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EQUIVALENT CLASSES OF DEGREE SEQUENCES FOR

TRIANGULATED POLYHEDRA AND THEIR CONVEX

REALIZATION

PASCAL HONVAULT

Abstract. We define an equivalence on the set of all degree sequences
of a triangulated polyhedron with a fixed number of vertices and com-
pute them and their cardinal via an algorithm. We also prove that each
class is realizable as a convex polyhedron.

1. Introduction

We consider the triangulated compact polyhedra of genus 0 that is home-
omorphic to the unit sphere. In a previous study ([3]), we determined all
distinct triangulations of a fixed set of points of S2 as well as their degree
sequences. Since several such sequences may actually represent the same
triangulation (depending on the way you look at the sphere) we propose
grouping the degree sequences into equivalent classes corresponding to the
same triangulation. This yields a number of classes that are far smaller than
the number of triangulations that represent the different possible polyhedra
and proves that each of these classes is realizable as a convex polyhedron.

We first recall some basic definitions (see [1], [2]).

Definition 1.1. A triangulation of a planar set of points V is a subdivision
of the plane determined by a maximal set of noncrossing edges whose vertex
set is V . Two triangulations T and T ′ of V are called positively equivalent
if there exists a one-to-one map ϕ : V → V that sends the triangles of T to
the triangles of T ′ and preserves their orientations.

In the above definition, the word maximal indicates that any edge that
does not belong to triangulation must intersect the interior of at least one of
the edges of the triangulation. The compact triangulated polyhedra of genus
0 are homeomorphic to the unit sphere S2 and thus induce triangulations
of it. Each such triangulation has an associated degree sequence, which
depends on the way the vertices are arranged.
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Definition 1.2. Let Vn = {v0, . . . , vn} be a set of n+1 points of S2, and let
T = {t1, . . . , t2n−2} be a triangulation of S2 where all ti are triangles whose
vertices are in Vn. An order σ is a permutation of {0, . . . , n} and the degree
sequence of the triangulation T associated with order σ is the (n+ 1)-tuple
Cσ = (deg(vσ(0)), . . . ,deg(vσ(n))).

Note that there is 2n − 2 triangles in a triangulation ([3]). The main
advantage to the degree sequence is that it is simpler than the associated
triangulation yet characterizes it uniquely, as will see in the next section.
Let t be a triangle of a triangulation, through which one looks in order to
obtain the associated Schlegel diagram (see Figure 1). In order to count
positively equivalent degree sequences, our first task is to find a canonical
order σt which depends only on the way you look at the sphere. This reduces
the original problem to that of triangulating the triangle t with n− 2 points
in it.
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Figure 1. A part of the Schlegel diagram of a triangulation
seen from the triangle t = (t[0], t[1], t[2]).

This is done by means of edge flips (see [4],[7]) as dictated by Wagner’s
theorem. Recall that if a triangulation contains two triangles (a, b, c) and
(a, c, d) which form a convex quadrilateral (a, b, c, d), then the edge flip con-
sists in replacing the diagonal edge [a, c] with the diagonal [b, d], thereby
yielding a new triangulation. In particular, Wagner’s theorem asserts any
two triangulations can be obtained from one another through a sequence of
edge flips.

Since a valid degree sequence of a triangulation T is obtained when T is
seen from any one of its oriented triangles (see Section 2), then clearly T has
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several degree sequences that should thus be, in effect, considered equivalent
(see Section 3). We will thus introduce equivalence classes to that end.

Finally, we will show that each such class can be realized as a convex
polyhedron. Taken together, these two steps therefore give the list of distinct
convex triangulated polyhedra with a fixed number of vertices.

2. Canonical numbering

We fix a triangulation T all of whose triangles have vertices in Vn. Looking
through one of the positively oriented triangles t = (a, b, c) of T , we associate
it with the order (0, 1, 2). As stated earlier, the triangulation T is then just
a triangulation of t with n− 2 points in it. A natural (canonical) method to
number these remaining points consists in looking down at the sphere from
above the triangle t and turning in the trigonometric direction around vertex
a. If a has degree D, we obtain the ordered list (0, 1, 2, . . . , D) denoting the
labels of points a, b, c and all vertices adjacent to a in T .
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Figure 2. Canonical numbering of the points of the trian-
gulation seen from triangle (a, b, c).
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We may now perform this process again, this time centering on vertices b
and then c but without considering those vertices that have already been la-
beled. Having labeled all vertices this way yields what we call the canonical
numbering related to the triangle t of all vertices. We obtain the correspond-
ing canonical degree sequence C as the list of degrees of the vertices ordered
by their canonical numbering (see Figure 2). Figure 3 illustrates the Schlegel
diagram for this numbering.
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Figure 3. Schlegel diagram for the canonical numbering.

Conversely, starting from the Schlegel diagram of a triangulation T , we
can number the vertices as follows. Denote by (0, 1, 2) the starting oriented
triangle. Then denote by 3 the unique vertex v not in (0, 1, 2) such that
(0, 2, v) is a triangle of T , and continue this process until all vertices are
exhausted.

Before we turn to computing canonical numberings of triangulations, we
show their primary role of the former in distinguishing the latter with the
following result:

Proposition 2.1. Let T and T ′ be two triangulations whose vertices are
all in Vn. Let C (resp. C ′) be the canonical degree sequence of T (resp. T ′)
corresponding to the canonical numbering related to triangle t ∈ T (resp. t′ ∈
T ′). Then C = C ′ if and only if T and T ′ are positively equivalent.

Proof. We prove the proposition by induction on n, the number of vertices
in the triangulations T and T ′. The result is trivial for n = 3 since the
triangulation of a triangle is clearly unique. Now let n ≥ 4 and suppose
that the proposition is holds up to rank n − 1 included. For the sake of
simplicity, we denote by (0, . . . , n) (resp. (0′, . . . , n′)) the vertices of Vn
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ordered by the canonical numbering defined by t ∈ T (resp. t′ ∈ T ′) .

If deg(0) = 3, then the triangulation T̃ of Vn−1 = Vn \ {0} obtained by
removing all triangles containing 0 in T has the same degree sequence as the
triangulation T̃ ′ of Vn−1 obtained on removing all triangles containing 0′ in
T ′. By the induction hypothesis, this implies that T and T ′ are positively
equivalent triangulations. If D := deg(0) ≥ 4, then there exists at least
one vertex i (resp. i′) in the set (3, . . . , D − 2) of vertices adjacent to 0
(resp. (3′, . . . , D′−2) adjacent to 0′) such that deg(i) ≥ 4 (resp. deg(i′) ≥ 4).
Let i0 (resp. j0) be the smallest vertex label satisfying this condition, then
i0 = j0. Performing an edge flip on the diagonal [0, i0] (resp. [0′, i′0]) of the
quadrilateral (0, i0 + 1, i0, i0 − 1) (resp. (0′, i′0 + 1, i′0, i

′
0 − 1)) decreases the

degree of vertex 0 (resp. 0′). Repeating this process until deg(0) = 3, the
proposition follows by induction as above. �

Let T = [[T [0][0], T [0][1], T [0][2]], . . . , [T [2n−3][0], T [2n−3][1], T [2n−3][2]]
be a triangulation with n vertices of S2. In order to compute the canonical
numbering related to the triangle t ∈ T , we use the following functions:

• DEGREE(T,x): given a triangulation T and vertex x as inputs, returns
the degree D = deg(x) in triangulation T .
• ADJACENT(T,p,q,D): given vertices p and q of a triangulation T and

degree D = deg(p) as inputs, returns the list adjacent of neighbours
of p in T .
• ORDER(T,t,k): returns the numbering list order of the points of the

triangulation T seen from the triangle t. Moreover, if t = (a, b, c),
we will replace it by t = (b, c, a) when k = 1 or by t = (c, a, b) when
k = 2 (t will be unchanged if k = 0).

The algorithm then has the following overall form in Python (skipping all
details for the first two functions):

def ORDER(T,t,k):

% the value of k indicates which way you look

% at the triangle t %

if $k==1$:

t=[t[1],t[2],t[0]]

if $k==2$:

t=[t[2],t[0],t[1]]

% initialisations %

order=t

p=0

q=2

D=DEGREE(T,t[0])

T’=copy.deepcopy(T)

T’.remove(t)
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% order determination %

while len(order)<n+1:

P=order(p)

Q=order(q)

adj=ADJACENT(T’,P,Q,D)

order=[order.append(x) for x in adj if x not in order]

p+=1

q=len(order)-1

T’=[T’[y] for y in range(len(T’)) if p not in T’[y]]

D=DEGREE(T’,order[p])

return order

For instance, let T = [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 1], [1, 4, 2], [2, 4, 3]] be
a triangulation of S2 with 5 vertices. We choose t = [2, 4, 3] and k = 1.
Then t is changed to t = [2, 3, 4], and the new order is order = [2, 3, 4, 1, 0].

3. Equivalent degree sequences and algorithm

In this section, we fix a triangulation T of the sphere S2, whose vertices
are all in the set Vn. The first triangle of T is called the reference triangle
and given labels (0, 1, 2) in the triangulation’s Schlegel diagram. Since T
has 2(n− 1) triangles, each of which can be seen from three different points
of view, there are 6(n−1) positively oriented triangles. The resulting degree
sequences will be said to be equivalent if they differ only from such a change
of viewpoint:

Definition 3.1. Two degree sequences are said to be equivalent if they cor-
respond to two different points of view of the same triangulation.

Remark that this definition, pertaining to equivalent degree sequences, is
different from Definition (1.1) regarding positively equivalent triangulations.

We now present an algorithm generating all equivalent degree sequences.
For each oriented triangle t of a triangulation T , we number the vertices of
T (cf. Section 2) then deduce a permutation of the original order. To that
end, we define the function CLASS(T,n) which returns the list EquiCombi

of distinct classes of degree sequences of the triangulation T as seen from
the triangles of T . We then exploit a function COMBINATORICS(T,t,k) to
generate all degree sequences combi of the triangulation T viewed from the
triangle t following a permutation order determined from integer k. This
last step is achieved with the previously defined function ORDER(T,t,k).

def COMBINATORICS(T,t,k):

% The only well-oriented triangles are (0,1,2),(1,2,0) and

% (2,0,1). The value of k indicates which way you

% look at the triangle t %

if (0 not in t) or (1 not in t) or (2 not in t):

t=[t[0],t[2],t[1]]
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combi=[ ]

combi=[combi.append(DEGREE)(T,x)) for x in ORDER(T,t,k)]

return combi

def CLASS(T,n):

EquiCombi=[ ]

for t in T:

for k in range(3):

EquiCombi.append(COMBINATORICS(T,t,k))

return EquiCombi

Note, we omit minor details in the above code: in particular identical de-
gree sequences appearing multiple times are deleted from the former list
EquiCombi. In order to properly generate all nonequivalent degree sequence,
we must use this algorithm for all triangulations on the set Vn. We recall
([3]) that these can be found by induction, starting from the triangulations
of degree 3 (for the vertex 0) up to the maximal degree n by means of edge
flips. In the code, we denote by FLIP(n) the set of all triangulations of Vn,
seen from triangle (0, 1, 2). The main algorithm thus has the following form
(in brief):

ClassEqui=[ ]

for T in FLIP(n):

ClassEqui.append(CLASS(T,n))

Implementing everything in Python, we obtain the following results (file
ClassEqui):

n = 3: 1 class
*[[3,3,3,3]]

n = 4: 1 class
*[[3,4,4,4,3],[4,4,3,4,3],[4,3,4,3,4]]

n = 5: 2 classes
*[[3, 5, 5, 4, 4, 3], [5, 5, 3, 4, 4, 3], [5, 3, 5, 3, 4, 4], [4, 3,

5, 4, 5, 3], [3, 5, 4, 5, 3, 4], [5, 4, 3, 5, 3, 4], [4, 5, 3, 5, 4,

3], [5, 3, 4, 4, 3, 5], [3, 4, 5, 5, 4, 3], [4, 4, 5, 3, 5, 3], [4,

5, 4, 5, 3, 3], [5, 4, 4, 3, 5, 3]]

* [[4, 4, 4, 4, 4, 4]]

n = 6: 6 classes
*[[3, 6, 6, 4, 4, 4, 3], [6, 6, 3, 4, 4, 4, 3], [6, 3, 6, 3, 4, 4,

4], [4, 3, 6, 4, 6, 3, 4], [3, 6, 4, 6, 3, 4, 4], [6, 4, 3, 6, 3, 4,

4], [4, 6, 3, 6, 4, 4, 3], [6, 3, 4, 4, 4, 3, 6], [3, 4, 6, 6, 4, 4,

3], [4, 4, 6, 4, 6, 3, 3], [4, 6, 4, 6, 3, 3, 4], [6, 4, 4, 3, 6, 3,

4], [4, 6, 4, 6, 4, 3, 3], [6, 4, 4, 4, 3, 6, 3], [4, 4, 6, 3, 6, 4,

3]]

*[[3, 6, 5, 4, 5, 3, 4], [6, 5, 3, 4, 5, 3, 4], [5, 3, 6, 4, 5, 4,
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3], [3, 4, 6, 5, 5, 3, 4], [4, 6, 3, 5, 5, 3, 4], [6, 3, 4, 5, 3, 4,

5], [6, 4, 5, 3, 4, 5, 3], [4, 5, 6, 3, 5, 4, 3], [5, 6, 4, 5, 4, 3,

3], [5, 4, 3, 6, 4, 5, 3], [4, 3, 5, 5, 6, 4, 3], [3, 5, 4, 6, 4, 5,

3], [5, 5, 4, 3, 6, 4, 3], [5, 4, 5, 4, 3, 6, 3], [4, 5, 5, 6, 3, 4,

3]]

*[[3, 5, 6, 4, 5, 4, 3], [5, 6, 3, 4, 5, 4, 3], [6, 3, 5, 4, 3, 5,

4], [3, 6, 4, 5, 4, 3, 5], [6, 4, 3, 5, 4, 3, 5], [4, 3, 6, 5, 5, 4,

3], [5, 4, 6, 3, 4, 5, 3], [4, 6, 5, 5, 3, 4, 3], [6, 5, 4, 3, 5, 4,

3], [5, 4, 5, 4, 6, 3, 3], [4, 5, 5, 3, 6, 3, 4], [5, 5, 4, 6, 3, 4,

3], [5, 3, 4, 5, 4, 6, 3], [3, 4, 5, 6, 5, 4, 3], [4, 5, 3, 6, 5, 4,

3]]

*[[3, 6, 5, 5, 3, 5, 3], [6, 5, 3, 5, 3, 5, 3], [5, 3, 6, 3, 5, 5,

3], [5, 5, 3, 6, 3, 5, 3], [5, 3, 5, 5, 3, 6, 3], [3, 5, 5, 6, 3, 5,

3], [6, 3, 5, 3, 5, 3, 5], [3, 5, 6, 5, 5, 3, 3], [5, 6, 3, 5, 5, 3,

3], [5, 5, 5, 3, 6, 3, 3]]

*[[3, 5, 5, 5, 4, 4, 4], [5, 5, 3, 5, 4, 4, 4], [5, 3, 5, 4, 4, 5,

4], [4, 4, 5, 5, 4, 5, 3], [4, 5, 4, 4, 5, 3, 5], [5, 4, 4, 5, 3, 5,

4], [5, 4, 5, 3, 5, 4, 4], [4, 5, 5, 4, 4, 5, 3], [5, 5, 4, 4, 5, 3,

4], [4, 4, 4, 5, 5, 5, 3]]

* [[4, 5, 4, 5, 4, 4, 4], [5, 4, 4, 4, 4, 4, 5], [4, 4, 5, 4, 5, 4,

4]]

n = 7: 17 equivalent classes.

n = 8: 73 equivalent classes, etc.

For interested readers, a Python program is available at www.pythonanywhe
re.com/user/honvault/shares/237465cf2bbe423eb659b2335b07b556/.
The sequence for the number of equivalent classes of degree sequences is
therefore: 1, 1, 2, 6, 17, 73, . . . , which corresponds to A253882 on the OEIS
[5], because it is also the number of 3-connected planar triangulations on n
vertices. Remark that degree sequences of different classes may differ only
by a permutation, e.g., the second and third classes in the case n = 6. These
come from two polyhedra that are symmetric to each other about a plane.

The number of distinct triangulations of Vn seen from (0, 1, 2), is known
to be ([6]):

2 · (4n− 7)!

(n− 1)!(3n− 4)!
.

Fortunately, the number of equivalent classes appears to be much smaller:
for instance, for n = 8 there are 2530 triangulations but we get only 73
equivalent classes. Nevertheless, the problem remains that the program must
perform an exponentially increasing number of operations, so the results
must be kept in a database for further study.

Now, if we restrict our attention to convex polyhedra, it is easy to see
that there are only 2 triangulated polyhedra with 6 vertices. It already
takes more effort to see that there are six triangulated polyhedra with 7

www.pythonanywhere.com/user/honvault/shares/237465cf2bbe423eb659b2335b07b556/
www.pythonanywhere.com/user/honvault/shares/237465cf2bbe423eb659b2335b07b556/
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vertices and seventeen triangulated polyhedra with 8 vertices. Seeing the
similarity with the number of equivalent classes of degree sequences, we may
conjecture that, if L(n) refers to the length of the list ClassEqui, there are
at most L(n) convex polyhedra with n+ 1 vertices. We prove this below.

4. Convex realization

As discussed above, the problem of the existence of a convex triangulated
polyhedron of n+1 vertices (n ≥ 3) with a given admissible degree sequence
is nontrivial. From now on, we refer to convex polyhedra for convex triangu-
lated polyhedra which are in the same equivalent class ClassEqui of degree
sequence and without coplanar faces. We recall that L(n) is the length of
the list ClassEqui.
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Figure 4. From a triangulation of Vn+1 to one of Vn.

Theorem 4.1. For each integer n ≥ 3, there are exactly L(n) convex tri-
angulated polyhedra of genus 0.

Proof. By induction on n, the result being straightforward for n = 3. As-
sume that the result is true for an integer n ≥ 3, and let T be an admissible
triangulation of Vn+1. We denote by D := deg(0) the degree of vertex 0,
and by 1, . . . , D the vertices adjacent to 0 in T .

We can rearrange vertices 1, . . . , D on the sphere S2 in order to make the
hard spherical polygon [1, . . . , D] convex. Then, merging vertices 0 and 1
(see Figure 4) yields a triangulation of Vn. By the induction hypothesis,
there exists a convex realization P ′ of this triangulation (cf. Figure 4).
Recall now that a polyhedron is convex (in our sense) if and only if its
dihedral angles are convex. So, if we now duplicate vertex 1 creating a new
vertex 0, and move the latter back down, we obtain a polyhedron P with
the initial degree sequence. Moreover, its dihedral angles will be also convex
if 0 is sufficiently close to 1 and if the line (0, 1) is well-oriented. �
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Figure 5. From a convex realization in Vn to one in Vn+1.
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