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NEW PARITY RESULTS OF SUMS OF PARTITIONS AND

SQUARES IN ARITHMETIC PROGRESSIONS

WEIDING HU, OLIVIA X. M. YAO, AND TAOYAN ZHAO

Abstract. Recently, Ballantine and Merca proved that if (a, b) ∈
{(6, 8), (8, 12), (12, 24), (15, 40), (16, 48), (20, 120), (21, 168)}, then∑
ak+1 square

p(n − k) ≡ 1 (mod 2) if and only if bn + 1 is a square. In

this paper, we investigate septuple (a1, a2, a3, a4, a5, a6, a7) ∈ N5 × Q2

for which
∑

a1k+a2 square

p(a3a
α
4n + a6a

α
4 + a7 − k) ≡ 1 (mod 2) if and

only if a5n+ 1 is a square. We prove some new parity results of sums of
partitions and squares in arithmetic progressions which are analogous
to the results due to Ballantine and Merca.

1. Introduction

A partition of a nonnegative integer n is a nonincreasing sequence of
positive integers that sum to n. Let p(n) denote the number of partitions of
n. As usual, set p(0) = 1. It is well known, by the work of Euler, that the
generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,(1.1)

where throughout this paper, we always employ the standard notation

(a; q)∞ =

∞∏
n=0

(1− aqn).

The parity of p(n) has been investigated by a number of authors, including
Hirschhorn [5, 6], Kolberg [8], Newman [9], Nicolas, Ruzsa, and Sárközy [10],
Ono [11, 12], Subbarao [15], and Radu [14]. In fact, the parity of p(n) seems
to be quite random, and it is widely believed that p(n) is even approximately
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half of the time. More precisely, Parkin and Shanks [13] conjectured that

lim
n→+∞

#{k ≤ n : p(k) is odd}
n

=
1

2
.(1.2)

Although there have been many works on the parity of p(n), we are very far
from proving this conjecture.

Questions regarding the parity of the partition function in arithmetic
progressions have been investigated for many years. In 1966, Subbarao
[15] conjectured that every arithmetic progression contains infinitely many
integers M for which p(M) is odd, as well as infinitely many integers N for
which p(N) is even. Moreover, he proved that for the progression 1 (mod 2)
the conjecture is true. In the even case, the conjecture was settled by Ono
[11]. Radu [14] completed the proof of the odd part of Subbarao’s conjecture.

Recently, Ballantine and Merca [2] considered the parity of sums of parti-
tion numbers for square values in given arithmetic progressions. Ballantine
and Merca’s work differs from the articles [11, 14, 15] in that they considered
the parity of single values of p(n) in an arithmetic progression. Ballantine
and Merca [2] proved that if (a, b) ∈ {(6, 8), (8, 12), (12, 24), (15, 40),
(16, 48), (20, 120), (21, 168)}, then∑

ak+1 square

p(n− k) ≡ 1 (mod 2)

if and only if bn+ 1 is a square.
Let N, Z, and Q denote the set of nonnegative integers, the set of integers

and the set of rational numbers, respectively. In this paper, we investigate
the septuple (a1, a2, a3, a4, a5, a6, a7) ∈ N5 ×Q2 for which∑

a1k+a2 square

p(a3a
α
4n+ a6a

α
4 + a7 − k) ≡ 1 (mod 2)

if and only if a5n+ 1 is a square.
The main results of this paper can be stated as follows.

Theorem 1.1. Let n, α be nonnegative integers. Then∑
24k+9 is a square

p

(
22α+3n+

22α − 1

3
− k
)
≡ 1 (mod 2)(1.3)

if and only if 24n+ 1 is a square.

Theorem 1.2. Let n be a nonnegative integer. Then∑
120k+25 is a square

p(4n− k) ≡ 1 (mod 2)(1.4)

if and only if 24n+ 1 is a square.

Theorem 1.3. Let n, α be nonnegative integers. Then∑
88k+121 is a square

p

(
22α+5n+

2(22α − 1)

3
− k
)
≡ 1 (mod 2)(1.5)
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if and only if 24n+ 1 is a square.

Theorem 1.4. Let n, α be nonnegative integers. Then∑
88k+121 is a square

p

(
11× 22α+4n+

5× 22α+2 − 2

3
− k
)
≡ 1 (mod 2)(1.6)

if and only if 24n+ 1 is a square.

Theorem 1.5. Let n, α be nonnegative integers. Then∑
312k+169 is a square

p

(
4× 13αn+

13α − 1

2
− k
)
≡ 1 (mod 2)(1.7)

if and only if 8n+ 1 is a square.

Theorem 1.6. Let n, α be nonnegative integers and let p ≥ 3 be a prime.
Then ∑

312k+169 is a square

p

(
4p2αn+

p2α − 1

2
− k
)
≡ 1 (mod 2)(1.8)

if and only if 8n+ 1 is a square.

2. Proof of Theorem 1.1

It is well-known that
∞∑
n=0

q
n2+n

2 =
(q2; q2)2∞
(q; q)∞

.(2.1)

Combining (1.1) and (2.1) yields

∞∑
n=0

∑
t+

3s(s+1)
2

=n, (t,s)∈N2

p(t)qn =
∞∑
t=0

p(t)qt
∞∑
s=0

q
3(s2+s)

2(2.2)

=
(q6; q6)2∞

(q; q)∞(q3; q3)∞
.

It follows from (2.6) in [16] that

(q; q)∞(q3; q3)∞ =
(q2; q2)∞(q8; q8)2(q12; q12)4∞
(q4; q4)2∞(q6; q6)∞(q24; q24)2∞

(2.3)

− q (q4; q4)4∞(q6; q6)∞(q24; q24)2∞
(q2; q2)∞(q8; q8)2(q12; q12)2∞

.

By the binomial theorem,

(q; q)2∞ ≡ (q2; q2)∞ (mod 2) .(2.4)
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Thanks to (2.2)–(2.4),

(q6; q6)2∞
(q; q)∞(q3; q3)∞

=
(q; q)∞(q3; q3)∞(q6; q6)2∞

(q; q)2∞(q3; q3)2∞

(2.5)

≡ (q; q)∞(q3; q3)∞(q6; q6)∞
(q2; q2)

=
(q8; q8)2(q12; q12)4∞
(q4; q4)2∞(q24; q24)2∞

− q (q4; q4)4∞(q6; q6)2∞(q24; q24)2∞
(q2; q2)2∞(q8; q8)2(q12; q12)2∞

≡ (q8; q8)∞ + q
(q24; q24)2∞

(q4; q4)∞(q12; q12)∞
(mod 2) .

Substituting (2.5) into (2.2) and extracting the terms involving q8n, then
replacing q8 by q, we deduce that

∞∑
n=0

∑
t+

3(s2+s)
2

=8n, (s,t)∈N2

p(t)qn ≡ (q; q)∞ (mod 2) .(2.6)

One of the most famous identities in the theory of partitions is Euler’s
pentagonal number theorem

∞∑
m=−∞

(−1)mq
m(3m−1)

2 = (q; q)∞.(2.7)

Combining (2.6) and (2.7) yields∑
t+

3(s2+s)
2

=8n, (s,t)∈N2

p(t) ≡ 1 (mod 2)(2.8)

if and only if n = m(3m− 1)/2 for some integer m. It is easy to see that
24k + 9 is a square if and only if k = 3(s2 + s)/2 for some nonnegative
integer s. Thus, ∑

t+
3(s2+s)

2
=8n, (s,t)∈N2

p(t) =
∑
s∈N

p

(
8n− 3s(s+ 1)

2

)

=
∑

24k+9 is a square

p(8n− k).

Moreover, 24n + 1 is a square if and only if n = m(3m − 1)/2. Therefore,
we can rewrite (2.8) as ∑

24k+9 is a square

p(8n− k) ≡ 1 (mod 2)(2.9)
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if and only if 24n+1 is a square. Substituting (2.5) into (2.2) and extracting
those terms in which the power of q is congruent to 1 modulo 4, then dividing
by q and replacing q4 by q, we have

∞∑
n=0

∑
t+

3(s2+s)
2

=4n+1, (s,t)∈N2

p(t)qn ≡ (q6; q6)2∞
(q; q)∞(q3; q3)∞

(mod 2) .(2.10)

It follows from (2.2) and (2.10) that for n ∈ N,∑
t+

3(s2+s)
2

=4n+1, (s,t)∈N2

p(t) ≡
∑

t+
3(s2+s)

2
=n, (s,t)∈N2

p(t) (mod 2) .(2.11)

By (2.11) and mathematical induction, for n, α ∈ N,∑
t+

3(s2+s)
2

=4αn+ 4α−1
3

, (s,t)∈N2

p(t) ≡
∑

t+
3(s2+s)

2
=n, (s,t)∈N2

p(t) (mod 2) .

Furthermore, the above identity can be rewritten as

∑
24k+9 is a square

p

(
4αn+

4α − 1

3
− k
)
≡

∑
24k+9 is a square

p(n− k) (mod 2) .

(2.12)

Replacing n by 8n in (2.12) and using (2.9), we arrive at (1.3). This com-
pletes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

It follows from (1.1) and (2.7) that

∞∑
n=0

∑
t+

5s(3s−1)
2

=n, (s,t)∈Z×N

p(t)qn =
∞∑
t=0

p(t)qt
∞∑

s=−∞
q

5s(3s−1)
2

(3.1)

≡
∞∑
t=0

p(t)qt
∞∑

s=−∞
(−1)sq

5s(3s−1)
2 (mod 2)

=
(q5; q5)∞
(q; q)∞

.

Xia and Yao [17] proved that

(q5; q5)∞
(q; q)∞

=
(q8; q8)∞(q20; q20)2∞
(q2; q2)2∞(q40; q40)∞

+ q
(q4; q4)3∞(q10; q10)∞(q40; q40)∞
(q2; q2)3∞(q8; q8)∞(q20; q20)∞

;(3.2)

see also [7]. By (2.4) and (3.2),

(q5; q5)∞
(q; q)∞

≡ (q4; q4)∞ + q
(q10; q10)3∞
(q2; q2)∞

(mod 2) .(3.3)
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Substituting (3.3) into (3.1) and extracting the terms involving q4n, then
replacing q4 by q, we arrive at

∞∑
n=0

∑
t+

5s(3s−1)
2

=4n

p(t)qn ≡ (q; q)∞ (mod 2) .(3.4)

In view of (2.7) and (3.4),

∞∑
n=0

∞∑
s=−∞

p

(
4n− 5s(3s− 1)

2

)
qn ≡

∞∑
m=−∞

(−1)mq
m(3m−1)

2 (mod 2) .(3.5)

Therefore,
∞∑

s=−∞
p

(
4n− 5s(3s− 1)

2

)
≡ 1 (mod 2)(3.6)

if and only if n = m(3m− 1)/2. It is easy to see that k = 5s(3s− 1)/2 for
some integer s if and only if 120k + 25 is a square. Thus, we can rewrite
(3.6) as ∑

120k+25 is a square

p (4n− k) ≡ 1 (mod 2)(3.7)

if and only if n = m(3m− 1)/2 for some integer m. Theorem 1.2 follows
from (3.7) and the fact that n = m(3m− 1)/2 for some integer m if and
only if 24n+ 1 is a square. This completes the proof.

4. Proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4, we first prove the following lemma.

Lemma 4.1. We have

1

(q; q)∞(q11; q11)∞
≡ (q12; q12)3∞

(q4; q4)∞(q44; q44)∞
+ q

(q6; q6)3∞
(q2; q2)3∞

(4.1)

+ q6
(q66; q66)3∞

(q22; q22)∞(q44; q44)∞
+ q15

(q132; q132)3∞
(q4; q4)∞(q44; q44)∞

(mod 2) .

Proof. From (36.8) in Berndt’s book [3, p. 69], we deduce that if µ is even,
then

ψ(qµ+ν)ψ(qµ−ν) = ϕ(qµ(µ
2−ν2))ψ(q2µ)

(4.2)

+

µ/2−1∑
m=1

qµm
2−νmf(q(µ+2m)(µ2−ν2), q(µ−2m)(µ2−ν2))f(q2νm, q2µ−2νm)

+ qµ
3/4−µν/2ψ(q2µ(µ

2−ν2))f(qµν , q2µ−µν),
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where

ϕ(q) =
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, ψ(q) =

(q2; q2)2∞
(q; q)∞

,

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Setting µ = 6 and ν = 5 in (4.2), we get

ψ(q)ψ(q11) =ϕ(q66)ψ(q12) + qf(q88, q44)f(q10, q2)(4.3)

+ q14f(q110, q22)f(q20, q−8) + q39ψ(q132)f(q30, q−18).

It is easy to verify that

f(q88, q44) =
f88f

2
132

f44f264
, f(q10, q2) =

f24 f6f24
f2f8f12

,

f(q20, q−8) = q−8
f8f

2
12

f4f24
, f(q30, q−18) = q−24

f512
f26 f

2
24

.

Substituting the above identities into (4.3), we have

(q2; q2)2∞(q22; q22)2∞
(q; q)∞(q11; q11)∞

=
(q24; q24)2∞(q132; q132)5∞

(q12; q12)∞(q66; q66)2∞(q264; q264)2∞
(4.4)

+ q
(q4; q4)2∞(q6; q6)∞(q24; q24)∞(q88; q88)∞(q132; q132)2∞
(q2; q2)∞(q8; q8)∞(q12; q12)∞(q44; q44)∞(q264; q264)∞

+ q6
(q8; q8)∞(q12; q12)2∞(q44; q44)2∞(q66; q66)∞(q264; q264)∞
(q4; q4)∞(q22; q22)∞(q24; q24)∞(q88; q88)∞(q132; q132)∞

+ q15
(q12; q12)5∞(q264; q264)2∞

(q6; q6)2∞(q24; q24)2∞(q132; q132)∞
.

Lemma 4.1 follows from (2.4) and (4.4). This completes the proof. �

We are now in a position to prove Theorems 1.3 and 1.4.
Based on (1.1) and (2.1),

∞∑
n=0

∑
t+

11s(s+1)
2

=n, (s,t)∈N2

p(t)qn =
∞∑
t=0

p(t)qt
∞∑
s=0

q
11s(s+1)

2(4.5)

=
(q22; q22)2∞

(q; q)∞(q11; q11)∞
≡ (q44; q44)∞

(q; q)∞(q11; q11)∞
(mod 2) .

Thanks to (4.1) and (4.5),

∞∑
n=0

∑
t+

11s(s+1)
2

=n, (s,t)∈N2

p(t)qn ≡ (q12; q12)3∞
(q4; q4)∞

+ q
(q6; q6)3∞(q44; q44)∞

(q2; q2)3∞
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+ q6
(q66; q66)3∞
(q22; q22)∞

+ q15
(q132; q132)3∞

(q4; q4)∞
(mod 2) ,

which yields

∞∑
n=0

∑
t+

11s(s+1)
2

=2n, (s,t)∈N2

p(t)qn ≡ (q6; q6)3∞
(q2; q2)∞

+ q3
(q33; q33)3∞
(q11; q11)∞

(mod 2) .

(4.6)

In view of (2.4), (2.5), and (4.6),

∞∑
n=0

∑
t+

11s(s+1)
2

=2n, (s,t)∈N2

p(t)qn ≡ (q6; q6)3∞
(q2; q2)∞

+ q3
(q66; q66)2∞

(q11; q11)∞(q33; q33)∞

(4.7)

≡ (q6; q6)3∞
(q2; q2)∞

+ q3(q88; q88)∞ + q14
(q132; q132)3∞
(q44; q44)∞

(mod 2) .

It follows from (4.7) that

∞∑
n=0

∑
t+

11s(s+1)
2

=4n, (s,t)∈N2

p(t)qn ≡ (q3; q3)3∞
(q; q)∞

+ q7
(q66; q66)3∞
(q22; q22)∞

(mod 2)(4.8)

and
∞∑
n=0

∑
t+

11s(s+1)
2

=176n+6, (s,t)∈N2

p(t)qn ≡ (q; q)∞ (mod 2) .(4.9)

Based on (2.4), (2.5), and (4.8),

∞∑
n=0

∑
t+

11s(s+1)
2

=4n, (s,t)∈N2

p(t)qn ≡ (q6; q6)2∞
(q; q)∞(q3; q3)∞

+ q7
(q66; q66)3∞
(q22; q22)∞

(4.10)

≡ (q8; q8)∞ + q
(q12; q12)3∞
(q4; q4)∞

+ q7
(q66; q66)3∞
(q22; q22)∞

(mod 2) ,

which implies

∞∑
n=0

∑
t+

11s(s+1)
2

=32n, (s,t)∈N2

p(t)qn ≡ (q; q)∞ (mod 2)(4.11)

and

∞∑
n=0

∑
t+

11s(s+1)
2

=8n+4 (s,t)∈N2

p(t)qn ≡ (q6; q6)3∞
(q2; q2)∞

+ q3
(q33; q33)3∞
(q11; q11)∞

(mod 2) .

(4.12)
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By (2.7), (4.9), and (4.11),

∑
t+

11s(s+1)
2

=176n+6, (s,t)∈N2

p(t) ≡
∑

t+
11s(s+1)

2
=32n, (s,t)∈N2

p(t) ≡ 1 (mod 2)

(4.13)

if and only if n = m(3m− 1)/2 for some integer m. Note that n =
m(3m− 1)/2 for some integer m if and only if 24n + 1 is a square. Hence,
we can rewrite (4.13) as∑

88k+121 is a square

p(176n+ 6− k) ≡
∑

88k+121 is a square

p(32n− k)(4.14)

≡ 1 (mod 2)

if and only if 24n+ 1 is a square. Based on (4.6) and (4.12),∑
t+

11s(s+1)
2

=8n+4 (s,t)∈N2

p(t) ≡
∑

t+
11s(s+1)

2
=2n (s,t)∈N2

p(t) (mod 2) .(4.15)

By (4.15) and mathematical induction, we see that for n, α ∈ N,

∑
t+

11s(s+1)
2

=22α+1n+ 22α+2−4
3

, (s,t)∈N2

p(t) ≡
∑

t+
11s(s+1)

2
=2n, (s,t)∈N2

p(t) (mod 2) .

(4.16)

Since k = 11s(s+ 1)/2 for some nonnegative integer s if and only if 88k+121
is a square, then we can rewrite (4.16) as∑

88k+121 is a square

p

(
22α+1n+

22α+2 − 4

3
− k
)

(4.17)

≡
∑

88k+121 is a square

p(2n− k) (mod 2) .

Replacing n by 88n+3 and 16n in (4.17) and using (4.14), we arrive at (1.5)
and (1.6). The proofs of Theorems 1.3 and 1.4 are complete.

5. Proofs of Theorems 1.5 and 1.6

By (1.1) and (2.7),
∞∑
n=0

∑
t+

13s(3s−1)
2

=n, (s,t)∈Z×N

p(t)qn =

∞∑
t=0

p(t)qn
∞∑

s=−∞
q

13s(3s−1)
2(5.1)

≡
∞∑
t=0

p(t)qn
∞∑

s=−∞
(−1)sq

13s(3s−1)
2 (mod 2)

=
(q13; q13)∞

(q; q)∞
.
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Calkin et al. [4] proved that

(q13; q13)∞
(q; q)∞

≡(q4; q4)3∞ + q(q2; q2)5∞(q26; q26)∞(5.2)

+ q6(q52; q52)3∞ + q7
(q26; q26)7∞
(q2; q2)∞

(mod 2) .

In view of (5.1) and (5.2),
∞∑
n=0

∑
t+

13s(3s−1)
2

=n, (s,t)∈Z×N

p(t)qn ≡ (q4; q4)3∞ + q(q2; q2)5∞(q26; q26)∞

+ q6(q52; q52)3∞ + q7
(q26; q26)7∞
(q2; q2)∞

(mod 2) ,

which yields

∞∑
n=0

∑
t+

13s(3s−1)
2

=2n, (s,t)∈Z×N

p(t)qn ≡ (q2; q2)3∞ + q3(q26; q26)3∞ (mod 2) .

(5.3)

By (2.4) and (5.3),
∞∑
n=0

∑
t+

13s(3s−1)
2

=4n, (s,t)∈Z×N

p(t)qn ≡ (q; q)3∞ ≡
(q2; q2)2∞
(q; q)∞

(mod 2) .(5.4)

By (2.1) and (5.4), we see that∑
t+

13s(3s−1)
2

=4n, (s,t)∈Z×N

p(t) ≡ 1 (mod 2)(5.5)

if and only if n = m(m+ 1)/2 for some nonnegative integer m. Moreover,
since n = m(m+ 1)/2 for some nonnegative integer m if and only if 8n+ 1
is a square, then we can rewrite (5.5) as∑

312k+169 is a square

p(4n− k) ≡ 1 (mod 2)(5.6)

if and only if 8n+ 1 is a square. Ahmed and Baruah [1] proved that if p ≥ 3
is a prime, then

(q; q)3∞ =

p−1∑
j=0,

j 6= p−1
2

(−1)j
∞∑
n=0

(−1)n(2pn+ 2k + 1)q
pn(pn+2k+1)

2(5.7)

+ (−1)
p−1
2 pq

p2−1
8 (qp

2
; qp

2
)3∞.

Setting p = 13 in (5.7) and replacing q by q2 in (5.7), then substituting the
result identity into (5.3), extracting the terms in which the power of q is
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congruent to 3 modulo 13, dividing by q3, and replacing q13 by q, we deduce
that

∞∑
n=0

∑
t+

13s(3s−1)
2

=26n+6, (s,t)∈Z×N

p(t)qn ≡ (q2; q2)3∞ + q3(q26; q26)3∞ (mod 2) .

(5.8)

Combining (5.3) and (5.8) yields

∑
t+

13s(3s−1)
2

=26n+6, (s,t)∈Z×N

p(t) ≡
∑

t+
13s(3s−1)

2
=2n, (s,t)∈Z×N

p(t) (mod 2) .

(5.9)

Applying (5.7) and picking out the terms in which the power of q is congruent

to (p2 − 1)/4 modulo p2 from (5.3), then dividing by q(p
2−1)/4 and replacing

qp
2

by q, we have

∞∑
n=0

∑
t+

13s(3s−1)
2

=2p2n+ p2−1
2

, (s,t)∈Z×N

p(t)qn(5.10)

≡ (q2; q2)3∞ + q3(q26; q26)3∞ (mod 2) .

In view of (5.3) and (5.10),

∑
t+

13s(3s−1)
2

=2p2n+ p2−1
2

, (s,t)∈Z×N

p(t) =
∑

t+
13s(3s−1)

2
=2n, (s,t)∈Z×N

p(t) (mod 2) .

(5.11)

Since k = 13s(3s− 1)/2 for some integer s if and only if 312k + 169, then
we can rewrite (5.9) and (5.11) as

∑
312k+169 is a square

p(26n+ 6− k) ≡
∑

312k+169 is a square

p(2n− k) (mod 2)

(5.12)

and

∑
312k+169 is a square

p

(
2p2n+

p2 − 1

2
− k
)

=
∑

312k+169 is a square

p(2n− k).

(5.13)

By (5.12), (5.13) and mathematical induction, we see that for n, α ∈ N,∑
312k+169 is a square

p

(
2× 13αn+

13α − 1

2
− k
)

(5.14)

≡
∑

312k+169 is a square

p(2n− k) (mod 2)
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and

∑
312k+169 is a square

p

(
2p2αn+

p2α − 1

2
− k
)

=
∑

312k+169 is a square

p(2n− k).

(5.15)

Replacing n by 2n in (5.14) and (5.15), then utilizing (5.6), we get (1.7) and
(1.8). This completes the proofs of Theorems 1.5 and 1.6.
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