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ANCHORED HYPERSPACES AND MULTIGRAPHS

GERARDO REYNA, JESÚS ROMERO-VALENCIA, AND IVAN ESPINOBARROS

Abstract. Consider a multigraph X as a metric space and p ∈ X. The
anchored hyperspace at p is the set

Cp(X) = {A ⊆ X : p ∈ A, A connected and compact}.
In this paper we prove that Cp(X) is a polytope, considering the Haus-
dorff metric H. And reciprocally, if X is a locally connected and compact
metric space such that Cp(X) is a polytope, for each p ∈ X, then X
must be a multigraph.

1. Introduction

We say that S is a face of a n-cell M = [0, 1]n if S = S1 × S2 × · · · × Sn,
where either Si = [0, 1], or Si = {0}, or Si = {1} and for at least one
i, Si 6= [0, 1]. For example [0, 1]2 has eight faces: {0} × {0}, {1} × {1},
{0} × {1}, {1} × {0}, {0} × [0, 1], [0, 1] × {0}, [0, 1] × {1}, {1} × [0, 1]. In
general [0, 1]n has 3n − 1 faces. A polytope is a metric space which can be
written as a finite union of finite-dimensional cells such that the intersection
of any two of them is either empty or a union of faces. A multigraph is a
polytope whose cells are 1-cells and 0-cells.

Remark 1.1. Is a well-known fact that the faces of a n-cell is itself a poly-
tope.

If X is a metric space and p ∈ X, the anchored hyperspace Cp(X) is the
subspace 2X = {A ⊆ X : A 6= ∅, A closed}, whose elements are all compact
and connected subsets of X containing p. We say that a metric space X is
Cpp if Cp(X) is a polytope for each p ∈ X. Next, some results that will be
useful for our purposes (see [7]).

A family {Aα}α∈A of sets in a topological space X is called neighborhood
finite, (nbd-finite for short) if each point of X has a neighborhood V such
that V ∩Aα 6= ∅ for at most finite indices α.

Let X be a topological space and {Aα}α∈A a covering of X such that
either:
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(1) The sets Aα are all open.
(2) The sets Aα are all closed and form a nbd-finite family.

For each α ∈ A let fα : Aα → Y be continuous and assume that fα|Aα∩Aβ =
fβ|Aα∩Aβ for each α, β ∈ A, then there exists a unique continuous map
f : X → Y which is an extension of each fα.

Let {Bα} be an open, or a closed nbd-finite covering of Y . Let f :
X → Y be continuous and assume that for each α ∈ A, f |f−1(Bα) is a

homeomorphism of f−1(Bα) and Bα. Then X is homeomorphic to Y .
The free union X+Y of disjoint topological spaces X, Y is the set X ∪Y

with topology: U ⊂ X + Y is open if and only if U ∩X is open in X and
U ∩ Y is open in Y . Since X ∩ Y = ∅, clearly B ⊂ X + Y is closed if and
only if B ∩X is closed in X and B ∩ Y is closed in Y .

Lemma 1.2 (Transgression Theorem). Let p : X → Y be an identification
map and h : X → Z continuous. Assume that hp−1 is single-valued (that is,
h is constant on each fiber p−1(y)). Then hp−1 : Y → Z is continuous, and
in addition, the diagram

X
p //

h
��

Y

hp−1~~
Z

is commutative.

Let X and Y be two disjoint spaces, A ⊂ X a closed subset, and f : A→
Y continuous. In X + Y , generate an equivalence relation R by a ∼ f(a)
for each a ∈ A. The quotient space (X + Y )/R is said to be “X attached to
Y” and is written X ∪f Y ; f is called the attaching map.

We also need the following results (see [7])

Lemma 1.3. Let p : X + Y → X ∪f Y be the projection map, and let
C ⊂ X + Y be such that C ∩ X is closed in X. Then p(C) is closed in
X ∪f Y if and only if (C ∩ Y ) ∪ f(C ∩A) is closed in Y .

Lemma 1.4. Let Q : X + Y → X ∪f Y be the projection map. Then Y is
embedded as a closed set in X ∪f Y and Q|Y is an embedding.

2. Polytopes

In modern times, polytopes and their related concepts have important
applications in computer graphics, optimization and many other fields ([3],
[2], [10], [13]).

Proposition 2.1. Let Q : X + Y → X ∪f Y be the projection map, with X
compact and Y a Hausdorff space. If f embeds A in a closed set f(A) of Y ,
then X is embedded as a closed subset of X ∪f Y and Q|X is an embedding.

Proof. The map Q|X is obviously continuous and one-to-one. Now, let C ⊂
X be closed, then (C ∩ Y ) ∪ f(C ∩ A) = f(C ∩ A) is closed in f(A), as



152 GERARDO REYNA, JESÚS ROMERO-VALENCIA, AND IVAN ESPINOBARROS

this set is closed in Y we have that (C ∩ Y ) ∪ f(C ∩ A) is closed in Y . It
follows by Lemma 1.3 that Q(C) is closed in X ∪f Y and therefore Q|X is
an embedding. �

Proposition 2.2. Let X = C1 ∪C2 ∪ · · · ∪Cn and Y = D1 ∪D2 ∪ · · · ∪Dn

be disjoint spaces and f : X → Y a homeomorphism such that:

(1) For each i, the space Ci is a finite-dimensional cell,
(2) for each pair i, j we have Ci ∩ Cj is empty or is a union of faces,
(3) for each i, we have that f(Ci) = Di,
(4) suppose we have chosen for each cell Ci a face FCi (and therefore

for each cell Di we have chosen a face FDi = f(FCi)).

If g is the restriction of f to F(C1)∪ · · · ∪ F(Cn), then the space X ∪g Y is
a finite union of cells where each two have empty intersection or is a finite
union of faces.

Proof. Let X = C1 ∪C2 ∪ . . .Cn and Y = D1 ∪D2 ∪ . . .Dn be homeomorphic
copies of X and Y contained in X∪f Y whose existence is ensured by Lemma
1.4 and Proposition 2.1, where Q(Ci) = Ci, Q(Di) = Di, Q(FCi) = FCi,
and Q(Di) = FDi. Evidently for each pair i, j the set Ci ∩Ci is empty or is
union of faces and the same occurs with the sets Di∩Dj . Now, if x ∈ Ci∩Dj ,
then there exists a ∈ FCi such that x = [a] = [f(a)] and f(a) ∈ Dj ∩ FDi,
therefore [f(a)] = x ∈ Dj ∩ FDi, this shows that Ci ∩Dj ⊂ Dj ∩ FDi. On
the other hand, if x ∈ Dj ∩ FDi, then x ∈ FDi. It follows that there is a
point a ∈ FCi such that [a] = [f(a)] = x therefore x ∈ FCi, which shows
that x ∈ Ci ∩Dj and therefore Ci ∩Dj = Dj ∩ FDi.

As well, we have Dj ∩ FDi ⊂ Dj ∩ Di = F1 ∪ F2 ∪ . . . Fm where each
Fi is a face by (2). On the other hand Dj ∩ FDi = Dj ∩ (Di ∩ FDi) =
(Di∩Dj)∩FDi = (F1∪F2∪. . . Fm)∩FDi, by Remark 1.1 this last expression
is a union of faces and therefore Dj ∩FDi is union of faces, that is, Ci ∩Dj

is union of faces. Finally, since the projection map Q is surjective, we have
Q(X+Y ) = Q(X)∪Q(Y ) = X∪Y = C1∪C2∪· · ·Cn∪D1∪D2∪· · ·Dn. �

The following properties concerning polytopes are useful in general.

Proposition 2.3.

(1) If the components of a space are polyhedra, then the components of
a union of its faces are polyhedra.

(2) If a subset of the cells forming a polytope are taken, then the com-
ponents of their union are polyhedra.

Proof. (1) Let F1 and F2 be two faces of cells C1 and C2 in a same
component of X. If F1 ∩ F2 is nonempty, either F1 and F2 is a
common face of C1 and C2, or one is contained in other or F1∩F2 is
a union of (in a manner of speaking) “lower dimensional subfaces”.

(2) Each two such cells (with no empty intersection) intersects in the
whole space in a union of their faces, so they intersect in each com-
ponent of such a union.
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�

Remark 2.4. If two polytopes are joined by some of their faces then this
new space is a polytope.

Figure 1

Multigraphs have been an object of study for several years, and recently
there are many works on the subject (see, for example, [1], [5], [8]). Par-
ticularly, there are works in multigraphs viewed as metric spaces (see, [4],
[14]).

In [6], R. Duda studied the characterization of the hyperspaces C(G)
when G is a connected multigraph. As previously mentioned, a multigraph
is a polytope whose cells are arcs or points, these arcs are called edges, also a
closed curve J is called an edge provided this closed curve contains a unique
ramification point, these edges are called loops. We identify the end points of
an edge with 0J and 1J respectively, if this edge is a loop we assume 0J = 1J
(that is to say, in a loop end points coincide) is the unique ramification point
in J . Given any multigraph G, a subgraph of G is a subspace formed for some
edges and this subspace is itself a multigraph. A simple vertex is considered
to be a subgraph of G. A tree is a subgraph not containing simple closed
curves, an internal tree is a tree not containing terminal points of G, and
therefore its terminal points are ramification points in G. Let AI(G) denote
the set of all internal trees of G. We establish that E(G), V (G), O(G), R(G),
and T (G), denote the sets of edges, vertices, ordinary points, ramification
points, and terminal points, respectively. Given an internal tree T of G, we
regard those edges J such that J ∩ T 6= ∅ and J is not subset of T . Let
us divide these edges in two types: J1, . . . , Jn and L1, . . . , Lm , where each
edge Ji has just one extreme (say 0J ) in T and it is not a loop. The edges
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Lj are those whose two extreme points are in T , including the loops whose
ramification point is in T . We define

D(1, T ) = T ∪ (
n⋃
i=1

Ji) ∪ (
m⋃
j=1

Lj),

and we say that this is the canonical representation of D(1, T ). Given an
internal tree T ⊂ G, let M(T ) be the family of all connected compact subsets
of G of the form

((ci)
n
i=1, (aj , bj)

m
j=1)T = T ∪ (

n⋃
i=1

[0ji , ci]) ∪ (

m⋃
j=1

[0Lj , aj ] ∪ [bj , 1j ]),

where ci ∈ Ji and aj , bj ∈ Lj , [0ji , ci] is the subarc of Ji joining 0Ji with ci,
[0Lj , aj ] is the subarc of Ji joining 0Lj with aj and [bj , 1Lj ] is the subarc of
Lj joining bj with 1Lj .

We have the following lemma (for more details and proofs see [6]).

Lemma 2.5. Let G be a connected multigraph, then

(i) For each internal tree T ⊂ G, the family M(T ) is a (n+ 2m)-cell.
(ii) The hyperspace of connected compact subsets of G is

C(G) = [
⋃

T∈AI(G)

M(T )] ∪ [
⋃

I∈E(G)

C(I)].

It is a well-known fact that C(S1) ∼= C([0, 1]) ∼= [0, 1]2 (see [6]) and
therefore C(I) ∼= [0, 1]2 for each edge I ∈ E(G).

The following lemma is proved in [6].

Lemma 2.6. Let G be a connected multigraph, then.

(i) Two sets of the form M(T ) intersect at some of their faces.
(ii) Two sets of the form C(I) (where I ∈ E(G)) intersect at some of

their faces.
(iii) A set of the form M(T ) and one of the form C(I) intersect at some

of their faces.

Since the set AI(G) and the set E(G) are finite, using the previous lemma,
the following theorem follows.

Theorem 2.7 ([6]). A connected compact metric space G is a multigraph,
if and only if C(G) is a polytope.

3. multigraphs and their anchored hyperspaces

Notice that if G is a multigraph and C the component of G containing
p, then Cp(G) = Cp(C). Therefore throughout this work we will assume all
our multigraphs are connected. If G is a multigraph and p ∈ G, there are
three possibilities (see Figure 2).

(1) The point p is in a loop L of G and p 6= 0L,
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(2) there exists a terminal edge J which is not a loop such that p ∈ J
and p 6= 0J ,

(3) if neither p is in a loop nor in a terminal edge, then there exists an
internal tree T such that p ∈ D(1, T ).

G

21
3

Figure 2

In the first case, let L1 be one of the two arcs in L connecting 0L with p and
let L2 be the other one. Define Γ1 = {T ∈ AI(G) : 0L ∈ T}. For T ∈ Γ1,
if D(1, T ) = T ∪ (

⋃n
i=1 Ji) ∪ (

⋃m
j=1 Lj) is the canonical representation of

D(1, T ) we will always assume, without loss of generality, that L = L1. Let
M1

p(T ) be the family of all those connected compact subsets of the form:

(T ∪ L1) ∪ ([p, a1] ∪ [b1, 1L]) ∪ (
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ]),

where a1, b1 ∈ L2, ci ∈ Ji, aj , bj ∈ Lj .

Lemma 3.1 ([12]). Let f : X → Y be a continuous map into a compact

connected metric space Y , then f̂ : C(X)→ C(Y ) defined by

f̂(A) = f(A) for each A ∈ C(X),

is continuous.

Proposition 3.2. For each T ∈ Γ1, the family M1
p(T ) is homeomorphic to

the (n + 2m)-cell, M(T ) = T ∪ (
⋃n
i=1[0ji , ci]) ∪ (

⋃m
j=1[0Lj , aj ] ∪ [bj , 1j ]) in

Lemma 2.5 (i).

Proof. Indeed, let GL1 = G/L1 be the space obtained from G by identifying
L1 to 0L. Then GL1 is homeomorphic to G as shown below: Let Q : G →
GL1 be the projection map and f : G→ G defined as follows:

f(x) =


x x ∈ G− L,
0L x ∈ L1,

g(x) x ∈ L2,

where g : L2 → L is a continuous map such that g(p) = 0L = g(0L) and
restricted to L2 − {p, 0L} is one-to-one; hence f is continuous. Now, f is
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constant in each Q−1([x]) and conversely Q is constant in each f−1(x), it
follows from Lemma 1.2 that f ◦Q−1 and Q ◦ f−1 are continuous and being
mutual inverses, it follows that G and GL1 are homeomorphic.

If T ∈ Γ1, then Q(T ) is an internal tree containing [0L]. Since G is
connected and compact, GL1 is also connected and compact. It follows from

Lemma 3.1 that Q̂ : C(G)→ C(GL1) defined by Q̂(A) = Q(A) is continuous.

For each T ∈ Γ1 the map Q̂ is one-to-one on the set M1
p(T ), which shows

that Q̂T = Q̂|M1
p(T ) is a homemorphism between M1

p(T ) and M(Q(T )). Since

M(Q(T )) is homeomorphic to M(T ) the proposition follows. �

Similarly for each T ∈ Γ1, we can define M2
p(T ) as the family of all

connected compact subsets of the form:

(T ∪ L2) ∪ ([p, a1] ∪ [b1, 1L])∪(
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=2

[0Lj , aj ] ∪ [bj , 1j ]),

where a1, b1 ∈ L1, and therefore the next lemma follows.

Lemma 3.3. For each T ∈ Γ1 the family M2
p(T ) is a finite-dimensional

cell.

If p is a point satisfying Theorem 2.7, (2), let 0J and 1J be the endpoints
of the edge J = J1, where 1J is the terminal vertex of G and let Γ2 be the set
of all internal trees T of G such that 0J ∈ T . In this case, for each T ∈ Γ2,
let N3

p(T ) be the family of all connected compact subsets of G of the form

T ∪ (
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=1

[0Lj , aj ] ∪ [bj , 1Lj ])),

where ci ∈ Ji, for i = 2, . . . n, aj , bj ∈ Lj for j = 1, . . . ,m and c1 ∈ [p, 1J ]. As
in the above case, a similar analysis shows that N3

p(T ) is a finite-dimensional
cell, and therefore we have the following lemma:

Lemma 3.4. If T ∈ Γ2, then N3
p(T ) is a finite-dimensional cell.

If p is a point satisfying Theorem 2.7, (3) consider the set Γ3, whose
members are all the internal trees of G which p ∈ T . For each T ∈ Γ3,
consider the cell M(T ) (Lemma 2.5 (i)). Evidently, each of these cells is
contained in Cp(G), whereby the following lemma is trivially true.

Lemma 3.5. If G is a multigraph and T ∈ Γ3, then the cell M(T ) is a
subspace of Cp(G).

Let J be the edge containing p, and u and v the endpoints of J . Denote
L1 the subarc of J containing u and p as endpoints and denote L2 the
subarc of J containing p and v as endpoints. Let G/L1 and G/L2 be the
quotient spaces obtained from G identifying the arcs L1 and L2 at one point,
respectively.
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Proposition 3.6. The hyperspaces C(G), C(G/L1) and C(G/L2) are home-
omorphic.

Proof. As in Proposition 3.2 if Q : G → G/L1 is the projection map and
f : L2 → J is a homeomorphism such that f(p) = u and f(v) = v, then
define h0 : G→ G by

h0(x) =


u x ∈ L1,

f(x) x ∈ L2,

x x ∈ G− J.

We have by Lemma 1.2 that maps h0 ◦Q−1 and Q ◦ h−1
0 are continuous,

and being mutual inverses, we have that G and G/L1 are homeomorphic

graphs. By Lemma 3.1 we have that ψ1 = ̂h0 ◦Q−1 is a homeomorphism
between C(G/L1) and C(G).

Now, consider the space G/L2 obtained from G identifying L2 at one
point. Let R : G → G/L2 be the projection map, and g : L1 → J a
homeomorphism such that g(p) = v and g(u) = u, then, for the map h1 :
G→ G defined by:

h1(x) =


v x ∈ L2,

g(x) x ∈ L1,

x x ∈ G− J,

again, by Lemma 1.2, the maps h1 ◦ R−1 and R ◦ h−1
1 are continuous, and

being mutual inverses, we have that G and G/L2 are homeomorphic. By

Lemma 3.1, ψ2 = ̂h1 ◦R−1 is a homeomorphism between C(G/L2) and
C(G). �

Now, let Γ4 be the set of all those internal trees T for which p ∈ D(1, T )−
(T ∪

⋃n
i=1 Ji), where T ∪ (

⋃n
i=1 Ji) ∪ (

⋃m
j=1 Lj) is the canonical representa-

tion of D(1, T ) and, without loss of generality, we will always assume that
p ∈ L1.

If H ∈ Γ4, denote K1
p(H) the subspace of Cp(G) whose members are all

connected compact subsets of G of the form:

(H ∪ L1) ∪ ([p, a1] ∪ [b1, 1L1 ]) ∪ (
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])),

where, a1, b1 ∈ L2, for j = 2, . . . ,m we have aj , bj ∈ Lj and, for i = 1, . . . n
we have ci ∈ Ji; Figure 3 shows a typical element of K1

p(H). Similarly, given

H ∈ Γ4, let K2
p(H) denote the subspace of Cp(G) whose members are all

those connected compact subsets in the form:

(H ∪ L2) ∪ ([0L1 , a1] ∪ [b1, p]) ∪ (
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])).
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G

p

Ha2

b2

0L1
1L1

b1L1
a1

c1

c2

L2

J1

J2

Figure 3

Proposition 3.7. For each internal tree H ∈ Γ4, the spaces K1
p(H) and

K2
p(H) of Cp(G) are finite-dimensional cells.

Proof. For each H ∈ Γ4, if Q̂ and R̂ are the induced maps of Q and R in
the proof of Proposition 3.6, then the maps σH : K1

p(H)→M(Q̂(H)) and

ρH : K2
p(H) → M(R̂(H)) given by σH(A) = Q̂(A) and ρH(A) = R̂(A) are

homeomorphisms. �

In order to continue building the cells that will endow a polytope structure
to Cp(G), suppose that p lies in a nonterminal edge J of G with endpoints,
say u and v. Now, let Γ5 be the set of all internal trees M of G for which, if
M ∪ (

⋃n
i=1 Ji) ∪ (

⋃m
j=1 Lj) is the canonical representation of D(1,M), then

for some index i (which we always assume without loss of generality that
i = 1) we have J1 = J and if 0j1 is the only point of M ∩ J1, then 0J1 = u.

Given M ∈ Γ5, let Mp(M) be the family of all connected compact subsets
of Cp(G) whose members have the form:

(M ∪ L1 ∪ [p, c1]) ∪ (

n⋃
i=2

[0Ji , ci]) ∪ (

m⋃
j=1

([0Lj , aj ] ∪ [bj , 1Lj ]),

where c1 ∈ L2, for i ∈ {2, . . . , n} ci ∈ Ji and for j ∈ {1, . . . ,m} aj , bj ∈ Lj .
Figure 4 shows a typical element of Mp(M), where M = {u}.

We now define Γ6 as the set of all those internal trees N ⊂ G such that, if
N ∪ (

⋃n
i=1 Ji) ∪ (

⋃m
j=1 Lj) is the canonical representation of D(1, N), then,

for some index i (which we always assume without loss of generality that
i = 1) we have J = J1 and if 0J1 is the only point in N ∩ J1, then 0J1 = v.

Given N ∈ Γ6, let Np(N) be the subspace of Cp(G) whose members are
those connected compact subsets in the form:

(M ∪ L2 ∪ [p, c1]) ∪ (

n⋃
i=2

[0Ji , ci]) ∪ (
m⋃
j=1

([0Lj , aj ] ∪ [bj , 1Lj ]),

where c1 ∈ L1, for i ∈ {2, . . . , n} ci ∈ Ji, and for j ∈ {1, . . . ,m} aj , bj ∈ Lj .

Lemma 3.8. For each M ∈ Γ5 the space Mp(M) is a finite-dimensional
cell. Also, if N ∈ Γ6, then, the space Np(N) is a finite-dimensional cell.
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G

p

a1

b1

u v

L1
c1

L1

c2 J2

Figure 4

Proof. For each M ∈ Γ5, the map βM : Mp(M) → M(Q̂(M)) defined by

βM (A) = Q̂(A), where Q̂ is the induced map of Proposition 3.6 is a home-

omorphism. Since M(Q̂(M)) is a finite-dimensional cell, Mp(M) is also a
finite-dimensional cell.

Similarly, the map λN : Np(N) → M(R̂(N)) defined by λN (A) = R̂(A),

where R̂ is as in Proposition 3.6 is a homeomorphism. �

4. multigraphs are Cpp connected compact spaces

Recall that a space is Cpp if all its anchored hyperspaces are polytopes. In
this section, we prove that multigraphs, are Cpp connected compact spaces.
In the next theorem we assume G is not an arc or a closed simple curve.

Theorem 4.1. Multigraphs are Cpp connected compact spaces.

Proof. We have three cases from Section 3, in each case, Γ1,Γ2,Γ3,Γ4,Γ5,
and Γ6 will be the sets of internal trees of G as they were previously defined
in Section 3.
Case 1 : The point p lies in a loop L of G and p 6= 0L.

For each T ∈ Γ1, let Q̂T be the homeomorphism between M1
p(T ) and

M(Q(T )) described in the proof of Proposition 3.2. If S, T ∈ Γ1, then

Q̂T = Q̂S for all points in M1
p(T ) ∩M1

p(S). Recall that there exists

a unique continuous map Q̂0 which is an extension of every Q̂T , since
each one of these is a homeomorphism it follows that Q̂0 is a homeomor-
phism between

⋃
T∈Γ1

M1
p(T ) and

⋃
T∈Γ1

M(Q(T )). Similarly we have

that
⋃
T∈Γ1

M2
p(T ) is homeomorphic to

⋃
T∈Γ1

M(Q(T )).
Now, for all T ∈ Γ1, consider CT = {A ∈M(Q(T )) : Q(L) ⊆ A}. That

is, CT is the face of M(Q(T )) obtained making b1 = p. Let
⋃
T∈Γ1

XT
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and
⋃
T∈Γ1

YT be disjoint topological copies of
⋃
T∈Γ1

M(Q(T )) and

fX :
⋃
T∈Γ1

XT →
⋃
T∈Γ1

M(Q(T )), fY :
⋃
T∈Γ1

M(Q(T ))→
⋃
T∈Γ1

YT

be homeomorphisms such that, for all T ∈ Γ1, CXT = f−1
X (CT ) and

CYT = fY (CT ) are the faces of the cells XT and YT homeomorphic to the
face CT of M(Q(T )).

If f is the restriction of fY ◦fX to
⋃
CXT , by Proposition 2.2, it follows

that
⋃
T∈Γ5

XT ∪f
⋃
T∈Γ5

YT is a finite union of cells, where each two are
either disjoint or intersects in a union of their faces.

Now, the map,

R : (
⋃

M1
p(T )) ∪ (

⋃
M2

p(T ))→ (
⋃
XT ) ∪f (

⋃
YT ),

defined by,

R(x) =

{
f−1
X (Q(x)) x ∈

⋃
M1

p(T ),

fY (Q(x)) x ∈
⋃
M2

p(T ),

is a homeomorphism. By Proposition 2.2 the space,

(
⋃

M1
p(T )) ∪ (

⋃
M2

p(T )),

is a finite union of cells where each two are either disjoint or intersect in
a finite union of their faces.

Finally, note that for each internal tree T ∈ Γ1 different from {0L},
we have Cp(L) ∩M1

p(T ) = ∅ and Cp(L) ∩M2
p(T ) = ∅. If

D = Cp(L)− (M1
p({0L}) ∪M2

p({0L})),

then once again the space,

(
⋃

M1
p(T )) ∪ (

⋃
M2

p(T )) ∪D,

is a finite union of cells, where each two are either disjoint or intersect
in some union of their faces, since this union is the set Cp(G), we have
Cp(G) that is a polytope.

Case 2 : The point p is in a terminal edge J of G and p 6= 0J .
In this case, Cp(G) = (

⋃
T∈Γ2

N3
p(T )) ∪ Cp(J) and we have two sub-

cases. The first one is attained when p is the terminal point of J , and
the second is attained when p is a point in the interior of J .

In the first subcase, the intersection of any two cells of the form N3
p(T )

is empty or a union of their faces. This is because
⋃
T∈Γ2

N3
p(T ) is home-

omorphic to
⋃
M(T ), where T runs over the internal trees of G − p

containing 0J . On the other hand, N3
p(T ) ∩ Cp(J) = {J} is a face of

both cells. The other subcase is treated similarly.
Case 3 : If neither p is in a loop, nor a terminal edge, then there is an
internal tree T such that p ∈ D(1, T ).
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In this case we have that the space Cp(G) coincides with:

Cp(J) ∪
⋃
T∈Γ3

M(T ) ∪
⋃
H∈Γ4

K1
p(H)

∪
⋃
H∈Γ4

K2
p(H) ∪

⋃
M∈Γ5

Mp(M) ∪
⋃
N∈Γ6

Np(N).

It remains to be seen that the intersection of any two cells in the above
union is a union of their faces. This involves many cases to consider. We
will analyze a few of them, the others can be treated in a similar way.

Step 1. For T, S ∈ Γ3 it follows immediately from Lemma 2.6 (i) that if
the cells M(T ) and M(S) have nonempty intersection, then the
intersection is a union of their faces.

Step 2. Now, choose H,K ∈ Γ4 and check that the intersection, K1
p(H) ∩

K2
p(K), is not empty, then it is a union of their faces.
Recall that the faces of a cell [0, 1]n are those subsets obtained by

restricting some of its coordinates, so that they can only take the
values 0 or 1, and the remaining coordinates are free to take any
value between 0 and 1.

What we show is that K1
p(H) ∩ K2

p(K) is a union of such faces,

both, cell K1
p(H) and cell K2

p(K). We will prove this fact for K1
p(H);

the proof for K2
p(K) is practically the same.

Let D(1, H) = H ∪ (
⋃n
i=1 Ji) ∪ (

⋃n
j=1 Lj) be the canonical repre-

sentation of D(1, H). (Recall we are supposing that L1 = J). Then,
the members of K1

p(H) are connected compact subsets of the form,

(H ∪ L1) ∪ ([p, a1] ∪ [b1, v]) ∪ (
n⋃
i=1

[0Ji , ci])

∪ (

m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])).

According this, the faces of K1
p(H) are given when we fix ci = 0Ji

or ci = 1Ji for some index i ∈ {1, . . . , n} and when we fix a1 = p,
b1 = v, or a1 = b1, or we fix aj = 0Lj , bj = 1Lj , or aj = bj for some
index j ∈ {2, . . . ,m}.

Since K1
p(H) ∩ K2

p(K) is not empty, we can fix a point x in the

intersection. Since x ∈ K2
p(K), we have that L2 ⊂ x. Thus, x when

viewed as an element of K1
p(H), lies on the faces of K1

p(H) when

a1 = b1. On the other hand, K ⊂ x ⊂ H ∪ (
⋃n
i=1 Ji) ∪ (

⋃m
j=1 Lj).

In this way, the internal tree K is formed by some edges in H, some
edges Ji, and some edges Lj , where j 6= 1. In order to see what
values are fixed, we will investigate each one of the edges Ji and Lj .

Given an edge Ji we have some cases to analyze:
Case 1 : Ji ⊂ K.
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In this case, any member y ∈ K1
p(H) ∩ K2

p(K) satisfies Ji ⊂
K ⊂ y. Thus, y as an element of K1

p(H), we must fix ci = 1Ji .
Case 2 : Ji is not a subset of K and 0Ji , 1Lj ∈ K.

Since K is formed by edges, since K is a subgraph of G, the
intersection K ∩ Ji is precisely the vertices 0Ji and 1Ji , in this
case ci can take all values from 0Ji to 1Ji .

Case 3 : Ji is not a subset of K and 0Ji ∈ K, 1Ji /∈ K.
The growth of the members of K1

p(H) is the same as the mem-

bers of K2
p(K) through the edge Ji. Thus, in this case ci takes

all values in the edge Ji.
Case 4 : Ji is not a subset of K and 1Ji ∈ K, 0Ji /∈ K.

In this case, ci cannot be an element of Ji−{0Ji , 1Ji} because
corresponding element cannot belong to K2

p(K). Therefore in
this case, ci = 0Ji or ci = 1Ji .

Case 5 : Ji is not a subset of K and 0Ji , 1Ji /∈ K.
No point in Ji−{0Ji , 1Ji} belongs to D(1,K) and therefore it

does not belong to any element of K2
p(K). Thus, ci = 0Ji .

We have concluded the possible cases for Ji. Now let us see what
happens with Lj , where j ∈ {2, . . . ,m}.
Case 6 : Lj ⊂ K.

Any element y ∈ K1
p(H) ∩ K2

p(K) satisfies Lj ⊂ K ⊂ y. So,

when viewed as elements of K1
p(H) we have aj = bj .

Case 7 : Lj is not a subset of K and 0Lj , 1Lj ∈ K.

Both the members of K1
p(H) and members of K2

p(K) can grow
from the ends of Lj , so aj and bj can take all values in Lj .

Case 8 : Lj is not a subset of K and 0Lj ∈ K, 1Lj /∈ K.

No element of K2
p(K) can grow from the end 1Lj , therefore we

must have bj = 1Lj .
Case 9 : Lj is not a subset of K, 0Lj /∈ K and 1Lj ∈ K.

No member of K2
p(K) can grow from the vertex 0Lj , therefore

we must have aj = 0Lj .
Case 10 : Lj is not a subset of K, 0Lj , 1Lj /∈ K.

No element of Lj − {0Lj , 1Lj} belongs to D(1,K), therefore

no element belongs to K2
p(K), therefore we must have aj = 0Lj

and bj = 1Lj .

Step 3. Now, let us see that for H,K ∈ Γ4, if the cells K1
p(H), K1

p(K) have
a nonempty intersection, then the intersection is a union of faces.

Indeed, the homeomorphisms σH : K1
p(H)→M(Q̂(H)) and σK :

K1
p(K) → M(Q̂(K)) in the proof of Proposition 3.7 can be used to

construct a unique continuous map σ : K1
p(H)∪K1

p(K)→M(Q̂(H))∪
M(Q̂(K)) which extends σH and σK .

Furthermore, σ is a homeomorphism. Since M(Q̂(H)) and

M(K̂(H)) are a pair of the cells that endow a polytope structure
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to C(Q̂(G)), it follows that these cells intersect in a union of their
faces. Therefore the cells K1

p(H) and K1
p(K) intersect in a union of

their faces.
Step 4. Now we see that T ∈ Γ3, H ∈ Γ4, and the cells M(T ), and K1

p(H)
either intersect in a union of their faces or do not intersect.

Let Id : M(T ) → M(T ) be the identity map and σH : K1
p(H) →

M(Q̂(H)) the map in Proposition 3.7. Consider A ∈M(T )∩K1
p(H).

Recall that Γ3 is the set of internal trees of G containing p. Accord-
ing this, we have that A contains the edge J (recall that J is the
edge containing p in its interior), because of this, if A is represented
as an element of K1

p(H), we must set a1 = b1. Thereby,

σH(A) = Q̂(A) = Q̂((H ∪ L1 ∪ [p, a1] ∪ [b1, v]) ∪ (

n⋃
i=1

[0Ji , ci])

∪ (

m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])))

= Q̂(H) ∪ Q̂(L2) ∪ Q̂((

n⋃
i=1

[0Ji , ci]) ∪ (

m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ]))).

So that

ψ1 ◦ σH(A) = H ∪ f(L1) ∪ (

n⋃
i=1

[0Ji , ci]) ∪ (

m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])

= H ∪ f(L2) ∪ (

n⋃
i=1

[0Ji , ci]) ∪ (

m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ])

= H ∪ J ∪ (
n⋃
i=1

[0Ji , ci]) ∪ (
m⋃
j=2

[0Lj , aj ] ∪ [bj , 1Lj ]) = A,

where ψ1 is the same as in proof of Proposition 3.6. Thus, maps Id
and ψ1 ◦ σH provide a unique continuous map α : M(T )∪K1

p(H)→
M(T )∪M(H) which extends Id and ψ1◦σH . Since α is a homeomor-
phism, because M(T ) ∪M(H) is a union of finite-dimensional cells
whose intersections are either disjoint or are a union of faces (Lemma
2.6 (i)), then so is M(T )∪K1

p(H) a union of finite-dimensional cells
whose intersections are either disjoint or are a union of faces.

Step 5. Now, let us see that any two cells of type Mp(M) either intersect in
a union of their faces or have empty intersection. If M1,M2 ∈ Γ5,
the maps βM1 and βM2 in the proof of the Lemma 3.8 agree in the
intersection of their domains, therefore there exists a unique contin-
uous map β : Mp(M1)∪Mp(M2)→M(Q̂(M1))∪M(Q̂(M2)) which
is an extension of βM1 and βM2 . The map β is a homeomorphism.
It follows that cells Mp(M1) and Mp(M2) intersect one another like
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the cells M(Q̂(M1)) and M(Q̂(M1)) do. Since these intersect in a
union of their faces, the cells Mp(M1) and Mp(M2) intersect in a
union of their faces in the same manner.

The remaining cases are treated in a similar way. This concludes the proof
of Theorem 4.1. �

The converse of Theorem 4.1, is also true in the class of all locally con-
nected, connected and compact spaces and its proof is much simpler.

Lemma 4.2 ([11]). Let X be a connected, locally connected, compact metric
space. Then X is not a multigraph if and only if C(X) contains a Hilbert
cube.

Since it is desirable for us that the Hilbert cube in the Lemma above be
contained in a hyperspace Cp(X), we need more results. Lemmas 4.3 and
4.4 can be found in [12].

Lemma 4.3. Let A0 and A1 ∈ 2X be such that A0 6= A1. Then, the following
two statements are equivalent:

(1) There exists an order arc in 2X from A0 to A1;
(2) A0 ⊆ A1 and each component of A1 intersects A0.

Lemma 4.4. If α is an order arc in 2X beginning with A0 ∈ C(X), then
α ⊆ C(X).

Recall that, an ∞-odd is a connected and compact space B, containing
a compact connected subspace A, such that B −A contains infinitely many
components.

Lemma 4.5 ([9]). Let X be any connected compact metric space. Then
C(X) contains Hilbert cubes if and only if X contains ∞-odds.

The converse of Lemma 4.5 is important to us, since from it, it will be
clear that Cp(X) contains a Hilbert cube for some p. We include here the
proof for completeness.

Proof. Let B be an ∞-odd of X and A ⊆ B a connected compact subspace
such that B − A contains infinitely components. Choose a numerable col-
lection K1, K2, . . . of such components. Each A ∪ Kn is a compact and
connected subspace of X containing A. According to Lemmas 4.3 and 4.4,
there exists an order arc αn : [0, 1]→ C(X) from A to A ∪Kn.

Since each αn is a continuous map, there exist rn ∈ (0, 1] such that
H(αn(rn), A) < 1/n (where H is the Hausdorff metric on C(X)). Hence
αn(rn) ⊆ N(1/n,A) = {x ∈ X : there exists a ∈ A such that d(x, a) < 1/n}.
Define ϕ : [0, 1]N → C(X) by,

ϕ(t1, t2, . . .) = α1(r1t1) ∪ α2(r2t2) ∪ · · · .
Since each αn(rntn) is a connected compact subspace containing A, we have
that ϕ(t1, t2, . . .) is a connected subset of X.
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Furthermore, it can be proven that ϕ(t1, t2, . . .) is closed (hence compact),
continuous and injective. Since Domϕ is compact and Imϕ is contained
in a Hausdorff space, we have that the map ϕ : [0, 1]N → ϕ([0, 1]N) is a
homeomorphism. So, ϕ([0, 1]N) is a subspace homeomorphic to [0, 1]N which
is contained in C(X). This concludes the proof. �

Notice that, in the proof of the above Lemma, since A ⊆ ϕ(z) for all
z ∈ [0, 1]N, if p ∈ A, then ϕ([0, 1]N) is a Hilbert cube contained in Cp(X).
Therefore next corollary follows.

Corollary 4.6. Let X be any connected, compact, metric space. If X con-
tains an ∞-odd, then there exists p ∈ X, such that Cp(X) contains a Hilbert
cube.

Theorem 4.7. If X is locally connected, connected, compact, and Cpp, then
X is a multigraph.

Proof. If X is not a multigraph, it follows by Lemma 4.2, that C(X) contains
a Hilbert cube. By Lemma 4.5, X contains an ∞-odd and by Corollary 4.6,
Cp(X) contains a Hilbert cube for some p ∈ X, this is a contradiction since
X is Cpp. This concludes the proof. �

Corollary 4.8. A connected, locally connected, compact metric space X is
a multigraph if and only if X is Cpp.

Question. Does there exists any nonlocally connected (and therefore not a
multigraph), connected and compact metric space X, which is Cpp?

Question. Can the phrase locally connected in Theorem 4.7 be replaced by
arc-connected?
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