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SCHRÖDER PARTITIONS, SCHRÖDER TABLEAUX AND

WEAK POSET PATTERNS

LUCA FERRARI

Abstract. We introduce the notions of Schröder shapes and Schröder
tableaux, which provide an analog of the classical notions of Young
shapes and Young tableaux. We investigate some properties of the par-
tial order given by containment of Schröder shapes. Then we propose
an algorithm that is the natural analog of the well-known RS corre-
spondence for Young tableaux, and we characterize those permutations
whose insertion tableaux have some special shapes. The last part of the
article relates the notion of the Schröder tableau with those of interval
order and weak containment (and strong avoidance) of posets. We end
our paper with several suggestions for possible further work.

1. Introduction

Given a positive integer n, a partition of n is a finite sequence of positive
integers λ = (λ1, λ2, . . . , λr) such that λ1 ≥ λ2 ≥ ⋯ ≥ λr and n = λ1 + λ2 +
⋯ + λr. When λ is a partition of n we also write λ ⊢ n. A graphical way of
representing partitions is given by Young shapes. The Young shape of the
above partition λ ⊢ n consists of r left-justified rows having λ1, . . . , λr boxes
(also called cells) stacked in decreasing order of length. The set of all Young
shapes can be endowed with a poset structure by containment (of top-left
justified shapes). Such a poset turns out to be a lattice, called the Young
lattice. A standard Young tableau with n cells is a Young shape whose cells
are filled in with positive integers from 1 to n in such a way that entries in
each row and each column are (strictly) increasing.
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Young tableaux are among the most investigated combinatorial objects.
The widespread interest in Young tableaux is certainly due both to their in-
trinsic combinatorial beauty (which is witnessed by several surprising facts
concerning, for instance, their enumeration, such as the hook length formula
[14] and the RSK algorithm [22, 24, 19]) and to their usefulness in several
algebraic contexts, typically in the representation theory of groups and re-
lated matters (such as Schur functions and the Littlewood–Richardson rule
[20]).

Apart from their classical definition, there are several alternative ways to
introduce Young tableaux. In the present paper, we are interested in the
possibility of defining standard Young tableaux in terms of a certain lattice
structure on Dyck paths. The main advantage of this point of view lies in
the possibility of giving an analogous definition in a modified setting, in
which Dyck paths are replaced by some other class of lattice paths. Here we
will try to see what happens if we replace Dyck paths with Schröder paths,
just scratching the surface of a theory that, in our opinion, deserves to be
better studied.

Given a Cartesian coordinate system, a Dyck path is a lattice path starting
from the origin, ending on the x-axis, never falling below the x-axis, and
using only two kinds of steps, u(p) = (1,1) and d(own) = (1,−1). A Dyck
path can be encoded by a word w on the alphabet {u, d} such that in every
prefix of w the number of u’s is greater than or equal to the number of d’s
and the total number of u and d in w is the same (the resulting language
is called a Dyck language and its words Dyck words). The length of a Dyck
path is the length of the associated Dyck word (which is necessarily an even
number).

Consider the set Dn of all Dyck paths of length 2n; it can be endowed
with a very natural poset structure, by declaring P ≤ Q whenever P lies
weakly below Q in the usual two-dimensional drawing of Dyck paths (for
any P,Q ∈ Dn). This partial order actually induces a distributive lattice
structure on Dn, to be denoted Dn and called the Dyck lattice of order n.
This can be shown both directly, using the combinatorics of lattice paths (see
[12]), and as a consequence of the fact that Dn is order-isomorphic to (the
dual of) the Young lattice of the staircase partition (n−1, n−2, . . . ,2,1) (that
is the principal down-set generated by such a staircase partition in the Young
lattice). Referring to the latter approach, any P ∈Dn uniquely determines a
Young shape, which can be obtained by taking the region included between
P and the maximum path of Dn, slicing it into square cells using diagonal
lines of slope 1 and −1 passing through all points having integer coordinates,
and finally rotating the sheet of paper by 45○ anticlockwise (see Figure 1).

It is well-known that there is a bijection between standard Young tableaux
of a given shape and saturated chains in the Young lattice starting from the
empty shape and ending with that shape. Translating this fact on Dyck
lattices, we can thus state that standard Young tableaux of a given shape
are in bijection with saturated chains (inside a Dyck lattice of suitable order)
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Figure 1. A Dyck path (red) and the associated Young shape.

starting from the Dyck path associated with that shape and ending with the
maximum of the lattice. This fact has been extensively used in [10, 11] in
order to enumerate saturated chains of small length in Dyck lattices. This
suggests trying to find an analog of this approach in which Dyck paths are
replaced by other types of paths. As already mentioned, the case treated in
the present paper is that of Schröder paths.

In Section 2 we introduce the notion of Schröder shapes and study some
properties of the poset of Schröder shapes (which are in some sense analo-
gous to those of the Young lattice). In Section 3 we introduce the notion of
the Schröder tableaux and we define an algorithm which, given a permuta-
tion, produces a pair of Schröder tableaux having the same Schröder shape;
this is analogous to the classical RS algorithm. In particular, we will address
the problem of determining which permutations are mapped into the same
Schröder insertion tableau, and we solve it for a few special shapes. Section 4
offers an alternative description of the notion of Schröder tableaux in terms
of two seemingly unrelated concepts: one is well-known (interval orders)
whereas the other one (weak pattern poset and strong poset avoidance) is
much less studied; we then give an overview of a possible combinatorial ap-
proach to the study of weak poset containment and strong poset avoidance,
and provide a link between these notions and Schröder tableaux. Finally, we
devote Section 5 to the presentation of some directions of further research.

An extended abstract of the present work has appeared in the proceedings
of the conference IWOCA 2015 [8].

2. The poset of Schröder partitions

A Schröder shape is a set of triangular cells in the plane obtained from a
Young shape by drawing the NE-SW diagonal of each of its (square) cells,
and possibly adding below the first column and at the end of some rows one
more triangular cell provided that, in a group of rows having equal length,
only the first (topmost) one can have an added triangle. The number of
cells of a Schröder shape is called the order of that shape. An example of a
Schröder shape is illustrated in Figure 2.

A Schröder shape has triangular cells of two distinct types, which will be
referred to as lower triangular cells and upper triangular cells. In particular,
rows having an odd number of cells necessarily terminate with an upper
triangular cell. A Schröder shape determines a unique integer partition,
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Figure 2. A Schröder shape of order 25.

whose parts are the number of cells in the rows of the shape. For instance,
the partition associated with the shape in Figure 2 is (9,6,6,3,1). As a
consequence of the definition of a Schröder shape, it is clear that not every
partition can be represented using a Schröder shape. More precisely, we
have the following result, whose proof is completely trivial and so it is left
to the reader.

Proposition 2.1. An integer partition can be represented with a Schröder
shape if and only if its odd parts are simple (i.e. have multiplicity 1).

Those integer partitions which can be represented with a suitable Schröder
shape will be called Schröder partitions. The set of all Schröder partitions
will be denoted Sch, and the set of Schröder partitions of order n with Schn.
From now on we will frequently refer to Schröder shapes and to Schröder
partitions interchangeably, when no confusion is likely to arise.

From the enumerative point of view, the number of Schröder partitions
is known, and is recorded in [26] as sequence A006950. In particular, the
generating function of Schröder partitions is given by

∏
k>0

1 + x2k−1
1 − x2k .

There are several combinatorial interpretations for the resulting sequence,
however an appropriate reference for the present one (in terms of Schröder
partitions) appears to be [7]. In that paper the author proves a far more gen-
eral result concerning partitions such that the multiplicity of each odd part
is in a prescribed set and the multiplicity of each even part is unrestricted.

It is interesting to notice that this sequence is also relevant from an al-
gebraic point of view. Indeed, as remarked in the comments for sequence
A006950 in [26], it coincides with the sequence of numbers of nilpotent con-
jugacy classes in the Lie algebras o(n) of skew-symmetric n × n matrices.
This suggests that Schröder partitions have a role in representation theory
that certainly deserves to be better investigated.

Though the formalism of Schröder shapes seems not to add relevant infor-
mation on the enumerative combinatorics of Schröder partitions, it suggests
at least an interesting family of maps on integer partitions, which turns out
to define a family of involutions if suitably restricted. Consider the fam-
ily of maps (cn)n∈N defined on the set of all integer partitions as follows:
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given a partition λ and a positive integer n, cn(λ) is the integer partition
µ = (µ1, µ2, . . . , µk) (of the same size as λ) whose ith part µi is given by the
sum of the n columns of (the Young shape of) λ from the ((i − 1)n + 1)th
one to the (in)th one. So, for instance, c3((7,6,6,6,4,3,3,1)) = (22,13,1).
Since each of the above maps preserves the size of a partition, it is clearly
an endofunction when restricted to the set of all integer partitions of size
n. Notice that c1 is the well-known conjugation map (which exchanges rows
with columns in a Young shape). Even though c1 is an involution (on the set
of all partitions), it is easy to see that all the other cn’s are not involutions.
However, it is possible to characterize the set of those partitions for which
c2n acts as the identity map. The next proposition, which was incorrectly
formulated in [8], is now stated and proved correctly.

Proposition 2.2. Given n ∈ N and an integer partition λ (whose ith part
will be denoted λi, as usual), we have that c2n(λ) = λ if and only if for all
k ≥ 0, there exists at most one index i such that kn < λi < (k + 1)n.

Proof. For any given λ, suppose that there exists at least one part of cn(λ)
which is not multiple of n, and let µ′ be one of them. More precisely, let
k be the unique nonnegative integer such that kn < µ′ < (k + 1)n. This
means that λ has a set of n consecutive columns whose sum is equal to µ′.
Since µ′ /≡ 0 (mod n), this implies that such n columns are not all equal.
In particular, the rightmost column must have less than k + 1 cells. Now,
since in a Young shape columns are in decreasing order of length, the sum
of the successive n columns of λ is at most kn, thus, on the right of µ′,
there are no other parts of cn(λ) strictly greater than kn. Using a similar
argument, we observe that, in the set of columns of λ that sum up to µ′,
the first (leftmost) column must have at least k + 1 cells, and so the sum
of the previous n columns of λ is at least (k + 1)n; as a consequence, every
part before µ′ is at least (k + 1)n. We have thus proved that the condition
in the above statement holds for every partition in the image of cn. This is
enough to conclude that, if c2n(λ) = λ, then necessarily the same condition
holds for λ (which lies in the image of cn).

Conversely, split each row of λ into clusters containing n consecutive
cells, except the last cluster which contains at most n cells. Denoting with
µi the ith part of cn(λ), we have that µi is obtained by taking the ith
cluster from each row, and the hypothesis implies that, among the rows
whose contribution is nonzero, there is at most one row whose contribution
is strictly less than n. The construction of cn(λ) from λ is illustrated in
Figure 3 for the partition λ = (9,7,6,6,6,4,3,3,2) and n = 3: cells with
the same label have to be grouped together, and the resulting partition
c3(λ) = (26,16,4) is depicted on the right of Figure 3.

Now, similar to the above, to construct c2n(λ), we have to split each row
of cn(λ) into clusters. Notice that, as a consequence of our hypothesis, if the
ith row of cn(λ) has a (necessarily unique) cluster containing strictly less
than n cells, then this is precisely the unique cluster with less than n cells
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Figure 3. From λ to cn(λ).

among all the ith clusters of all rows of λ. Therefore, constructing c2n(λ)
from cn(λ) we recover exactly the starting partition λ, as desired. �

As already mentioned, as a special case of the above proposition we have
that the set of all integer partitions is the set of fixed points of the map c21
(where c1 is the conjugation map) because the condition of the proposition
becomes empty in this case. Another consequence is recorded in the follow-
ing corollary, which shows the role of Schröder partitions in this context.

Corollary 2.3. The set of Schröder partitions is the set of fixed points of
the map c22.

Proof. Just observe that, setting n = 2 in the previous proposition, the
requirement in order to have c22(λ) = λ is that there is at most one part of
λ between two consecutive even numbers, which means precisely that odd
parts have to be simple. �

Before moving on to their order structure, we remark that Schröder par-
titions can be investigated in the context of overpartitions [6]. An overpar-
tition can be defined as an integer partition in which the last occurrence of
each part can be overlined. There is a bijection that maps an overpartition λ
into a Schröder partition as follows: for each part λi of λ, λi is mapped into
2λi if it is not overlined, whereas it is mapped into 2λi − 1 if it is overlined.
This suggests that techniques and results from overpartitions may be useful
in understanding the combinatorics of Schröder partitions.

The set Sch of all Schröder shapes can be naturally endowed with a
poset structure, by declaring λ ≤ µ whenever the set of cells of the shape
λ is a subset of the set of cells of the shape µ, provided that we draw
the two shapes in such a way that their top-left cells coincide. This is
equivalently (and perhaps more formally) expressed in terms of Schröder
partitions: if λ = (λ1, . . . , λh) and µ = (µ1, . . . , µk), then λ ≤ µ when h ≤ k
and, for all i ≤ h, λi ≤ µi. Therefore the poset Sch of Schröder shapes
is actually a subposet of the Young lattice. However, it seems not at all
a trivial one; notice, in particular, that an interval of the Young lattice
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whose endpoints are Schröder partitions does not contain only Schröder
partitions (apart from very simple cases). In general, it appears to be very
hard (if not impossible) to infer nontrivial properties of the Schröder poset
from properties of the Young lattice. The rest of this section is devoted
to developing some elements of the theory of the Schröder poset along the
lines suggested by the classical theory of its more noble relative, the Young
lattice.

One of the most fundamental properties the Schröder poset shares with
the Young lattice is the fact that it is a distributive lattice. We will obtain
this result as a consequence of a more general one, which is of independent
interest and can be seen as a slight generalization of Lemma 2.1 in [2]1.

Theorem 2.4. Given a function f ∶N →N ∪ {∞}, denote with Pf the set
of integer partitions in which part i appears at most f(i) times. Then Pf is
a distributive sublattice of the Young lattice (with partwise join and meet).

Proof. Since every sublattice of a distributive lattice is distributive, it will
be enough to show that Pf is a sublattice of the Young lattice.

Given two partitions λ,µ ∈ Pf , their join in the Young lattice is the
partition λ ∨ µ whose ith part is the maximum between λi and µi, for all i.
We will now show that λ ∨ µ is in Pf .

By contradiction, suppose that part i appears more than f(i) (≠ ∞) times
in λ∨µ, and denote with (λ∨µ)t = ⋯ = (λ∨µ)t+j = i all such parts in λ∨µ.
Since λ,µ ∈ Pf , it cannot happen that (λ ∨ µ)t+s = λt+s, for all s = 0, . . . , j,
and the same holds with λ replaced by µ. In other words, there exist two
indices k, r, with 0 < k ≤ r < j, such that (without loss of generality) λt =
λt+1 = ⋯ = λt+r = i > λt+r+1 and µt+k−1 > µt+k = µt+k+1 = ⋯ = µt+j = i. But this
would imply, in particular, that λt+k−1 = i = (λ ∨ µ)t+k−1 ≥ µt+k−1 > µt+k = i,
which is impossible. We can thus conclude that λ ∨ µ is in Pf .

Using a similar argument one can also show that the meet of two parti-
tions belonging to Pf in the Young lattice is again a partition of Pf , thus
completing the proof. �

Corollary 2.5. The Schröder poset Sch is a distributive lattice.

Proof. Apply the previous theorem with f defined by setting f(n) = ∞ when
n is even and f(n) = 1 when n is odd. �

Recall that, using Birkhoff’s representation theorem, elements of a fi-
nite distributive lattice can be seen as down-sets2 of the poset of its join-
irreducibles3. Though the Schröder lattice is infinite, the above approach
can be useful to study some of its down-sets. We refer to [9], where this
point of view is applied also to other similar classes of lattices.

1We also notice that the Schröder poset is a partition ideal of order 1, in the terminology
introduced in [2].

2In a poset P, a down-set I is a subset of P such that, if x ∈ I and y ≤ x, then y ∈ I.
3In a lattice L , a join-irreducible x is an element of L such that, for any y, z ∈ L ,

x = y ∨ z implies that x = y or x = z.
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The Young lattice is the prototypical example of a differential poset. Fol-
lowing [27], an r-differential poset (for some positive integer r), is a locally
finite, ranked poset P having a minimum and such that:

● for any two distinct elements x, y of P, if there are exactly k elements
covered by both x and y, then there are exactly k elements which
cover both x and y;

● if x covers exactly k elements, then x is covered by exactly k + r
elements.

As noted in [27], in the first of the above conditions, if k ≥ 2 then P is not
a lattice. The Young lattice is a 1-differential poset. More specifically, it is
the unique 1-differential distributive lattice. Thus, it is clear that Sch is not
a 1-differential poset, since we have proved that it is a distributive lattice
(and it is clearly not isomorphic to the Young lattice). However, it belongs
to a wider class of posets which we believe to be an interesting generalization
of differential posets.

Let ϕ be a map sending a positive integer k to an interval ϕ(k) of positive
integers. We say that a poset P is a ϕ-differential poset when it is an infinite,
locally finite, ranked poset with a minimum such that:

(1) for any two distinct elements x, y of P, if there are exactly k elements
covered by both x and y, then there are exactly k elements which
cover both x and y;

(2) if x covers exactly k elements, then x is covered by l elements, for
some l ∈ ϕ(k).

When there exists a positive integer r such that ϕ(k) = {k + r}, for all k,
a ϕ-differential poset is just an r-differential poset.

The next proposition shows that Sch is indeed a ϕ-differential distributive
lattice, for a suitable ϕ (condition (1) in the above definition is trivially
satisfied with k = 1).

Proposition 2.6. Let λ be a Schröder partition covering k Schröder parti-
tions in Sch . Then λ is covered by l Schröder partitions with ⌈(k + 1)/2⌉ ≤
l ≤ 2k.

Proof. Given λ in Sch , we denote with ↑ λ the number of elements of
Sch covering λ and with ↓ λ the number of elements of Sch which are
covered by λ. From the hypothesis we have that ↓λ = k.

In the rest of the proof we slightly modify our notation for partitions.
Namely, we will add to each partition a smallest part equal to 0. So, for
instance, we will write λ = (λ1, λ2, . . . , λr, λr+1), with λr+1 = 0. A part λi of
λ will be called up-free whenever either

● it is odd, or
● it is even and λi−1 ≠ λi, λi + 1.

Similarly, it will be called down-free whenever either

● it is odd, or
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Figure 4. A Schröder shape which maximizes ↑λ.

● it is even and λi+1 ≠ λi, λi − 1.

In particular, each odd part of λ is both up-free and down-free (for this
reason, we will sometimes refer to odd parts as trivial up-free (or down-free)
parts). Observe that, concerning the special (even) part λr+1 = 0, it is never
down-free by convention, whereas it is assumed to be up-free when λr ≠ 1.

In order to determine ↑λ, we observe that we have to find those parts of
λ to which we can add 1 without losing the property of being a Schröder
partition. These are precisely all up-free parts. Similarly, ↓λ is given by the
number of down-free parts.

If we want to maximize ↑λ, it is then clear that we have to choose a
Schröder partition λ having many nontrivial up-free parts and few nontrivial
down-free parts (odd parts are irrelevant). Observe moreover that we can
restrict ourselves to the case of λ having all distinct parts since several
repeated (even) parts is equivalent to having only one part of the same
cardinality (all parts except for the top one cannot be modified). Concerning
the greatest part of λ, λ1, we notice that it has to be even, otherwise it would
be down-free. Moreover, in order to have few partitions immediately below
λ, we should try to make λ1 = 2n not down-free. To do this, just choose
λ2 = λ1−1 = 2n−1 (recall that we are assuming λ to have all distinct parts).
Observe that, in this way, λ2 is odd (and so trivially down-free), however it
is not difficult to realize that any other choice of λ2 would have produced
a down-free part (an even part strictly larger than another even part is
certainly down-free). Now, concerning λ3, we want it to be up-free but not
down-free. The first condition is fulfilled if and only if λ3 ≠ λ2 − 1 = 2n − 2;
for the second condition, we must choose λ3 even and such that λ4 = λ3 − 1.
Without loss of generality, we can set λ3 = 2n − 4, so that λ4 = 2n − 5. We
can now argue in a completely analogous way for all the remaining parts
of λ until we have ↓λ = k (notice that n has to be large enough to reach
this goal). In the end, we obtain that a partition λ which maximizes ↑λ has
odd-indexed parts λ2i+1 = 2n − 4i and even-indexed parts λ2i = 2n − 4i − 1
(see Figure 4 for an example).

A direct computation then shows that, in the best possible cases (which
occur when the smallest part of λ is 1 or 2), we get ↑λ = 2k, as desired.
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A similar approach allows also to determine a lower bound for ↑λ. The
only difference with the previous arguments is that now we would like to
have a partition λ having many down-free parts and few up-free parts. It
turns out that the role of odd and even parts are swapped in the above
arguments. Specifically, it can be shown that the largest part λ1 of λ has
to be odd and that λ2 = λ1 − 1. In the end, we obtain a partition having
odd-indexed parts λ2i+1 = 2n−4i−1 and even-indexed parts λ2i = 2n−4i−2.
Similar to before, a direct computation shows that, when the smallest part
of λ is 1 or 2, we get the desired lower bound. The task of providing all the
details is then left to the reader. �

The bounds mentioned in the above proposition are clearly strict. As we
have mentioned in the proof, Figure 4 shows a Schröder shape that maxi-
mizes ↑λ, whereas a Schröder shape that minimizes ↑λ is the one associated
with the partition (9,8,5,4,1).

3. An RSK-like algorithm for Schröder tableaux

From the algorithmic point of view, the main application of Young table-
aux is in the context of the RSK algorithm. This algorithm, named after
Robinson, Schensted, and Knuth, takes as an input a word (on the alpha-
bet of positive integers) of length n and produces two semistandard Young
tableaux with n cells having the same shape. For what concerns us, we will
deal with a special case of the RSK algorithm, often referred to as Robinson–
Schensted correspondence (briefly, RS correspondence), in which the input
is a permutation of length n and the output is given by a pair of standard
Young tableaux. A brief description of such an algorithm is given below
(Algorithm 1, where π = π1π2⋯πn is a generic permutation of length n).

The RSK algorithm is extensively described in the literature. For in-
stance, the interested reader can find a modern and elegant presentation of
it in [3]. Among other things, one of the most beautiful properties of the
RS correspondence is that it establishes a bijection between permutations
of length n and pairs of standard Young tableaux with n cells having the
same shape. This fact bears important enumerative consequences, as well as
strictly algebraic ones. For a given permutation π, the tableaux of the pair
(P,Q) returned by the RS algorithm are usually referred to as the insertion
tableau (the tableau P ) and the recording tableau (the tableau Q). As a
consequence, we have the following nice result, which can again be found in
[3].

Theorem 3.1. Denote with fλ the number of standard Young tableaux of
shape λ. Then we have:

n! = ∑
λ⊢n

(fλ)2.

A standard Schröder tableau (from now on, simply Schröder tableau) with
n cells is a Schröder shape whose cells are filled in with positive integers from
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Algorithm 1: RS(π)

P ∶= π1 ;

Q ∶= 1 ;

for k from 2 to n do
α ∶= πk;
for i ≥ 1 do

if α is bigger than all elements in the ith row of P then
append a cell with πk inside at the end of the ith row of P ;

append the cell k at the end of the ith row of Q;

break;

else
write α in the cell of the ith row containing the smallest
element β bigger than α;

α ∶= β;

end

end

end

1 to n in such a way that entries in each row and each column are (strictly)
increasing.

We propose a natural analog of the RS algorithm for Schröder tableaux.
The main difference (which is due to the specific underlying shape of a
Schröder tableaux) lies in the fact that there are two distinct ways of man-
aging the insertion of a new element in the tableau, depending on whether
the cell it should be inserted in is an upper triangle or a lower triangle. As a
consequence, our algorithm does not establish a bijection between permuta-
tions and pairs of Schröder tableaux (for instance, the two permutations 12
and 21 generate the same pair of Schröder tableaux); nevertheless, due to the
strict analogy with the RS correspondence, we believe that it is very likely
to have interesting combinatorial properties. A description of our algorithm
is given below (Algorithm 2, where π is as in Algorithm 1).

Example 3.2. Consider the permutation π = 465193287. The pair (P,Q) of
Schröder tableaux produced by applying the algorithm Sch to π is illustrated
in Figure 5.

In this section we aim at starting the investigation of the combinatorial
properties of this RS-analog. More specifically, we will address the following
problems: given a Schröder shape P , can we characterize those permuta-
tions having a Schröder tableau of shape P as their insertion tableau? How
many of them are there? This problem seems to be quite difficult in its full
generality; here we will deal with very few simple cases, for which we can
provide complete answers.
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Algorithm 2: Sch(π)

P ∶= the 1-cell Schröder tableau with π1 written in the cell;

Q ∶= the 1-cell Schröder tableau with 1 written in the cell;

for k from 2 to n do
α ∶= πk;
for i ≥ 1 do

if α is bigger than all elements in the ith row of P then
append a cell (either an upper or a lower triangle) with πk
inside at the end of the ith row of P ;

append a cell (either an upper or a lower triangle) with k
inside at the end of the ith row of Q;

break;

else
let A be the cell of the ith row containing the smallest
element bigger than α;

if A is an upper triangle then
if A has a twinned lower triangle immediately below it,
set β ∶= content of such lower triangle;

move the content of A to the lower triangle
immediately below A, possibly by creating such a
triangle if it does not exist;

write α in A;

if β exists, set α ∶= β, else break;

else
β ∶= content of A;

write α in A;

α ∶= β;

end

end

end

end
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Figure 5. How our RS-like algorithm works.
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3.1. Permutations with given Schröder insertion shape. In this sub-
section we collect some starting results concerning permutations whose Sch-
röder insertion tableaux have simple shapes.

The first case we investigate is that of a Schröder shape consisting of a
single row (which can terminate either with an upper or a lower triangle).
To state our result we first need to recall a classical definition.

Given a permutation π = π1⋯πn, we say that πi is a left-to-right maximum
(or, briefly, LR maximum) whenever πi = max(π1, . . . , πi). The proof of the
next proposition can be found in [8].

Proposition 3.3. Let π = π1⋯πn be a permutation of length n. The Schrö-
der insertion tableau of π has a single row if and only if, for all i ≤ n:

(1) if i is odd, then πi is a LR maximum of π;
(2) if i is even, then πi is a LR maximum of the permutation obtained

from π by removing πi−1 (and suitably renaming the remaining ele-
ments).

The permutations π of length n whose Schröder insertion tableau have
a single row can therefore be simply characterized as follows: for all i,
{π2i+1, π2i+2} = {2i + 1,2i + 2}. As a consequence of this fact, a formula
for the number of such permutations follows immediately.

Proposition 3.4. The set of permutations of length n whose Schröder in-
sertion tableau consists of a single row has cardinality 2⌊

n
2
⌋.

The second case we consider is the natural counterpart of the previous
one, that is Schröder shapes having a single column. Despite the similarities
with the previous case, it turns out that the set of permutations having
Schröder insertion tableau of this form can be nicely described in terms of
pattern avoidance.

Given two permutations σ and τ = τ1⋯τn (of length k and n respectively,
with k ≤ n), we say that there is an occurrence of σ in τ when there exists
indices i1 < i2 < ⋯ < ik such that τi1τi2⋯τik is order isomorphic to σ. When
there is an occurrence of σ in τ , we also say that τ contains the pattern σ.
When τ does not contain σ, we say that τ avoids the pattern σ. The set of all
permutations of length n avoiding a given pattern σ is denoted with Avn(σ).
Some useful references for the combinatorics of patterns in permutations
are [4] and [18], whereas similar notions of patterns in set partitions and in
compositions and words are studied in [21] and [16], respectively.

Proposition 3.5. Let π = π1⋯πn be a permutation of length n. The Schröd-
er insertion tableau of π has a single column if and only if π ∈ Avn(123,213).

Proof. The Schröder insertion tableau of π has a single column if and only
if, for all i ≤ n, πi < min({π1, . . . , πi−1}∖min{π1, . . . , πi−1}) (i.e., πi is smaller
than the second minimum of the set of all previous elements). Thus π can
be factored into subpermutations (made of consecutive elements of π), say
π = π̃1⋯π̃r, in such a way that each factor π̃i is isomorphic to a permutation
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of the form 1t(t− 1)⋯32 (for some t) and each element of π̃i is greater than
each element of π̃i+1 (for all i). In the language of permutation patterns, this
is usually expressed by saying that π is a skew sum of permutations of the
form 1t(t − 1)⋯32. It is now a known fact (see, for instance, [1]) that such
permutations are precisely those avoiding the two patterns 123 and 213. �

Many classes of permutations avoiding a given set of patterns have been
enumerated. The above one is among them, see [25].

Proposition 3.6. The set of permutations of length n whose Schröder in-
sertion tableau consists of a single column has cardinality 2n−1.

We close this section by illustrating one more case which is, in some sense,
a generalization of both the cases described above. Namely, we consider the
case of what can be called Schröder hooks, that is Schröder shapes hav-
ing at most one row and one column with more than one upper triangular
cell. Since this case is considerably more difficult than the previous ones,
we need some preparation and our results will be less elegant. Neverthe-
less, the strategy employed reveals some features of our algorithms that are
interesting in themselves.

Given a permutation π = π1π2⋯πn (that will be fixed until the end of this
section), πi is a quasi-left-to-right minimum (briefly, a QLTR minimum) of π
when either i = 1,2 or πi < min({π1, . . . , πi−1}∖{min(π1, . . . , πi−1)}). In other
words, a QLTR minimum of π is an element of π which is smaller than the
second smallest element of π preceding it. For instance, in the permutation
ρ = 4 1 7 2 9 3 6 5 8, the QLTR minima are the underlined elements, i.e. 4,1,2.

Given a natural number i, the ith QLTR sequence of π is recursively
defined as follows:

● when i = 1, it is the sequence of the QLTR minima of π;
● when i > 1, it is the sequence of the QLTR minima of the permutation

obtained from π by deleting the elements of its jth QLTR sequence,
for all j < i.

The ith QLTR sequence of a permutation can be interpreted as a permu-
tation as well, by simply replacing its kth smallest element with k. When
no confusion is likely to arise, we will call “ith QLTR sequence” both the
sequence and the associated permutation.

Every permutation π can be written as the shuffle of its QLTR sequences.
Considering again the permutation ρ above, such a decomposition is the
following: ρ = 4 1 7̃ 2 9̃ 3̃ 6̃ 5̃ 8̂.

Lemma 3.7. The ith QLTR sequence of a permutation π avoids 123 and
213, for all i.

Proof. Observe that, for each i, the ith sequence of π consists of those el-
ements which enter the Schröder insertion tableau of π in column i. So,
using an argument completely analogous to that of Proposition 3.5, we get
the thesis. �
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We now label the elements of π by recording the column in which they
enter the Schröder insertion tableau. We say that the c-label of πi is cj
when it enters the Schröder insertion tableau of π in column j. The c-word
of π is then the word obtained from π by replacing each πi with its c-label.
Moreover, the bumping word of π is obtained from the c-word by deleting
the two occurrences of cj corresponding to the two smallest elements whose
c-label is cj , for every j, and the bumping sequence of π is the sequence
of elements of π corresponding to its bumping word. Therefore the c-word
of our running example ρ is c21c2c1c

4
2c3, its bumping word is c1c

3
2 and its

bumping sequence is 4 7 9 6.
We come finally to our last definition. The ordered bumping sequence is

obtained from the bumping sequence of π by rearranging in decreasing order
the element having the same c-label (and keeping their relative positions).
So the ordered bumping sequence of ρ is 4 9 7 6.

We are now ready to state our main result on Schröder hooks.

Proposition 3.8. The Schröder insertion tableau of π is a Schröder hook
if and only if the ordered bumping sequence of π avoids 123 and 213.

Proof. Saying that the Schröder insertion tableau of π is a Schröder hook
is equivalent to saying that every element of π which is bumped down from
the first to the second row always goes to the first column. Now observe
that, for every j, the first two elements of π having c-label j are inserted
into the jth cell of the first row without causing any element to be bumped
down. On the other hand, all the successive elements that are inserted
into the same cell bump down an element having the same c-label. This
means that the bumping word of π records the c-labels of the elements that
are successively bumped down into the second row. However, the bumping
sequence is not the sequence of the bumped elements. Instead, each element
πi of the bumping sequence having c-label j bumps down the second smallest
element among those preceding πi and having c-label j. In fact, when πi
is inserted, all the previous elements having c-label j have been bumped
down, except for the two smallest ones, and of course πi bumps down the
largest of the two. As a consequence, we observe that the elements of the
jth QLTR sequence of π are bumped down in decreasing order, with the
two smallest ones which remain in the first row. Therefore, summing up the
above considerations, we have that the kth element of π which is bumped
down from the first row has a c-label equal to the kth letter of the bumping
word; moreover, since the set of elements having the same c-label are bumped
down in decreasing order, the ordered bumping sequence is precisely the
sequence of the elements that are bumped down in the correct order. Now, it
is clear that the Schröder insertion tableau of π is a Schröder hook if and only
if all the elements of π that are bumped down from the first row are placed
into the first column, and this happens if and only if the ordered bumping
sequence represents a permutation whose insertion Schröder tableau has a
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single column. From Proposition 3.5, we know that this happens precisely
when the ordered bumping sequence avoids both 123 and 213, as desired. �

4. An alternative view of Schröder tableaux

Following our treatment, Schröder tableaux can be interpreted as upper
saturated chains in Schröder lattices (where upper means that the maximum
of the chain is the maximum of the lattice). To be more specific, given any
Schröder shape λ, the principal down-set 4 ⟨λ⟩ generated by λ in Sch is a
lattice (we use the terminology Schröder lattices to refer to such lattices).
In ⟨λ⟩, each saturated chain starting from µ ∈ ⟨λ⟩ and ending with λ can
be clearly encoded using a Schröder tableau of shape λ (removing triangles
following the order of their integer labels recovers the chain from λ to µ).

Now we propose a different description of Schröder tableaux, relying on
at least two main ingredients: interval orders (which are a well-known class
of posets) and a notion of weak pattern for posets, which is not entirely new
in its own right, but appears to have never been considered from a strictly
order-theoretic point of view.

4.1. Interval orders. A poset P is called an interval order when it is
isomorphic to a collection of intervals of the real line, with partial order
relation given as follows: for any two intervals I, J , it is declared that I < J
whenever all elements of I are less than all elements of J . In other words,
the interval I lies completely on the left of J . For the purpose of the present
article, all intervals will be closed, and the minimum and the maximum will
be natural numbers. Notice that, under these hypotheses, the set of all
maxima and minima of the intervals of a given interval order can be chosen
to be an initial segment of the natural numbers.

The notion of interval order is now very classical and was introduced by
Fishburn [13]. Though the main motivation for the introduction of such a
concept came from social choice theory, it soon revealed its intrinsic interest,
especially from a combinatorial point of view. To support this statement
(and without giving any detail), we only recall here the characterization
of interval orders as partially ordered sets avoiding the (induced) subposet
2 + 2, and the more recent enumeration of finite interval orders [5].

An immediate link between interval orders and Schröder tableaux is given
by the fact that every Schröder tableau can be associated with a set of
intervals. Given a Schröder shape λ, two cells A and B of λ are called
twin when they are adjacent and their union is a square. Equivalently, two
adjacent cells A and B are twin cells when their common edge is a diagonal
edge. Moreover, a (necessarily upper triangular) cell of λ is called lonely
when it is the last cell of an odd row. Notice that the set of cells of λ
can be partitioned into twin cells and lonely cells. Now, given a Schröder

4For a given element x of P, the principal down-set generated by x is the smallest
down-set of P containing x, that is the set of all elements of P smaller than or equal to
x.
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tableau S having n cells, consider the set of intervals IS defined as follows:
I = [a, b] ∈ IS when both a and b are fillings of a pair of twin cells of
S or a is the filling of a lonely cell and b = n + 1. For instance, for the
Schröder tableau S on the right in Figure 5, which has 9 cells, we have
IS = {[1,2], [5,8], [3,4], [9,10], [6,7]}. The benefit of endowing the set of
intervals associated with a Schröder tableau with its interval order will be
discussed in the next subsections.

4.2. Weak patterns in posets and strong pattern avoidance. The
study of classes of posets that contain or avoid certain subposets is a major
trend in order theory. Classically, a poset Q contains another poset P
whenever Q has a subposet isomorphic to P. Borrowing the terminology
from permutations, we could also say that Q contains the pattern P. On
the other hand, we say that Q avoids P whenever Q does not contain P.
The notion of pattern containment defines a partial order on the set X of
all (finite) posets, and we will write P ⊑ Q to mean that P is contained in
Q. Instead, the class of all finite posets avoiding a given poset P will be
denoted Av(P).

Here the use of the word “subposet” might be controversial. Technically
speaking, what we have called “subposet” is sometimes called “induced sub-
poset”. Formally, we say that P is an induced subposet of Q when there is
an injective function f ∶ P → Q which is both order-preserving and order-
reflecting: for all x, y, x ≤ y in P if and only if f(x) ≤ f(y) in Q. Loosely
speaking, this means that Q contains an isomorphic copy of P. In what
follows we will fully adhere to such terminology: we write P ⊑ Q to mean
Q has an induced subposet isomorphic to P.

What is useful for us is however a weaker version of the above notion of
pattern. We say that P is weakly contained in Q (or that P is a weak
pattern of Q) when there exists an injective order-preserving function f ∶
P →Q. This can be also expressed by saying that P is a (not necessarily
induced) subposet of Q. It is clear that a pattern is also a weak pattern.
On the other hand, we say that Q strongly avoids P whenever Q does not
weakly contain P. This is also expressed by writing Q ∈ SAv(P).

The partial order relation (on the set X of all finite posets) defined by
weak containment will be denoted ≤. This notion of poset containment
is not entirely new. Typically, it has been considered in the context of
families of sets, rather than generic posets, and many investigations in this
field concern the study of finite families of sets that strongly avoid one or
more finite posets, often with a special focus on extremal properties (see,
for instance, [15, 17] to cite just a few). Here, however, we consider this
order relation from a purely order-theoretic point of view, to initiate the
investigation of the poset (X,≤). Some rather easy facts are the following:

● (X,≤) has a minimum, which is the empty poset, and does not have
maximum.
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Figure 6. Hasse diagrams of X3 (with explicit representa-
tion of each element) and X4.

● Given P,Q ∈ X, if P ≤ Q then the ground set of P has at most as
many elements as Q.

● (X,≤) is a ranked poset, and the rank function is the sum of the num-
ber of elements of the ground set and the number of order relations
between them.

● Denoting Xn the set of all posets of size5 n, the restriction of ≤ to Xn
gives a poset with a minimum (the discrete poset on n elements) and
a maximum (the chain having n elements). Also, Xn has exactly one
atom, which is the poset of size n having a single covering relation.
Notice that, if we replace ≤ with ⊑, the resulting poset structure on
Xn would be trivial (more precisely, discrete). We claim that the
study of the posets (Xn,≤) might be a potentially very interesting
field of research. In Figure 6 we illustrate the posets (Xn,≤) for a
couple of small values of n.

The main aim of the present section is to initiate the study of the notion
of strong pattern avoidance introduced above. Recall that SAv(P) denotes
the class of all posets strongly avoiding P. Moreover, SAvn(P) is the
subset of SAv(P) consisting of the posets of size n. Finally, the above
expression can be easily adapted to the case of strong avoidance of several
posets (just by listing all the posets which are required to be avoided).
Observe that, for given posets P1,P2, . . . ,Ps, SAv(P1,P2, . . . ,Ps) is a
down-set of (X,≤), which means that, if Q ∈ SAv(P1,P2, . . . ,Ps) and
P ≤ Q, then P ∈ SAv(P1,P2, . . . ,Ps). In what follows we will always
deal with the strong avoidance of a single poset. The generalization of a

5The size is the number of elements of the ground set.
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given statement to several posets is easy (when meaningful) and so it is left
to the reader.

Proposition 4.1. For every poset P ∈ Xn, SAv(P) = Av(⟨P⟩n), where
⟨P⟩n is the up-set6 generated by P in Xn.

Proof. The fact that Q ∈ SAv(P) is equivalent to the following: there
cannot be an induced subposet R of size n of Q which contains P as a
subposet. In other words, this means that Q cannot contain any induced
subposet R of size n which is a refinement of P, that is Q ∈ Av(⟨P⟩n), as
desired. �

The above proposition, rather than saying that strong avoidance can just
be expressed in terms of classical avoidance, suggests us that the formalism
of strong poset avoidance allows us to express certain problems concern-
ing classical avoidance in a much-simplified way: avoiding several posets is
sometimes equivalent to strongly avoiding just one of them.

We next characterize some classes of posets strongly avoiding certain pat-
terns. Before starting, we give some definitions that will be useful.

Let Q,R be subsets of the ground set of a poset P. We say that Q is
weakly below R, and write Q ≱ R, whenever for all x ∈ Q and y ∈ R, we have
x ≱ y in P. Given subsets P1, P2, . . . , Pr of P, we say that (P1, P2, . . . , Pr)
is a weakly ordered partition of P when it is a set partition of the ground
set of P such that P1 ≱ P2 ≱ ⋯ ≱ Pr. Replacing every symbol ≱ with ≤ in
the two above definitions, we obtain the definitions of “Q is below R” and
“(P1, P2, . . . , Pr) is an ordered partition of P”.

Suppose that P and Q are two posets. The disjoint union P ⊍Q is the
poset whose ground set is the disjoint union of the ground sets of P and Q
and such that x ≤ y in P ⊍Q whenever either x ≤ y in P or x ≤ y in Q.
The linear sum P⊕Q is the poset whose ground set is the disjoint union of
the ground sets of P and Q and such that x ≤ y in P ⊕Q whenever either
x ≤ y in P or x ≤ y in Q or else x ∈ P and y ∈ Q.

Finally, recall that the height of a poset is the maximum cardinality of a
chain.

Proposition 4.2.

(1) If P is the discrete poset of size n, then SAv(P) is the class of all
posets of size ≤ n − 1.

(2) If P is the poset of size n containing a single covering relation, then
SAv(P) contains all posets of size ≤ n − 1 and all (finite) discrete
posets.

(3) If P is the chain of size n, then SAv(P) is the class of all finite
posets of height ≤ n − 1.

6In a poset P, an up-set F is a subset of P such that, if x ∈ F and y ≥ x, then
y ∈ F . For a given subset A of P, the up-set generated by A is the smallest up-set of P
containing A.
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Proof.

(1) Clearly, any poset Q of size at most n − 1 strongly avoids P, since
there cannot exist any injective function from P to Q. Moreover, if
Q has size at least n, then any injective map from P to Q trivially
preserves the order (P does not have any order relation among its
elements, except of course the trivial ones coming from reflexivity),
and so Q ∉ SAv(P).

(2) This is essentially a consequence of the previous proposition. In-
deed, every poset Q of size less than n trivially strongly avoids P;
moreover, if Q has size at least n and strongly avoids P, then it
cannot contain any covering relation, i.e. it is a discrete poset.

(3) If there is an injective function from P to a certain poset Q which
preserves the order, then every pair of elements in the image of P
must be comparable, i.e., f(P) has to be a chain. This immediately
yields the thesis. �

Notice that, in the last case of the above proposition, that is when P is
a chain, clearly SAv(P) = Av(P), since the up-set generated by P in Xn
consists of P alone.

A finite poset is called a flat when it consists of a (possibly empty) an-
tichain with an added maximum.

Proposition 4.3. If P = , then SAv(P) is the class of all disjoint
unions of flats. As a consequence, ∣SAvn(P)∣ = pn, the number of integer
partitions of n.

Proof. Thanks to Proposition 4.1 and Proposition 4.2, we observe that

SAv(P) = Av( , ), and so in particular, if Q ∈ SAv(P), then Q
has height at most 1. Moreover, any subset of cardinality 3 of Q cannot
have minimum; thus, any three elements in the same connected component
are either an antichain or one of them is greater than the remaining two.
This means that each connected component of Q is a flat.

Concerning enumeration, the class of posets of size n whose connected
components are flats is in bijection with the class of integer partitions of n:
just map each such poset into the integer partition of the cardinality of its
ground set whose parts are the cardinalities of the connected components
(and observe that the order structure of a flat is completely determined by
its cardinality). From this observation, the thesis follows. �

We close this section with some general results which allow us to under-
stand the class SAv(P) when P is built from simpler posets using classical
operations.

Proposition 4.4. Let P,Q be two posets.

(1) R ∈ SAv(P⊍Q) if and only if, for every partition (R1,R2) into two
blocks of the ground set of R, denoting with R1,R2 the associated
induced subposets, R1 ∈ SAv(P) or R2 ∈ SAv(Q).
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(2) If R ∈ SAv(P ⊕Q), then for every ordered partition (R1,R2) into
two blocks of R, R1 ∈ SAv(P) or R2 ∈ SAv(Q). If R ∉ SAv(P ⊕
Q), then there exists a weakly ordered partition (R1,R2) into two
blocks of R such that R1 ∉ SAv(P) and R2 ∉ SAv(Q).

Proof.

(1) An occurrence of P ⊍Q in R consists of an occurrence of P and
an occurrence of Q whose ground sets are disjoint and with no re-
quirements about the order relations among pairs of elements (x, y)
such that x ∈ P and y ∈ Q. Therefore, if R ∈ SAv(P ⊍ Q) and
(R1,R2) is a partition of the ground set of R, then it is clear that
if R1 weakly contains P, then necessarily R2 strongly avoids Q.
Vice versa, if R weakly contains P ⊍Q, then clearly there exists an
occurrence of P whose complement weakly contains Q.

(2) An occurrence of P ⊕Q in R consists of an occurrence of P and
an occurrence of Q whose ground sets are disjoint and such that
every element of P is less than every element of Q. Thus, if R ∈
SAv(P ⊕Q) and (R1,R2) is an ordered partition of R such that
R1 weakly contains P, then necessarily R2 strongly avoids Q, since
the ground set of P lies below R2. On the other hand, if R weakly
contains P⊕Q, then the partition (R1,R2) of R in which R1 is the
down-set generated by an occurrence of P (and, of course, R2 is the
complement of R1, and so an up-set) is a weakly ordered partition
having the required properties. �

Another simple, general result involving the disjoint union of posets is the
following.

Proposition 4.5. If Q ∈ SAv(P) and P is connected, then Q is the
disjoint union of a family of posets strongly avoiding P.

Proof. Indeed, take Q ∈ SAv(P) and suppose that Q is not connected
(otherwise the thesis is trivial). Since P is connected, any occurrence of P
in Q would be connected too (since such an occurrence is P with possibly
some added order relations), so, for Q to strongly avoid P, each connected
component of Q has to strongly avoid P, as desired. �

4.3. How Schröder tableaux come into play. Our introduction of weak
poset patterns is motivated by the role they have in the description of
Schröder tableaux. Let S be a Schröder tableau, and let IS be the as-
sociated set of intervals, as defined in Subsection 4.1. Consider the interval
order associated with IS , to be denoted IS as well. The map S ↦ IS from
Schröder tableaux to interval orders is clearly neither injective nor surjec-
tive: for instance, the Schröder tableau on the right in Figure 5 is mapped
to the same interval order as the tableau obtained by adding into the sec-
ond row a lower triangular cell containing 10, whereas the interval order
{[1,3], [2,4]} cannot be the image of any Schröder tableau. Therefore two
natural questions concerning such a map arise.
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(1) Given an interval order I, does there exist a Schröder tableau S such
that I = IS?

(2) In the case of a positive answer to the previous question, how many
Schröder tableaux associated with a given interval order are there?

Below we answer the first question. Recall that N denotes the set of
natural numbers (without 0), which will be endowed with its usual total
order structure.

Theorem 4.6. Let I be an interval order of size n. There exists a Schröder
tableau S such that I = IS if and only if I weakly contains a down-set of
size n of N ×N.

Proof. Suppose first that I = IS , for some Schröder tableau S. This means
that we can use the map S ↦ IS to label the set C of all pairs of twin cells and
of all lonely cells of S with the elements of I, so that C can be identified with
I. Consider the function f ∶ I →N×N mapping I to the pair (nI ,mI) such
that nI (resp. mI) is the row (resp. column) of the pair of twin cells or of
the lonely cell associated with I (as usual, rows and columns are enumerated
from top to bottom and from left to right, respectively). We show that f(I)
is a down-set of N ×N: indeed, if I ∈ I and (n,m) ∈ N ×N are such that
(n,m) ≤ f(I) = (nI ,mI), then the tableau S has at least nI rows and mI

columns, so in particular there exists a pair of twin cells or a lonely cell at
the crossing of row n and column m (since n ≤ nI and m ≤ mI); denoting
with J the associated interval of I, we then have that (n,m) = f(J) ∈ f(I),
as desired. By construction f is injective, since two distinct intervals of I
correspond to two distinct cells of S, which of course cannot lie both in the
same row and in the same column of S. We can thus consider the inverse
g ∶ f(I) → I of f on f(I). We now show that g is order-preserving: indeed,
consider I, J ∈ I and suppose that (nI ,mI) = f(I) ≤ f(J) = (nJ ,mJ); the
tableau S has a pair of twin cells or a lonely cell at the crossing of row nJ
and column mI (since mI ≤ mJ), and the associated interval, call it K, is
such that K ≤ J in I; moreover, since nI ≤ nJ , it is not difficult to realize
that I ≤ K, hence we conclude that I ≤ J . Therefore we have proved that
f(I) is a down-set (of size n) of N×N and that g ∶ f(I) → I is an injective
order-preserving map, i.e., f(I) is a weak pattern of I. This is exactly the
thesis.

In the other direction, suppose that I weakly contains a down-set D of
N ×N of size n. In other words, D is a coarsening of I (i.e., it is obtained
from I by possibly only removing some order relations, leaving untouched
its ground set). This means that there is an order-preserving injective map
g ∶ D → I. As we have already recalled, it is not restrictive to suppose that
the endpoints of the elements of I are all distinct and constitute an initial
segment of N. Consider the tableau S having a pair of twin cells in row n
and column m if and only if (n,m) ∈ D and, in such case, the two cells are
filled in with the endpoints of the interval g(n,m) ∈ I. It is clear that S is
a Schröder tableau: since D is a down-set, rows are left-justified; moreover,
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rows and columns are increasing because g is order-preserving. Now it is
not difficult to realize that I = IS , which is precisely what we wanted to
show. �

Remark: Notice that, in the second part of the above proof, we construct
a Schröder tableau S having no lonely cells such that I = IS . This again
shows the fact that there can be several Schröder tableaux associated with
the same interval order.

5. Further work

The algebraic and combinatorial properties of the distributive lattice Sch

of Schröder shapes need to be further investigated. In particular, the analo-
gies with differential posets should be much deepened, for instance trying
to understand the role of the lowering and raising operators (a fundamental
tool for computations in differential posets) in the Schröder lattice, or even
in the more general setting of ϕ-differential posets.

We have just started the characterization and enumeration of permuta-
tions having a given Schröder insertion tableau. Many more shapes should
be investigated. Moreover, we still have to understand the role of the record-
ing tableau.

Can we find a nice closed formula for the number of Schröder tableaux of a
given shape? In the case of Young tableaux, there is a famous hook formula,
which however seems to be unlikely in our case, since we have numerical
evidence that, for certain shapes, this number has large prime factors.

The alternative presentation of Schröder tableaux in terms of interval
orders and weak poset patterns might have more secrets to reveal. For in-
stance, the enumeration of Schröder tableaux associated with a given interval
order remains entirely to be done. In a different direction, the topic of strong
pattern avoidance for posets seems to be an interesting line of research on
its own, independent from its relationship with Schröder tableaux.

The analogies between Young tableaux and Schröder tableaux should be
investigated more, especially from a purely algebraic point of view. Com-
binatorial objects related to Young tableaux, such as Schur functions and
the plactic monoid, as well as algorithmic and algebraic constructions, such
as Schützenberger’s jeu de taquin [23], the Littlewood–Richardson rule and
the Schubert calculus on Grassmannians and flag varieties could have some
interesting counterparts in the context of Schröder tableaux.
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