be labelled by the presence of
{1, 2, 3} at the same time is 18. Until now, we labelled 36 blades.

6︸︷︷︸
{1,2}

+ 6︸︷︷︸
{1,3}

+ 6︸︷︷︸
{2,3}

+ 18︸︷︷︸
{1,2,3}

= 36

Figure 10. Distinguishing labelling of blades with the labels
{1, 2} and {1, 2, 3}, respectively.

If we want to label the next blade, we should add a new label, 4. The max-
imum number of blades that can be labelled by each set {1, 4}, {2, 4}, {3, 4}
is six. Also, the maximum number of blades that can be labelled by each
set {1, 2, 4}, {1, 3, 4}, {2, 3, 4} is eighteen. We can see that the maximum
number of blades that can be labelled by presence of {1, 2, 3, 4} at the same
time is 12 as shown in Figure 11.
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Figure 11. The distinguishing labelling of blades with the
labels {1, 2, 3, 4}.

Thus we have labelled 120 blades now:

36 + 6︸︷︷︸
{1,4}

+ 6︸︷︷︸
{2,4}

+ 6︸︷︷︸
{2,4}

+ 18︸︷︷︸
{1,2,4}

+ 18︸︷︷︸
{1,3,4}

+ 18︸︷︷︸
{2,3,4}

+ 12︸︷︷︸
{1,2,3,4}

= 120.

Therefore the relationship between the number of labels that has been
used, d(Fn ? K1), and n are described by the following sequence:

{d(Fn ? K1)} = {0, 2︸︷︷︸
6-times

, 3︸︷︷︸
30-times

, 4︸︷︷︸
84-times

, . . . ,m, . . . ,m, . . .}.

where the number of the repetitions m in the above sequence is (m− 1)6 +(
m−1
2

)
18 +

(
m−1
3

)
12, with m > 1.

In fact, d(Fn?K1) = min{k :
∑k

i=1

((
i−1
1

)
6 +

(
m−1
2

)
18 +

(
m−1
3

)
12
)
> n}.

By an easy computation, we see that

min

{
k :

k∑
i=1

((
i− 1

1

)
6 +

(
m− 1

2

)
18 +

(
m− 1

3

)
12

)
> n

}
= min{k : (k4 − k2)/2 > n}

=


√

1 +
√

8n+ 1

2

 .
Therefore we have the result. �

Now we are ready to state and prove the following theorem:

Theorem 3.4. There exists a connected graph G of order n > 1 such that
the value of D(G ?K1)/D(G) can be arbitrarily small.

Proof. By Theorems 3.2 and 3.3 it can be seen that

lim
n→∞

D(Fn ? K1)

D(Fn)
= lim

n→∞

⌈√
1+
√
8n+1
2

⌉
⌈
1+
√
8n+1
2

⌉ = 0

Therefore we have the result. �
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The following theorem is one of the main result of this paper and gives
an upper bound for the distinguishing number of the neighbourhood corona
of two arbitrary graphs:

Theorem 3.5. Let G1 and G2 be two connected graphs of orders n1 and n2,
respectively, such that n1 > 1. Then D(G1?G2) 6 max{D(G1), D(G2)+M},
where

M = min

{
k :

k∑
m=0

ym > D(G1)

}
,

ym =


1 m = 0,
D(G2) m = 1,

D(G2) +
∑m−1

i=1

(
m−1
i

)(
D(G2)
i+1

)
m > 2.

Proof. We define a distinguishing vertex labelling for G1 ? G2 with
max{D(G1), D(G2) + M} labels. First we label G1 with D(G1) labels in
a distinguishing way. For the labelling of copies of G2, we partition the
vertices of G1 by the distinguishing labelling of G1, i.e., we partition the
vertices of G1 into D(G1) classes such that the [i]th class contains the ver-
tices of G1 having the label i in the distinguishing labelling of G1, where
1 6 i 6 D(G1). Let [i] = {vi1, . . . , visi}, where si is the size of [i]th class and
1 6 i 6 D(G1). By this partition we label the copies of G2 as follows: First,
we label the vertices of G2 with D(G2) labels in a distinguishing way, next
we do the following changes on the labelling of G2. Before the labelling of

the copies of G2, we introduce the notation G
[i]
2 for the set {Gi1

2 , . . . , G
isi
2 },

i.e., G
[i]
2 is the set of copies of G2 corresponding to the elements of the [i]th

class, where 1 6 i 6 D(G1). In fact we partition the copies of G2 into D(G1)

classes, that G
[i]
2 is the notation of [i]th class. Now we present the labelling

of copies of G2 by the following steps:

Step 1) We label all of the copies of G2 which are in G
[1]
2 , in exactly the same

way as the distinguishing labelling of G2.

Step 2) For the labelling of the copies in G
[i]
2 , where 2 6 i 6 D(G2) + 1, we

use of the new label D(G2) + 1 in such a way that the label i − 1

in the all elements of G
[i]
2 is replaced by the new label D(G2) + 1,

where 2 6 i 6 D(G2) + 1.

Step 3) For the labelling of the copies in G
[i]
2 , where D(G2) + 2 6 i 6

2D(G2) + 1, we do the same action as Step 2, with the new label
D(G2) + 2, instead of the label D(G2) + 1.

Step 4) By choosing two labels among the labels {1, . . . , D(G2)}, and replac-
ing them by the two new labels D(G2) + 1 and D(G2) + 2, we can

label the elements of
(
D(G2)

2

)
other classes of the classes G

[i]
2 .

Step 5) We do the same work as Step 2 with the new label D(G2)+3 instead

of labels D(G2) + 1. Next we label 2
(
D(G2)

2

)
other classes G

[i]
2 , with
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the two new labels D(G2) + 1 and D(G2) + 3, also with the labels
D(G2) + 2 and D(G2) + 3, exactly the same as Step 4.

Step 6) Now we choose three labels among the labels {1, . . . , D(G2)}, and
replace them by the three new labels D(G2) + 1, D(G2) + 2, and
D(G2) + 3.

By continuing this method we conclude that the number of classes can be
labelled with the labels 1, . . . , D(G2)+m, m > 1, such that the labelD(G2)+
m is used in the labelling of each element of classes, is ym where

ym =


1 m = 0,

D(G2) m = 1,

D(G2) +
∑m−1

i=1

(
m−1
i

)(
D(G2)
i+1

)
m > 2.

Therefore the number of labels that have been used for the labelling of

all copies of G2, is D(G2) + M where M = min{k :
∑k

m=0 ym > D(G1)}.
This labelling is a distinguishing vertex labelling of G1 ? G2, because if f is
an automorphism of G1 ?G2 preserving the labelling, then by Corollary 2.5,
f |G1 is an automorphism of G1 preserving the labelling. Since we labelled
G1 in a distinguishing way at first, f is the identity automorphism on G1.
Regarding the labelling of copies of G2 and since f preserves the labelling
of the copies of G2, so f maps each copy of G2 to itself. The map f is the
identity automorphism on each copy of G2, because each copy of G2 was
labelled in a distinguishing way. Therefore f is the identity automorphism
on G1 ? G2. �

The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. Let G1 and G2 be two connected graphs of orders n1 and
n2, respectively, such that n1 > 1. If D(G1) = 1, then D(G1 ?G2) 6 D(G2).

Proof. It is sufficient to note that if D(G1) = 1, then the value of M in
Theorem 3.5 is zero. �

We end the paper by presenting an upper bound for the distinguishing
index of the neighbourhood corona of two graphs:

Theorem 3.7. Let G1 and G2 be two connected graphs of orders n1 and n2,
respectively, such that n1 > 1. Then D′(G1 ? G2) 6 max{D′(G1), D

′(G2)}.

Proof. We define an edge distinguishing labelling of G1 ? G2 with
max{D′(G1), D

′(G2)} labels. To obtain such a labelling we first label the
edge set of G1 and G2 in a distinguishing way with D′(G1) and D′(G2) la-
bels, respectively. For the labelling of the edges between each copy of G2

and G1 we use of the labelling of the edge set of G1 as follows:
Let NG1(vk) = {vk1, . . . , v1|NG1

(vk)|}, where 1 6 k 6 n1. By the notation

of the vertices of G1 and the copies of G2, we assign all edges vkjku
k
i , 1 6

i 6 n2, the label of the edge vkjkvk in the distinguishing labelling of the edge
set of G1, where 1 6 k 6 n1 and 1 6 jk 6 |NG1(vk)|. This labelling is a
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distinguishing edge labelling of G1 ?G2, because if f is an automorphism of
G1 ? G2 preserving the labelling, then by Corollary 2.5, the restriction of f
to G1 is an automorphism of G1 preserving the labelling. Since we labelled
G1 in a distinguishing way at first, f is the identity automorphism on G1.
Regarding the labelling of the edges between the copies of G2 and G1 and
by Corollary 2.5, we conclude that f maps each copy of G2 to itself. Since
we labelled each copy of G2 in a distinguishing way, at first, so the map f
is the identity automorphism on each copy of G2, and so f is the identity
automorphism on G1 ? G2. �
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