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THE 2-TUPLE DOMINATING INDEPENDENT NUMBER

OF A RANDOM GRAPH

BIN WANG AND TAO ZHANG

Abstract. In this note, we show that 2-tuple dominating independent
number of the Erdős–Rényi graph G (n, p) a.a.s. has a two-point con-
centration when p is a constant.

1. Introduction and main result

In a simple graph G = (V,E), a vertex is said to dominate itself and its
neighbors. The k-tuple domination set of G is a subset D of V such that
any vertex in V \D is dominated by at least k vertices in D. Furthermore,
if D is also an independent set (i.e. it does not induce any edge), then D
is called a k-tuple dominating independent set. The k-tuple dominating
independent number of G, ik(G), is the smallest integer ` such that there
exists a k-tuple dominating independent set of cardinality `, see [5] and [6]
for more information about (k-tuple) independent domination in graphs.

The Erdős–Rényi random graph G(n, p) is the set of graphs on n ver-
tices and every two vertices are connected by an edge independently with
probability p. Wieland and Godbole [8] proved the domination number of
G(n, p) asymptotically almost surely1 (a.a.s.) is concentrated at two points
for the constant p and for p tends to 0 with suitable rate. Later, Wang and
Xiang [7] considered the k-tuple domination number of G(n, p) and got the
two-point concentration when p is a constant. Clark and Johnson [3] showed
the independent domination (i.e. 1-tuple dominating independent) number
of G(n, p) for p2 lnn ≤ 64 ln ((lnn)/p) a.a.s. also has the same property. Re-
cently, W loch [9] introduced 2-tuple dominating independent sets (called the
2-domination kernels in [9]), and characterized some classes of graphs having
a 2-dominating kernel. In general, computing the independent domination
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number is NP-complete (see [4]), so is the k-tuple dominating independent
number. Hence, it is interesting to decide ik(G) for a given graph G. In this
note, we show that the 2-tuple dominating independent number of G (n, p)
a.a.s. also has a two-point concentration when p is constant. Our main
results can be stated as follows.

Theorem 1.1. Let p ∈ (0, 1) is a constant which is independent of n and
b = 1/(1− p). Then in G (n, p) a.a.s.

blogb n− logb lnn+ logb 2pc+ 2 ≤ i2(G(n, p))

≤ blogb n− logb lnn+ logb 2pc+ 3.

Here bxc is the largest integer which is no more that x for any x ∈ R.

The following notation will be used. Write P(·), E(·), and Var(·) for
the probability, expected value, and variance of a random variable or event,
respectively. For any two positive functions f(n) and g(n) of a natural-
valued parameter n, denote f(n) = O(g(n)) if there is a positive constant C
such that f(n) ≤ Cg(n) when n is large enough; f(n) = Θ(g(n)) if f(n) =
O(g(n)) and g(n) = O(f(n)); and f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

2. Proof of Theorem 1.1

In this section, we appeal to the probabilistic method (see [1]) to prove
Theorem 1.1. The lower bound is proved in Section 2.1 by Markov’s inequal-
ity, and the upper bound is shown in Section 2.2 by Chebyshev’s inequality.
All the inequalities hold under the condition that n is sufficiently large.

2.1. The lower bound. Let X be a nonnegative integer valued random
variable and suppose we want to show P(X(n) > k) → 0 when n → ∞.
By Markov’s inequality, i.e. P(X(n) > k) ≤ E(X(n))/k, we only need to

show E(X(n)) → 0. For our case, let X
(2)
r denote the number of 2-tuple

dominating sets of size r, where r = blogb n− logb lnn+ logb 2pc + 1. It is
easy to see that

P (i2(G(n, p)) ≤ r) ≤ P
(
X(2)
r ≥ 1

)
.

So by Markov’s inequality, we only need to show that E(X
(2)
r )→ 0.

To simplify notation, let q = 1−p. Let S1, S2, . . . , S(nr)
be all the subsets of

vertices with size r. Define Ak to be the event that Sk is a 2-tuple dominating
independent set, and Ik to be the corresponding indicator random variable.
Clearly,

X(2)
r =

(nr)∑
k=1

Ik.

Then it is easy to see that

E
(
X(2)
r

)
=

(
n

r

)
q(
r
2)
(
1− qr − rpqr−1

)n−r
,
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where
(
1− qr − rpqr−1

)n−r
is the probability that every vertex outside of Si

is connected to at least two vertices of Si and q(
r
2) is the probability that Si

is an independent set. By the inequality 1−x ≤ e−x for any real number x,
we have

E
(
X(2)
r

)
=

(
n

r

)
q(
r
2)
(
1− qr − rpqr−1

)n−r
≤
(en
r

)r
q(
r
2) exp

{
−(n− r)(qr + rpqr−1)

}
= exp

{
r lnn+ r − r ln r +

r(r − 1)

2
ln q − (n− r)qr − (n− r)rpqr−1

}
.

Rewrite r = logb n− logb lnn+ logb 2p+ 1− ε, where

(2.1) ε := logb n− logb lnn+ logb 2p− blogb n− logb lnn+ logb 2pc ,

which is in [0, 1). Then

qr =
q1−ε lnn

2np
;

nrpqr−1 =
1

2qε
(logb n− logb lnn+ logb 2p+ 1− ε) lnn;

r2

2
ln q = −(logb n) lnn

2
− (logb lnn) ln lnn

2
+ lnn · logb lnn− (logb 2p+ 1− ε+ o(1)) lnn.

Hence,

E
(
X(2)
r

)
≤ exp

{
r lnn+ r − r ln r − r(r − 1)

2
ln q − (n− r)qr − (n− r)rpqr−1

}
≤ exp {(logb n− logb lnn+ logb 2p+ 1− ε) lnn

−(1− o(1)) logb n · ln logb n−
(logb n) lnn

2
− (logb lnn) ln lnn

2
+ lnn · logb lnn− q−ε (logb n− logb lnn) lnn/2

− (logb 2p+ 1− ε+ o(1)) lnn}

= exp

{
−
(

1

2qε
− 1

2

)
lnn · logb n−

(
1− q1−ε + o(1)

)
lnn · ln logb n

}
→ 0.

By Markov’s inequality,

P
(
X(2)
r ≥ 1

)
≤ E

(
X(2)
r

)
→ 0.
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Therefore,

P{i2 (G (n, p)) ≤ blogb n− logb lnn+ logb 2pc+ 1}

≤ P
(
X(2)
r ≥ 1

)
≤ E

(
X(2)
r

)
→ 0,

which implies that a.a.s.,

i2 (G (n, p)) ≥ blogb n− logb lnn+ logb 2pc+ 2.

�
So far, we have obtained the lower bound. In the next subsection we will

prove that a.a.s. its upper bound is blogb n− logb lnn+ logb 2pc+ 3 .

2.2. The upper bound. Let X(n) be a nonnegative integer valued random
variable and suppose we want to deduce that X(n) > 0 asymptotically
almost surely. By Chebyshev’s inequality,

P(X(n) = 0) ≤ P [|X(n)−E(X(n))| ≥ E(X(n)] ≤ Var(X(n))

E2(X(n))
,

we only need to prove that E (X(n))→∞ and Var (X(n)) = o
(
E2(X(n))

)
.

In our case, recall that X
(2)
r denotes the number of 2-tuple dominating sets

of size r, where

r = blogb n− logb lnn+ logb 2pc+ 3

and note that

P {i2 (G (n, p)) > blogb n− logb lnn+ logb 2pc+ 3} ≤ P
(
X(2)
r = 0

)
.

To show

P {i2 (G (n, p)) > blogb n− logb lnn+ logb 2pc+ 3} → 0

as n→∞, it suffices to prove P(X
(2)
r = 0)→ 0. By Chebyshev’s inequality,

that is to check

E
(
X(2)
r

)
→∞ and Var

(
X(2)
r

)
= o

(
E2
(
X(2)
r

))
.

Rewrite r = logb n − logb lnn + logb 2p + 3 − ε, where ε is defined in (2.1).
Then

qr =
lnn

n

q3−ε

2p
;

nrpqr−1 = (1 + o(1))
q2−ε

2
lnn · logb n;

r2

2
ln q = −1 + o(1)

2
lnn · logb n;

r lnn = (1 + o(1)) lnn · logb n.
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Note 1 − x ≥ e−
x

1−x for x ∈ (0, 1), and r! = (1 + o(1))
√

2πr
(
r
e

)r
. So we

obtain

E
(
X(2)
r

)
=

(
n

r

)
q(
r
2)
(
1− qr − rpqr−1

)n−r
≥
(
n

r

)
exp

{
− nrpqr−1

1− rpqr−1
+

(
r

2

)
ln q

}
≥ (1 + o(1))

nr

r!
exp

{
− nrpqr−1

1− rpqr−1
+

(
r

2

)
ln q

}
≥ (1 + o(1))

(en
r

)r
(2πr)−

1
2 exp

{
− nrpqr−1

1− rpqr−1
+

(
r

2

)
ln q

}
≥ (1 + o(1)) exp

{
r lnn+ r + r ln r − lg(2πr)

2

+
r(r − 1)

2
ln q − nrpqr−1

1− rpqr−1

}
≥ (1 + o(1)) exp

{
(1 + o(1)) lnn · logb n−

1 + o(1)

2
lnn · logb n

−q
2−ε

2
lnn · logb n

}
≥ (1 + o(1)) exp

{(
1

2
− q2−ε

2
+ o(1)

)
lnn · logb n

}
→∞.

For the variance of X
(2)
r , we have

Var
(
X(2)
r

)
= Var

 (nr)∑
j=1

Ij

 =

(nr)∑
j=1

Var(Ij) +
∑
i 6=j

Cov (Ii, Ij)

=

(nr)∑
j=1

E(Ij) (1−E(Ij)) + 2

(nr)∑
i=1

∑
j<i

[E (IiIj)−E (Ii)E (Ij)]

=

(
n

r

) r−1∑
s=0

(
r

s

)(
n− r
r − s

)
E (IiIj) + E

(
X(2)
r

)
−E2

(
X(2)
r

)
.(2.2)

Here s = |Si ∩ Sj | and

E (IiIj) = P {Si and Sj are the 2-tuple dominating independent sets}
≤ P

{
Each v ∈ Si ∪ Sj has at least two neighbors both in Si and Sj ;

Si and Sj are independent sets of size r} .

For each v ∈ Si ∪ Sj , denote by Bij(v) the event that v has exactly one
neighbor both in Si \ Sj and in Sj \ Si; by Cij(v) the event that x has at
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most one neighbor in Si ∪ Sj ; and by Dij(v) the event that v has at most
one neighbor in Si but at least two neighbors in Sj \ Si. Then

P (Bij(v)) = (r − s)pqr−s−1(r − s)pqr−s−1qs = (r − s)2p2q2r−s−2,
P (Cij(v)) = q2r−s + (2r − s)pq2r−s−1 = (1 + p(2r − s− 1)) q2r−s−1,

P (Dij(v)) =
{
qr + rpqr−1

}
·
{

1− qr−s − (r − s)pqr−s−1
}

= [1 + (r − 1)p]qr−1 − [1 + (r − 1)p][1 + (r − s− 1)p]q2r−s−2,

which means

E (IiIj)

≤ q2(
r
2)−(s2)

∏
v∈Si∪Sj

[1−P (Bij(v))−P (Cij(v))−P (Dij(v))−P (Dji(v))]

= q2(
r
2)−(s2) ×

{
1− 2(1 + (r − 1)p)qr−1

+
[
p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1

]
q2r−s−2

}n−2r+s
:= m(s).

In order to get Var(X
(2)
r ) = o

(
E2(X

(2)
r )
)
, define

Λ1 :=

(
n

r

) r−1∑
s=1

(
r

s

)(
n− r
r − s

)
m(s), Λ2 :=

(
n

r

)(
r

0

)(
n− r
r

)
m(0).

Then

Var
(
X(2)
r

)
≤ Λ1 + Λ2 + E

(
X(2)
r

)
−E2

(
X(2)
r

)
.

Notice that

f(s) :=

(
r

s

)(
n− r
r − s

)
q2(

r
2)−(s2) ×

{
1− 2(1 + (r − 1)p)qr−1

+
[
p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1

]
q2r−s−2

}n−2r+s
≤ 2

(
r

s

)
nr−s

(r − s)!
q2(

r
2)−(s2)

× exp
{
nq2r−s−2

[
p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1

]
−2n(1 + (r − 1)p)qr−1

}
.

Define

g(s) := 2

(
r

s

)
nr−s

(r − s)!
q2(

r
2)−(s2)

× exp
{
nq2r−s−2

[
p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1

]
−2n(1 + (r − 1)p)qr−1

}
.
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In the following, we shall prove

r−1∑
s=1

f(s) ≤ rg(1).

The above inequality holds naturally if we can show that

(i) s ∈ [1, logb n− (1 + η(n)) logb lnn, ] g(s) is first decreasing and then
increasing, where η(n) is a positive function on n which satisfies that
η(n)→ 0 and η(s) logb lnn→∞ as n→∞;

(ii) g(1) ≥ g(s) when s = logb n− (1 + η(n)) logb lnn;

(iii) g(1) ≥ g(s) when s = logb n − logb lnn + c3, where c3 is a constant
and c3 < logb 2p+ 3− ε.

Proof of (i). In fact,

g(s+ 1)

g(s)

=
(r − s)2

n(s+ 1)
bs exp

{
np2q2r−s−3

[
p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2

]}
≥ 1

if and only if

s ln b+ np2q2r−s−3
[
p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2

]
≥ ln

(
n(s+ 1)

(r − s)2

)
.(2.3)

Write ln
(
n(s+ 1)/(r − s)2

)
:= (1 + δ(s)) lnn, where δ(s) = Θ (ln r/lnn)

which tends to 0 as n→∞. In the following, we will show the monotonicity
of g(s) through checking inequality (2.3).
Case 1 : s ≤ c1 logb n, where 0 < c1 < 1.

Define

h(s) = p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2.

It is easy to see that h′(s) = −2ps− (3− p) < 0, which means h(s) is a
deceasing function on s. Therefore, when n is large enough,

s ln b+ np2q2r−s−3
[
p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2

]
≤ s ln b+ np2q2r−s−3 ·

(
pr2 + (2− 2p)r + p− 5

)
≤ c1 lnn+ np2 · ln2 n

n2−c1−o(1)
· q

3−ε

4p2
·
(
pr2 + (2− 2p)r + p− 5

)
≤ c1 lnn+

q3−ε

4

ln2 n

n1−c1−o(1)
· 2pc21 log2b n

= c1 lnn+ o(lnn) < (1 + δ(s)) lnn.
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Case 2 : s = logb n − c2 logb lnn + o(logb lnn), where c2 is a constant and
c2 > 1.

s ln b+ np2q2r−s−3
[
p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2

]
= lnn− (c2 + o(1)) ln lnn

+
q3−2ε(lnn)c2−2+o(1)

4
· [2p(c2 − 1) + o(1)] logb lnn · logb n

= lnn− c2 ln lnn+ o(ln lnn)

+
p(c2 − 1)q3−2ε + o(1)

2 ln2 b
· (lnn)c2−1+o(1) · ln lnn

≥ lnn+ 2 ln lnn ≥ lnn+ (1 + o(1)) ln(lnn) = ln

(
n(s+ 1)

(r − s)2

)
.

Case 3 : s = logb n−logb lnn−η(n) logb lnn, where η(n) is a positive function
on n which satisfies that η(n)→ 0 and η(s) logb lnn→∞ as n→∞.

s ln b+ np2q2r−s−3
[
p
(
r2 − s2 − 2r + s+ 1

)
+ 2r − 3s− 2

]
= lnn− ln lnn+ c3 ln b

+
q3−2ε(lnn)1−η(n)

4
· (2p+ o(1)) η(n) logb lnn · logb n

= lnn− ln lnn+ c3 ln b

+
pq3−2ε + o(1)

2 ln b
· η(n) logb lnn · (lnn)2−η(n)

> (lnn)2−η(n) >

(
1 + Θ

(
ln r

lnn

))
lnn = ln

(
n(s+ 1)

(r − s)2

)
.

By the discussions above, when n is large enough, g(s) is first decreasing
and then increasing for s ∈ [1, logb n− (1 + η(n)) logb lnn].

Proof of (ii). When s = logb n− (1 + η(n)) logb lnn,

g(1)

g(s)
=

r nr−1

(r−1)!q
2(r2)(

r
s

)
nr−s

(r−s)!q
2(r2)−(s2)

×
exp

{
nq2r−3

[
p2(r2 − 2r + 1) + p(2r − 3) + 1

]}
exp {nq2r−s−2 [p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1]}

≥ ns−1q
s2

2

r!rs
·

exp
{
n · q

3−ε ln2 n
n2 · p2(1 + o(1)) log2b n

}
exp

{
q4−2ε

4p2
· (2p+ o(1)) η(n) logb lnn · logb n

}
≥ (1 + o(1))n

s
2
−1 (lnn)

s(1+η(n))
2

2
√

2πr
(
r
e

)r · rs · 1

n
q4−2ε(1+o(1))

2p2 ln b
η(n) logb lnn

> 1.
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Here, the last inequality holds as, noting s = (1 + o(1)) logb n, r = (1 +
o(1)) logb n and η(n)→ 0,

ln

(1 + o(1))n
s
2
−1 (lnn)

s(1+η(n))
2

2
√

2πr
(
r
e

)r · rs · 1

n
q4−2ε(1+o(1))

2p2 ln b
η(n) logb lnn


≥ (1 + o(1))

logb n

2
· lnn+ (1 + o(1))

logb n

4
· ln lnn

− 3((1 + o(1))) logb n · ln logb n− logb lnn · lnn
> 0.

Proof of (iii). When s = logb n − logb lnn + c3, where c3 is a constant and
c3 ≤ logb 2p + 3 − ε, noting that r! = (1 + o(1))

√
2πr

(
r
e

)r
and ε ∈ [0, 1), it

is easy to check that

q2r−s−2 =
q6−c3−2ε

4p2n
, qs =

qc3 lnn

n
,

and

p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1 = c̃ logb n,

where

c̃ := p2 (2 logb 2p+ 5− 2c3 − 2ε) + p+ o(1) ≥ −p2 + p+ o(1) > 0.

So far we have

g(1)

g(s)

=
r nr−1

(r−1)!q
2(r2)(

r
s

)
nr−s

(r−s)!q
2(r2)−(s2)

×
exp

{
nq2r−3

[
p2(r2 − 2r + 1) + p(2r − 3) + 1

]}
exp {nq2r−s−2 [p2(r2 − s2 − 2r + s+ 1) + p(2r − s− 2) + 1]}

≥ ns−1q
s2

2

r!rs

×
exp

{
n · q

3−ε ln2 n
n2 · p2(1 + o(1)) log2b n

}
exp

{
n · q

4−c3−2ε

4p2n
·
[
p2
(

2 logb
2p
q + 3− 2c3 − 2ε

)
+ p+ o(1)

]
logb n

}
≥ (1 + o(1))n

s
2
−1 (qc3 lnn)s

2
√

2πr
(
r
e

)r · rs · 1

n
c̃q4−c3−2ε

4p2 ln b

> 1.
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Here, we also get that the last inequality holds as, noting s = (1+o(1)) logb n
and r = (1 + o(1)) logb n,

ln

(
(1 + o(1))n

s
2
−1 (qc3 lnn)s

2
√

2πr
(
r
e

)r · rs · 1

n
c̃q4−c3−2ε

4p2 ln b

)

≥ (1 + o(1)) logb n

4
lnn+ (1 + o(1)) logb n · ln lnn

− 2(1 + o(1)) logb n · ln logb n−
c̃q4−c3−2ε

4p2 ln b
lnn

> 0.

By (i)–(iii) we can conclude that

f(s) ≤ g(s) ≤ g(1),

r−1∑
s=1

f(s) ≤ rg(1).

Now we can make estimates for Λ1 and Λ2.

Λ1

E2
(
X

(2)
r

) =

(
n
r

)∑r−1
s=1 f(s)

E2
(
X

(2)
r

) ≤
(
n
r

)
rg(1)(

n
r

)2
q2(

r
2) (1− qr − rpqr−1)2n−2r

≤

(
n
r

)
r 2rn

r−1q
2(r2)

(r−1)!(
n
r

)2
q2(

r
2) (1− qr − rp)qr−1)2n−2r

× exp
{
nq2r−3

[
p2(r2 − 2r + 1) + p(2r − 3) + 1

]
− 2n(1 + (r − 1)p)qr−1

}
=

2(1 + o(1))r2nr−1r!

(r − 1)!nr
·

exp
{
−2n(1 + (r − 1)p)qr−1

}
{1− (1 + (r − 1)p)qr−1}2n−2r

≤ 3(logb n)3

n
→ 0.

Λ2

E2
(
X

(2)
r

) =

(
n
r

)(
n−r
r

)
q2(

r
2)(

n
r

)2
q2(

r
2) (1− qr − rpqr−1)2n−2r

×
{

1− 2(1 + (r − 1)p)qr−1 +
[
p2(r2 − 2r + 1) + p(2r − 2) + 1

]
q2r−2

}n−2r
=

(
n−r
r

) (
1− (2 + o(1))(1 + (r − 1)p)qr−1

)n−2r(
n
r

)
{1− (1 + (r − 1)p)qr−1}2n−2r

= 1 + o(1).

Therefore,

Var
(
X(2)
r

)
≤ Λ1 + Λ2 −E2

(
X(2)
r

)
+ E

(
X(2)
r

)
= o

(
E2
(
X(2)
r

))
.
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By Chebyshev’s inequality,

P{i2 (G (n, p)) > blogb n− logb lnn+ logb 2pc+ 3}

≤ P
(
X(2)
r = 0

)
≤ P

(∣∣∣X(2)
r −EX(2)

r

∣∣∣ ≥ EX(2)
r

)
≤

Var
(
X

(2)
r

)
E2
(
X

(2)
r

) → 0.

Thus a.a.s.,

i2 (G (n, p)) ≤ blogb n− logb lnn+ logb 2pc+ 3.

�

3. Conclusions

In this paper, by Markov’s inequality and Chebyshev’s inequality we
showed that 2-tuple dominating independent number of the Erdős–Rényi
graph G (n, p) a.a.s. has a two-point concentration when p is a constant.
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