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A WIDE CLASS OF COMBINATORIAL MATRICES

RELATED WITH RECIPROCAL PASCAL AND SUPER

CATALAN MATRICES

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract. In this paper, we present a number of combinatorial ma-
trices that are generalizations or variants of the super Catalan matrix
and the reciprocal Pascal matrix. We present explicit formulæ for LU-
decompositions of all the matrices and their inverses. Alternative deriva-
tions using hypergeometric functions are also given.

1. Introduction

Richardson [12] defined the reciprocal Pascal matrix M by

Mi,j =

(
i+ j

i

)−1

=
i!j!

(i+ j)!
;

the indices start for convenience with (0, 0), and the matrix is either infinite
or has N rows and columns, depending on the context. The author showed
that the inverse of the reciprocal Pascal matrix has integer elements which
was conjectured already in [5]. For this purpose, he derived the factorization

S = GMG, where the diagonal matrix G has entries Gi,i =
(

2i
i

)
, and S is

the super Catalan matrix [2, 4] with entries

Si,j =
(2i)! (2j)!

i!j! (i+ j)!
.

Prodinger [11] gave an alternative decomposition of M , provided by the
LU -decomposition as well as explicit formulæ for the LU -decomposition
of its inverse and some related matrices were obtained. For all results, q-
analogues are also presented.

Prodinger [10] also studied two matrices A and A whose entries consist
of the super Catalan numbers and their reciprocal analogues defined by

Aij =
(2i)! (2j)!

i!j! (i+ j)!
and Aij =

i!j! (i+ j)!

(2i)! (2j)!
.
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He gave explicit formulæ for the LU -decompositions of it and its inverse,
and some related matrices were obtained as well as q-analogues related to
all these results.

Kılıç et al. [7] defined a variant of the reciprocal super Catalan matrix C
with two additional parameters whose entries is given by

Cij =

(
2i+ r

i

)−1(2j + s

j

)−1(i+ j

i

)−1

.

Explicit formulæ for its LU -decomposition, LU -decomposition of its inverse
and the Cholesky decomposition are obtained. For all results, q-analogues
are also presented.

Kılıç et al. [9] also defined two variants of the reciprocal super Catalan
matrix with two additional parameters whose entries are given by

Wi,j =

(
2i+m

i

)(
2j + t

j

)−1(i+ j

i

)
and

Hi,j =

(
2i+m

i

)−1(2j + t

j

)(
i+ j

i

)−1

,

where m and t are nonnegative integers and all indices of these matrices start
at (0, 0). Explicit expressions were also presented for LU -decompositions of
all the matrices and their inverses. For all results, q-analogues are also
presented.

Kılıç and Arıkan [8] defined two generalizations of the reciprocal super
Catalan matrix with two additional parameters defined by

Yk,j =

(
k + j

k

)(
2k + r

k

)−1(2j + s

j

)−1

and

Tk,j =

(
2k + r

k

)(
2j + s

j

)(
k + j

k

)−1

for 0 ≤ k, j < n, respectively. Explicit formulæ were given for the LU -
decomposition and their inverses, as well as the Cholesky decomposition.
For all results, q-analogues are also presented.

Quite recently, for integers 1 ≤ q < p, Richardson [13] defines (q, p)-
Patalan numbers

bn := −p2n+1

(
n− q/p
n+ 1

)
.

Here, the general definition of a binomial coefficient,
(
α
k

)
:= α(α−1)...(α−k+1)

k!
is employed. Now, for q = 1, p = 2 this leads to

bn = −22n+1

(
n− 1/2

n+ 1

)
= 2n

(2n− 1)(2n− 3) . . . 3 · 1
(n+ 1)!

=
(2n)!

n!(n+ 1)!
= Cn,

which is a Catalan number.
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Richardson [13] has generalized these as well via

Q(i, j) := (−1)jp2(i+j)

(
i− q/p
i+ j

)
,

again for integers 1 ≤ q < p. The author gave the factorization Ȟ =
G−1
p,qBG

−1
p,p−q for the reciprocal Patalan matrix Ȟ, where

Ȟi,j =

[
1

Q (i, j)

]
,

B is the Pascal matrix defined by Bi,j =
(
i+j
i

)
and Gp,q is the diagonal

matrix with (Gp,q)i,j = Q (i, 0).

Instead of working with the numbers p and q, Kılıç and Prodinger set
x := q/p, for general x, provided that 0 < x < 1. They defined the Patalan
matrix by

M̌i,j = − 1

p2(i+j+r)+1

(
i+ j + r − x
i+ j + r + 1

)
,

the reciprocal Patalan matrix by

M̌i,j = −p2(i+j+r)+1

(
i+ j + r − x
i+ j + r + 1

)−1

,

the super Patalan matrix by

M̌i,j = (−1)j+sp2(i+r+j+s)

(
i+ r − x

i+ r + j + s

)
and the reciprocal super Patalan matrix by

M̌i,j = (−1)j+sp2(i+r+j+s)

(
i+ r − x

i+ r + j + s

)−1

,

with the notion of falling factorials: xn := x(x−1) . . . (x−n+1) = Γ(x+1)
Γ(x−n+1) .

For any matrix M̌ and its inverse, they gave explicit expressions for the LU -
decompositions.

We summarized all combinatorial matrices related to the reciprocal Pascal
and super Catalan matrices from the current literature in the above.

The purpose of the present paper is to present a wide class of combina-
torial matrices consisting of eight matrices. For any such matrix F , we are
interested in factorizations, based on the LU -decomposition by the notation
F = LU and F−1 = AB, and present explicit expressions for L, L−1, U ,
U−1, A, A−1, B, B−1. All our matrices are indexed starting at (0, 0) and
have N rows (resp. columns), where N might also be infinity, depending on
the context. The nonnegative integers t and u are shift parameters.

Except for the result about the Patalan matrices, all earlier results are
covered by the present results and are special cases of them.

In the next eight sections, we shall list our results related to each matrix
F . We give some proofs for the results of Sections 4, 5, 6, and 8 and leave
other (similar) ones to the imagination of the reader.
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We provide sample proofs using Zeilberger’s algorithm and also using the
hypergeometric machinery, as described in [3].

To keep this paper within reasonable length, we refrain from computing
q-analogues.

2. Results related to the first matrix

The matrix F has now entries

Fn,k = (n+ k + t)!akbn.

Here and in the following, ak and bk are arbitrary nonzero numbers.
We list here the formulæ that were found:

Ui,j =
j!(j + t)!

(j − i)!
ajbi,

U−1
i,j =

(−1)i−j(j + t)!

i!(i+ t)!(j + t)!(j − i)!
1

bjai
,

Li,j =
i!(i+ t)!

j!(j + t)!(i− j)!
bi
bj
,

L−1
i,j =

(−1)i−j(i+ t)!i!

(i− j)!j!(j + t)!

bi
bj
,

Bi,j =
(−1)i−j(N + i+ t)!

(N − 1− j)!(i+ j + t+ 1)!(j − i)!(2i+ t)!

1

bjai
,

B−1
i,j =

(2j + t+ 1)!(N − 1− i)!(i+ j + t)!

(N + j + t)!(j − i)!
biaj ,

Ai,j =
(−1)i−j(N − 1− j)!(2j + t+ 1)!

(i+ j + t+ 1)!(i− j)!(N − 1− i)!
aj
ai
,

A−1
i,j =

(N − 1− j)!(i+ j + t)!

(2i+ t)!(N − 1− i)!(i− j)!
aj
ai
.

Now we present the results related with reciprocal analogue of the first
matrix in the next section.

3. Results related to the second matrix

The matrix F has now entries

Fn,k =
1

(n+ k + t)!
akbn.

We list here the formulæ that were found:

Ui,j =
(−1)i(i+ t− 1)!j!

(2i+ t− 1)!(j − i)!(i+ j + t)!
ajbi,

U−1
i,j =

(−1)i(i+ j + t− 1)!(2j + t)!

i!(j − i)!(j + t− 1)!

1

bjai
,

Li,j =
i!(2j + t)!

(i− j)!j!(i+ j + t)!

bi
bj
,
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L−1
i,j =

(−1)i−ji!(i+ j + t− 1)!

(2i+ t− 1)!(i− j)!j!
bi
bj
,

Bi,j =
(−1)N−1−j(N + j + t− 1)!

(N − 1− j)!(j − i)!
1

bjai
,

B−1
i,j =

(−1)N−1−j(N − 1− i)!
(N + i+ t− 1)!(j − i)!

biaj ,

Ai,j =
(−1)i−j(N + i+ t− 1)!(N − 1− j)!
(N + j + t− 1)!(N − 1− i)!(i− j)!

aj
ai
,

A−1
i,j =

(N + i+ t− 1)!(N − 1− j)!
(N + j + t− 1)!(N − 1− i)!(i− j)!

aj
ai
.

4. Results related to the third matrix

The matrix F has now entries

Fn,k =
(n+ k + t)!

(2n+ 2k + 2t)!
akbn.

We list here the formulæ that were found:

Ui,j =
(−1)ij!(i+ j + t)!(2i− 2 + 2t)!(2i− 1 + t)!4i

(i− 1 + t)!(4i− 2 + 2t)!(2i+ 2j + 2t)!(j − i)!
ajbi,

U−1
i,j =

(−1)i(4j + 2t)!(2i+ 2j − 2 + 2t)!(j − 1 + t)!

i!(j − i)!(i+ j − 1 + t)!(2j − 2 + 2t)!(2j + t)!4j
1

aibj
,

Li,j =
i!(i+ j + t)!(4j + 2t)!

(2i+ 2j + 2t)!(i− j)!(2j + t)!j!

bi
bj
,

L−1
i,j =

(−1)i−ji!(2i− 1 + t)!(2i+ 2j − 2 + 2t)!

(4i− 2 + 2t)!(i+ j − 1 + t)!(i− j)!j!
bi
bj
,

Bi,j =
(−1)N−1−j(2j − 2 + 2N + 2t)!

(j − i)!(N − 1− j)!(N − 1 + j + t)!4N−1−i
1

aibj
,

B−1
i,j =

(−1)N−1−j(N − 1− i)!(N − 1 + i+ t)!4N−1−j

(2i− 2 + 2N + 2t)!(j − i)!
ajbi,

Ai,j =
(−1)i−j(2i− 2 + 2N + 2t)!(N − 1− j)!(j − 1 +N + t)!

(N − 1− i)!(N − 1 + i+ t)!(i− j)!(2j − 2 + 2N + 2t)!

aj
ai
,

A−1
i,j =

(2i− 2 + 2N + 2t)!(N − 1− j)!(N − 1 + j + t)!

(N − 1− i)!(N − 1 + i+ t)!(i− j)!(2j − 2 + 2N + 2t)!

aj
ai
.

Now we present the results related with reciprocal analogue of the third
matrix in the next section.
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5. Results related to the fourth matrix

The matrix F has now entries

Fn,k =
(2n+ 2k + 2t)!

(n+ k + t)!
akbn.

We list here the formulæ that were found:

Ui,j =
j!(2j + 2t)!4i

(j + t)!(j − i)!
ajbi,

U−1
i,j =

(−1)i−j(i+ t)!

i!(2i+ 2t)!(j − i)!4j
1

aibj
,

Li,j =
i!(2i+ 2t)!(j + t)!

(i+ t)!(i− j)!(2j + 2t)!j!

bi
bj
,

L−1
i,j =

(−1)i−ji!(j + t)!(2i+ 2t)!

(i+ t)!(i− j)!(2j + 2t)!j!

bi
bj
,

Bi,j =
(−1)i−j(i+ j + 1 + t)!

(j − i)!(2i+ 2j + 2 + 2t)!(N − 1− j)!4N−1−i

× (2i+ 2N + 2t)!(2i+ t)!

(N + i+ t)!(4i+ 2t)!

1

aibj
.

B−1
i,j =

(4j + 2 + 2t)!(2i+ 2j + 2t)!(N − 1− i)!(N + j + t)!4N−1−j

(i+ j + t)!(j − i)!(2j + 1 + t)!(2j + 2N + 2t)!
ajbi,

Ai,j =
(−1)i−j(i+ j + t)!(4j + 1 + 2t)!(N − j − 1)!

(2i+ 2j + 1 + 2t)!(N − i− 1)!(i− j)!(2j + t)!

aj
ai
,

A−1
i,j =

(2i+ t)!(2i+ 2j + 2t)!(N − j − 1)!

(4i+ 2t)!(N − i− 1)!(i− j)!(i+ j + t)!

aj
ai
.

6. Results related to the fifth matrix

The matrix F has now entries

Fn,k =
(2n+ 2k + 2t)!

(n+ k + t)!(n+ k + t+ u)!
akbn.

We list here the formulæ that were found:

Ui,j =
(2i+ 2u)!(i− 1 + t+ u)!(2j + 2t)!j!u!

(i+ u)!(2i− 1 + t+ u)!(i+ j + t+ u)!(j − i)!(j + t)!(2u)!
ajbi,

U−1
i,j =

(−1)i−j(i+ j − 1 + t+ u)!(2j + t+ u)!(j + u)!(2j + u)!(2u)!

(j − i)!(2j + u)!(j − 1 + t+ u)!(2j + 2u)!j!u!

× (i+ t)!

i!(2i+ 2t)!

1

aibj
,

Li,j =
i!(2i+ 2t)!(j + t)!(2j + t+ u)!

(i+ t)!(i+ j + t+ u)!(i− j)!(2j + 2t)!j!

bi
bj
,
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L−1
i,j =

(−1)i−ji!(i+ j − 1 + t+ u)!(2i+ 2t)!(j + t)!

(i+ t)!(2i− 1 + t+ u)!(i− j)!(2j + 2t)!j!

bi
bj
,

Bi,j =
(−1)i−j(i+ j + 1 + t)!(2i+ t)!(2i+ 2N + 2t)!(N − 1− i+ u)!

(N + i+ t)!(2N − 2− 2i+ 2u)!(4i+ 2t)!

× (j +N − 1 + t+ u)!(2u)!

(2i+ 2j + 2 + 2t)!(j − i)!(N − 1− j)!u!

1

aibj
,

B−1
i,j =

(N − 1− i)!(2i+ 2j + 2t)!(2N − 2− 2j + 2u)!

(N + i− 1 + t+ u)!(i+ j + t)!(2j + 2N + 2t)!(N − 1− j + u)!

× (N + j + t)!(4j + 2 + 2t)!u!

(j − i)!(2j + 1 + t)!(2u)!
ajbi,

Ai,j =
(−1)i−j(i+ j + 1 + t)!(4j + 2 + 2t)!(N − 1− j)!

(2i+ 2j + 2 + 2t)!(i− j)!(N − 1 + j + t+ u)!(2j + 1 + t)!

× (N − 1 + i+ t+ u)!

(N − 1− i)!
aj
ai
,

A−1
i,j =

(2i+ t)!(N − 1 + i+ t+ u)!(2i+ 2j + 2t)!(N − 1− j)!
(N − 1− i)!(4i+ 2t)!(i− j)!(i+ j + t)!(N − 1 + j + t+ u)!

aj
ai
.

Now we present the results related with reciprocal analogue of the fifth
matrix in the next section.

7. Results related to the sixth matrix

The matrix F has now entries

Fn,k =
(n+ k + t)!(n+ k + t+ u)!

(2n+ 2k + 2t)!
akbn.

We list here the formulæ that were found:

Ui,j =
22i+3−2u(2i− 1 + t)!(2i− 2 + 2t)!(i+ j + t)!j!(j + t+ u)!

(i− 1 + t)!(4i− 2 + 2t)!(2i+ 2j + 2t)!(j − i)!

×
√
π(−1)i(2u+ 1)!

Γ(3
2 − i+ u)u!

ajbi,

U−1
i,j =

(−1)i(4j + 2t)!(2i+ 2j − 2 + 2t)!(j − 1 + t)!

(i+ t+ u)!i!(i+ j − 1 + t)!(2j + t)!(j − i)!(2j − 2 + 2t)!

×
Γ(3

2 − j + u)u!

(2u+ 1)!22j−2u+3
√
π

1

aibj
,

Li,j =
(i+ t+ u)!i!(i+ j + t)!(4j + 2t)!

(2i+ 2j + 2t)!(i− j)!(j + t+ u)!j!(2j + t)!

bi
bj
,

L−1
i,j =

(−1)i−ji!(i+ t+ u)!(2i− 1 + t)!(2i+ 2j − 2 + 2t)!

(4i− 2 + 2t)!(i− j)!(i+ j − 1 + t)!j!(j + t+ u)!

bi
bj
,
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Bi,j =
(−1)j(2j − 2 + 2N + 2t)!

(j − 1 +N + t)!(N − 1− j)!(j − i)!(i+ j + 1 + t+ u)!

× (N − i− 3)!(i+N + t+ u)!

(2i+ t+ u)!(2N − 2i− 6)!

u!Γ(i−N + 5
2 + u)

22N−2i−2u+1
√
π(2u+ 1)!

1

aibj
,

B−1
i,j =

(N − 1− i)!(N − 1 + i+ t)!(2j + 1 + t+ u)!(i+ j + t+ u)!

(2i− 2 + 2N + 2t)!(j − i)!(N + j + t+ u)!

× 22N−2j−2u+1√π(2u+ 1)!

u!Γ(j −N + 5
2 + u)

ajbi,

Ai,j =
(−1)i−j(2j + 1 + t+ u)!(N − 1− j)!(N − 1 + j + t)!

(i− j)!(i+ j + 1 + t+ u)!(2j − 2 + 2N + 2t)!

× (2i− 2 + 2N + 2t)!

(N − 1− i)!(N − 1 + i+ t)!

aj
ai
,

A−1
i,j =

(i+ j + t+ u)!(N − 1− j)!(N − 1 + j + t)!

(N − 1 + i+ t)!(i− j)!(2j − 2 + 2N + 2t)!

× (2i− 2 + 2N + 2t)!

(2i+ t+ u)!(N − 1− i)!
aj
ai
.

In the next two sections, we will present two special cases of Sections 6
and 7 for the reader’s convenience.

8. Results related to the seventh matrix

The matrix F has now entries

Fn,k =
(2n+ 2k + 2t)!

(n+ k + t)!(n+ k + 1 + t)!
akbn.

We list here the formulæ that were found:

Ui,j =
(2i+ 1)!(i+ t)!(2j + 2t)!j!

i!(2i+ t)!(i+ j + 1 + t)!(j − i)!(j + t)!
ajbi,

U−1
i,j =

(−1)i−j(i+ t)!(i+ j + t)!(2j + 1 + t)!j!

i!(2i+ 2t)!(j − i)!(2j + 1)!(j + t)!

1

aibj
,

Li,j =
i!(2i+ 2t)!(j + t)!(2j + 1 + t)!

(i+ t)!(i+ j + 1 + t)!(i− j)!(2j + 2t)!j!

bi
bj
,

L−1
i,j =

(−1)i−ji!(i+ j + t)!(2i+ 2t)!(j + t)!

(i+ t)!(2i+ t)!(i− j)!(2j + 2t)!j!

bi
bj
,

Bi,j =
(−1)i−j(i+ j + 1 + t)!(j +N + t)!

(2i+ 2j + 2 + 2t)!(j − i)!(N − 1− j)!

× (2i+ t)!(2i+ 2N + 2t)!(N − 1− i)!
(N + i+ t)!(2N − 1− 2i)!(4i+ 2t)!

1

aibj
,
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B−1
i,j =

(2i+ 2j + 2t)!(2N − 1− 2j)!(N + j + t)!(4j + 2 + 2t)!

(i+ j + t)!(2j + 2N + 2t)!(N − 1− j)!(j − i)!(2j + 1 + t)!

× (N − 1− i)!
(N + i+ t)!

ajbi.

Ai,j =
(−1)i−j(N + i+ t)!(i+ j + 1 + t)!(4j + 2 + 2t)!(N − 1− j)!

(N − 1− i)!(2i+ 2j + 2 + 2t)!(i− j)!(N + j + t)!(2j + 1 + t)!

aj
ai
,

A−1
i,j =

(2i+ t)!(N + i+ t)!(2i+ 2j + 2t)!(N − 1− j)!
(N − 1− i)!(4i+ 2t)!(i− j)!(i+ j + t)!(N + j + t)!

aj
ai
.

9. Results related to the eighth matrix

The matrix F has now entries

Fn,k =
(n+ k + t)!(n+ k + 1 + t)!

(2n+ 2k + 2t)!
akbn.

We list here the formulæ that were found:

Ui,j =
12(2i− 4)!(2i− 1 + t)!(2i− 2 + 2t)!(i+ j + t)!j!(j + 1 + t)!

(i− 2)!(i− 1 + t)!(4i− 2 + 2t)!(2i+ 2j + 2t)!(j − i)!
ajbi,

U−1
i,j =

(−1)i−j(4j + 2t)!(j − 2)!(2j − 2 + 2t)!(j − 1 + t)!

12(i+ 1 + t)!i!(2j + t)!(2j − 4)!(j − i)!

× (2i+ 2j − 2 + 2t)!

(i+ j − 1 + t)!

1

aibj
,

Li,j =
(i+ 1 + t)!i!(i+ j + t)!(4j + 2t)!

(2i+ 2j + 2t)!(i− j)!(j + 1 + t)!j!(2j + t)!

bi
bj
,

L−1
i,j =

(−1)i−ji!(i+ 1 + t)!(2i− 1 + t)!(2i+ 2j − 2 + 2t)!

(4i− 2 + 2t)!(i− j)!(i+ j − 1 + t)!j!(j + 1 + t)!

bi
bj
,

Bi,j =
(−1)i−j(2j − 2 + 2N + 2t)!

12(j − 1 +N + t)!(N − 1− j)!(j − i)!(i+ j + 2 + t)!

× (N − i− 3)!(i+ 1 +N + t)!

(2i+ 1 + t)!(2N − 2i− 6)!

1

aibj
,

B−1
i,j =

12(2N − 2j − 6)!(2j + 2 + t)!(i+ j + 1 + t)!

(j − i)!(N + 1 + j + t)!(N − j − 3)!

× (N − 1− i)!(N − 1 + i+ t)!

(2i− 2 + 2N + 2t)!
ajbi,
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Ai,j =
(−1)i−j(2j + 2 + t)!(N − 1− j)!(N − 1 + j + t)!

(i− j)!(i+ j + 2 + t)!(2j − 2 + 2N + 2t)!

× (2i− 2 + 2N + 2t)!

(N − 1− i)!(N − 1 + i+ t)!

aj
ai
,

A−1
i,j =

(i+ j + 1 + t)!(N − 1− j)!(N − 1 + j + t)!

(i− j)!(2j − 2 + 2N + 2t)!

× (2i− 2 + 2N + 2t)!

(2i+ 1 + t)!(N − 1− i)!(N − 1 + i+ t)!

aj
ai
.

10. Proofs for the Results related to the third matrix

For L and L−1,

∑
j≤d≤k

LkdL
−1
dj

=
∑
j≤d≤k

k!(k + d+ t)!(4d+ 2t)!

(2k + 2d+ 2t)!(k − d)!(2d+ t)!d!

bk
bd

× (−1)d−jd!(2d− 1 + t)!(2d+ 2j − 2 + 2t)!

(4d− 2 + 2t)!(d+ j − 1 + t)!(d− j)!j!
bd
bj

= 2 (−1)j
k!

j!

bk
bj

×
∑
j≤d≤k

(−1)d(k + d+ t)!(2d+ 2j − 2 + 2t)!(4d+ 2t− 1)

(2k + 2d+ 2t)!(k − d)!(d+ j − 1 + t)!(d− j)!
.

The Zeilberger algorithm computes the sum on the RHS of the last equation
as 0 when k 6= j. If k = j, it is obvious that LjjL

−1
jj = 1. Thus

∑
j≤d≤k

LkdL
−1
dj = δk,j ,

as claimed.
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For U and U−1,∑
k≤d≤j

UkdU
−1
dj

=
∑
k≤d≤j

(−1)kd!(k + d+ t)!(2k − 2 + 2t)!(2k − 1 + t)!4k

(k − 1 + t)!(4k − 2 + 2t)!(2k + 2d+ 2t)!(d− k)!
adbk

× (−1)d(4j + 2t)!(2d+ 2j − 2 + 2t)!(j − 1 + t)!

d!(j − d)!(d+ j − 1 + t)!(2j − 2 + 2t)!(2j + t)!4j
1

adbj

= (−1)k
4k−j(2k − 2 + 2t)!(2k − 1 + t)!(4j + 2t)!(j − 1 + t)!

(k − 1 + t)!(4k − 2 + 2t)!(2j − 2 + 2t)!(2j + t)!

bk
bj

×
∑
k≤d≤j

(−1)d(k + d+ t)!(2d+ 2j − 2 + 2t)!

(2k + 2d+ 2t)!(d− k)!(j − d)!(d+ j − 1 + t)!
.

The Zeilberger algorithm computes the sum on the RHS of the last equation
as 0 when k 6= j. If k = j, it is obvious that UkkU

−1
kk = 1. Thus

∑
j≤d≤k

UkdU
−1
dj = δk,j ,

as claimed.
For LU -decomposition, we have to prove that∑

0≤d≤min{i,j}

LidUdj = Fij .

Consider

∑
0≤d≤min{i,j}

LidUdj = ajbi
∑

0≤d≤min{i,j}

i!(i+ d+ t)!(4d+ 2t)!

(2i+ 2d+ 2t)!(i− d)!(2d+ t)!d!

× (−1)dj!(d+ j + t)!(2d− 2 + 2t)!(2d− 1 + t)!4d

(d− 1 + t)!(4d− 2 + 2t)!(2d+ 2j + 2t)!(j − d)!
.

Denote the sum on the RHS of the last equation by SUMi. The Zeilberger
algorithm gives the recurrence

SUMi+1 =
1

2(2i+ 2j + 2t+ 1)
SUMi−1,

where the initial value, SUM0 = (j+t)!
(2j+2t)! . Solving the recursion gives the claim.
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For A and A−1, consider

∑
j≤d≤k

AkdA
−1
dj

=
∑
j≤d≤k

(−1)k−d(2k − 2 + 2N + 2t)!(N − 1− d)!(d− 1 +N + t)!

(N − 1− k)!(N − 1 + k + t)!(k − d)!(2d− 2 + 2N + 2t)!

ad
ak

× (2d− 2 + 2N + 2t)!(N − 1− j)!(N − 1 + j + t)!

(N − 1− d)!(N − 1 + d+ t)!(d− j)!(2j − 2 + 2N + 2t)!

aj
ad

=
(2k − 2 + 2N + 2t)!(N − 1− j)!(N − 1 + j + t)!

(N − 1− k)!(N − 1 + k + t)!(2j − 2 + 2N + 2t)!

aj
ak

×
∑
j≤d≤k

(−1)k−d(2d− 2 + 2N + 2t)!

(k − d)!(2d− 2 + 2N + 2t)!(d− j)!
.

The algorithm evaluates the second sum on the RHS of the last equation as
0 provided that k 6= j. If k = j, it is obvious that Ak,kA

−1
k,k = 1. Thus

∑
k≤d≤j

AkdA
−1
dj = δk,j ,

as claimed.
For B and B−1, consider

∑
i≤d≤j

BidB
−1
dj =

∑
i≤d≤j

(−1)N−1−d(2d− 2 + 2N + 2t)!

(d− i)!(N − 1− d)!(N − 1 + d+ t)!4N−1−i
1

aibd

× (−1)N−1−j(N − 1− d)!(N − 1 + d+ t)!4N−1−j

(2d− 2 + 2N + 2t)!(j − d)!
ajbd

= (−1)j4i−j
aj
ai

∑
i≤d≤j

(−1)d

(d− i)!(j − d)!
.

The algorithm evaluates the sum on the RHS of the last equation as 0
provided that i 6= j. For the case j = i, the sum is equal to 1. Thus

∑
k≤d≤j

BkdB
−1
dj = δk,j ,

as claimed.
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For the LU factorization of the inverse matrix, we should show that F =
B−1A−1 instead of F−1 = AB. So, we have∑

max{i,j}≤d≤N−1

B−1
i,dA

−1
d,j

=
∑

max{i,j}≤d≤N−1

(−1)N−1−d(N − 1− i)!(N − 1 + i+ t)!4N−1−d

(2i− 2 + 2N + 2t)!(d− i)!
adbi

× (2d− 2 + 2N + 2t)!(N − 1− j)!(N − 1 + j + t)!

(N − 1− d)!(N − 1 + d+ t)!(d− j)!(2j − 2 + 2N + 2t)!

aj
ad
.

Denote the sum on the RHS of the last equation by SUMN after taking N
instead of N − 1. That is,

SUMN =
∑

max{i,j}≤d≤N

(−1)N−d4N−d(N − j)!(N + j + t)!

(d− j)!(2j + 2N + 2t)!

× (N − i)!(N + i+ t)!(2d+ 2N + 2t)!

(2i+ 2N + 2t)!(d− i)!(N − d)!(N + d+ t)!
.

The algorithm gives the recursion

SUMN+1 = SUMN .

We obtain

SUMN+1 = SUMj =
(j + i+ t)!

(2i+ 2j + 2t)!
,

which gives the claim∑
max{i,j}≤d≤N−1

B−1
i,dA

−1
d,j =

(j + i+ t)!

(2i+ 2j + 2t)!
ajbi = Fi,j .

11. Proofs related to the fourth matrix

For L and L−1,∑
j≤d≤k

LkdL
−1
dj =

∑
j≤d≤k

k!(2k + 2t)!(d+ t)!

(k + t)!(k − d)!(2d+ 2t)!d!

bk
bd

× (−1)d−jd!(j + t)!(2d+ 2t)!

(d+ t)!(d− j)!(2j + 2t)!j!

bd
bj

=
k!(2k + 2t)!(j + t)!

(k + t)!(2j + 2t)!j!

bk
bj

∑
j≤d≤k

(−1)d−j

(k − d)!(d− j)!
.

In this instance, one can immediately see without any computer help that
the sum is (apart from a factor)∑

0≤d≤k−j

(
k − j
d

)
(−1)d = δk,j

and it follows readily that LjjL
−1
jj = 1.
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For U and U−1,∑
k≤d≤j

UkdU
−1
dj =

∑
k≤d≤j

d!(2d+ 2t)!4k

(d+ t)!(d− k)!
adbk

(−1)d−j(d+ t)!

d!(2d+ 2t)!(j − d)!4j
1

adbj

= 4k−j
bk
bj

∑
k≤d≤j

(−1)d−j

(d− k)!(j − d)!
.

Again, the sum is essentially an alternating sum over a line in Pascal’s
triangle, and the result is immediate.

For LU -decomposition, we have to prove that∑
0≤d≤min{i,j}

LidUdj = Fij .

Consider ∑
0≤d≤min{i,j}

LidUdj

= ajbi
∑

0≤d≤min{i,j}

i!(2i+ 2t)!(d+ t)!j!(2j + 2t)!4d

(i+ t)!(i− d)!(2d+ 2t)!d!(j + t)!(j − d)!
.

Denote the sum on the RHS of the last equation by SUMi. The Zeilberger
algorithm gives the recurrence

SUMi = 2(2i+ 2j + 2t− 1)SUMi−1,

where the initial value, SUM0 = (2j+2t)!
(j+t)! . Solving the recursion gives the claim.

For A and A−1, consider∑
j≤d≤k

AkdA
−1
dj

=
∑
j≤d≤k

(−1)k−d(k + d+ t)!(4d+ 1 + 2t)!(N − d− 1)!

(2k + 2d+ 1 + 2t)!(N − k − 1)!(k − d)!(2d+ t)!

ad
ak

× (2d+ t)!(2d+ 2j + 2t)!(N − j − 1)!

(4d+ 2t)!(N − d− 1)!(d− j)!(d+ j + t)!

aj
ad

=
(N − j − 1)!

(N − k − 1)!

aj
ak

×
∑
j≤d≤k

(−1)k−d(k + d+ t)!(4d+ 1 + 2t)!(2d+ 2j + 2t)!

(2k + 2d+ 1 + 2t)!(k − d)!(4d+ 2t)!(d− j)!(d+ j + t)!
.

The algorithm evaluates the second sum on the RHS of the last equation as
0 provided that k 6= j. If k = j, it is obvious that Ak,kA

−1
k,k = 1. Thus∑

k≤d≤j
AkdA

−1
dj = δk,j ,

as claimed.
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For B and B−1,

∑
k≤d≤j

BkdB
−1
dj

=
∑
k≤d≤j

(−1)k−d(k + d+ 1 + t)!

(d− k)!(2k + 2d+ 2 + 2t)!(N − 1− d)!

× (2k + 2N + 2t)!(2k + t)!

(N + k + t)!(4k + 2t)!4N−1−k
1

akbd

× (4j + 2 + 2t)!(2d+ 2j + 2t)!(N − 1− d)!(N + j + t)!4N−1−j

(d+ j + t)!(j − d)!(2j + 1 + t)!(2j + 2N + 2t)!
ajbd

= (−1)k
4k−j(2k + 2N + 2t)!(2k + t)!(N + j + t)!(4j + 2 + 2t)!

(2j + 2N + 2t)!(4k + 2t)!(N + k + t)!(2j + 1 + t)!

aj
ak

×
∑
k≤d≤j

(−1)d(k + d+ 1 + t)!(2d+ 2j + 2t)!

(d− k)!(2k + 2d+ 2 + 2t)!(d+ j + t)!(j − d)!
.

The algorithm evaluates the sum on the RHS of the last equation as 0
provided that k 6= j. For the case j = k, the sum is equal to 1. Thus

∑
k≤d≤j

BkdB
−1
dj = δk,j ,

as claimed.
For the LU factorization of the inverse matrix, we should show that F =

B−1A−1 instead of F−1 = AB. So, we have

∑
max{k,j}≤d≤N−1

B−1
k,dA

−1
d,j

=
∑

max{k,j}≤d≤N−1

(4d+ 2 + 2t)!(2k + 2d+ 2t)!(N + d+ t)!4N−1−d

(k + d+ t)!(d− k)!(2d+ 1 + t)!(2d+ 2N + 2t)!
adbk

× (N − 1− k)!(2d+ t)!(2d+ 2j + 2t)!(N − j − 1)!

(4d+ 2t)!(N − d− 1)!(d− j)!(d+ j + t)!

aj
ad

= 2ajbk
∑

max{k,j}≤d≤N−1

(4d+ 2t+ 1) (2k + 2d+ 2t)!(N + d+ t)!

(k + d+ t)!(d− k)!(2d+ 2N + 2t)!

× 4N−1−d(N − 1− k)!(2d+ 2j + 2t)!(N − j − 1)!

(N − d− 1)!(d− j)!(d+ j + t)!
.
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Denote the sum on the RHS of the last equation by SUMN after taking N
instead of N − 1. That is,

SUMN

=
∑

j≤d≤N

(4d+ 2t+ 1) (2k + 2d+ 2t)!(N + 1 + d+ t)!(2d+ 2j + 2t)!

(k + d+ t)!(2d+ 2N + 2t+ 2)!(d+ j + t)!

× (N − k)!(N − j)!4N−d

(d− k)!(d− j)!(N − d)!
.

The algorithm gives the recursion

SUMN+1 = SUMN .

We obtain

SUMN+1 = SUMj =
(2k + 2j + 2t)!

2(k + j + t)!
.

Finally we derive∑
max{k,j}≤d≤N−1

B−1
k,dA

−1
d,j =

(2k + 2j + 2t)!

(k + j + t)!
ajbk = Fk,j ,

as claimed.

12. Proofs for the fifth matrix

For L and L−1:∑
j≤d≤i

LidL
−1
dj =

∑
j≤d≤i

i!(2i+ 2t)!(d+ t)!(2d+ t+ u)!

(i+ t)!(i+ d+ t+ u)!(i− d)!(2d+ 2t)!d!

bi
bd

× (−1)d−jd!(d+ j − 1 + t+ u)!(2d+ 2t)!(j + t)!

(d+ t)!(2d− 1 + t+ u)!(d− j)!(2j + 2t)!j!

bd
bj

=
bi
bj

(−1)j
i!(2i+ 2t)!(j + t)!

(i+ t)!(2j + 2t)!j!

×
∑
j≤d≤i

(−1)d
(2d+ t+ u)(d+ j − 1 + t+ u)!

(i+ d+ t+ u)!(i− d)!(d− j)!
.

The Zeilberger algorithm evaluates the sum on the RHS of the last equation
as 0 for i 6= j. If i = j, it can be easily seen LiiL

−1
ii = 1. So we have∑

j≤d≤i
LidL

−1
dj = δij ,

as desired.
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For the LU factorization∑
0≤d≤min{i,j}

LidUdj

=
∑

0≤d≤min{i,j}

i!(2i+ 2t)!(d+ t)!(2d+ t+ u)!

(i+ t)!(i+ d+ t+ u)!(i− d)!(2d+ 2t)!d!

bi
bd

× (2d+ 2u)!(d− 1 + t+ u)!(2j + 2t)!j!u!

(d+ u)!(2d− 1 + t+ u)!(d+ j + t+ u)!(j − d)!(j + t)!(2u)!
ajbd

= biaj
∑

0≤d≤min{i,j}

i!(2i+ 2t)!(2j + 2t)!j!u!

(i+ t)!(j + t)!(2u)!

× (2d+ t+ u)(d+ t)!(2d+ 2u)!(d− 1 + t+ u)!

(i+ d+ t+ u)!(i− d)!(2d+ 2t)!d!(d+ u)!(d+ j + t+ u)!(j − d)!
.

Denote the sum on the RHS of the last equation by SUM, the Zeilberger
algorithm produces the recursion

SUMi =
2 (2t+ 2j + 2i− 1)

(i+ j + t+ u)
SUMi−1,

with initial value SUM0 = (2j+2t)!
(j+t)!(j+t+u)! .

Solving it, we obtain

SUMi =
2i (2t+ 2j + 2i− 1)i

(i+ j + t+ u)
i SUM0 =

2i (2t+ 2j + 2i− 1)i (2j + 2t)!

(i+ j + t+ u)
i
(j + t)! (j + t+ u)!

.

By multiplying both denominator and numerator by (i+ j + t)
i

and after
some arrangements we get

SUMi =
(2t+ 2j + 2i)!

(i+ j + t)! (i+ j + t+ u)!
= Fi,j ,

as claimed.
For B and B−1:∑
i≤d≤j

BidB
−1
dj = (−1)i

aj
ai

(2i+ t)!(2i+ 2N + 2t)!(N − 1− i+ u)!

(N + i+ t)!(2N − 2− 2i+ 2u)!

× (2N − 2− 2j + 2u)!(N + j + t)!(4j + 2 + 2t)!

(4i+ 2t)!(2j + 2N + 2t)!(N − 1− j + u)!(2j + 1 + t)!

×
∑
i≤d≤j

(−1)d
(i+ d+ 1 + t)!(2d+ 2j + 2t)!

(2i+ 2d+ 2 + 2t)!(d− i)!(d+ j + t)!(j − d)!
.

By the Zeilberger algorithm, the sum on RHS is equal to 0 provided that
i 6= j. When i = j, BiiB

−1
ii = 1.
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For the LU factorization of the inverse matrix, we should show that F =
B−1A−1 instead of F−1 = AB. So, we have

∑
max{i,j}≤d≤N−1

B−1
i,dA

−1
d,j

=
∑

max{i,j}≤d≤N−1

(N − 1− i)!(2i+ 2d+ 2t)!(2N − 2− 2d+ 2u)!

(N + i− 1 + t+ u)!(i+ d+ t)!(2d+ 2N + 2t)!

× (N + d+ t)!(4d+ 2 + 2t)!u!

(N − 1− d+ u)!(d− i)!(2d+ 1 + t)!(2u)!

× (2d+ t)!(N − 1 + d+ t+ u)!(2d+ 2j + 2t)!(N − 1− j)!
(N − 1− d)!(4d+ 2t)!(d− j)!(d+ j + t)!(N − 1 + j + t+ u)!

and replacing (N − 1) with N ,

∑
max{i,j}≤d≤N

B−1
i,dA

−1
d,j

=
u!

(2u)!

∑
j≤d≤N

(N − i)!(2i+ 2d+ 2t)!

(N + i+ t+ u)!(2d+ 2N + 2 + 2t)!

× (2N − 2d+ 2u)!(N + 1 + d+ t)!(4d+ 2 + 2t)!

(i+ d+ t)!(N − d+ u)!(d− i)!(2d+ 1 + t)!

× (2d+ t)!(N + d+ t+ u)!(2d+ 2j + 2t)!(N − j)!
(N − d)!(4d+ 2t)!(d− j)!(d+ j + t)!(N + j + t+ u)!

.

The Zeilberger algorithm produces the recursion

SUMN+1 = SUMN .

Then we write

SUMN+1 = SUMj =
(2i+ 2j + 2t)!(2u)!

(i+ j + t)!u!(i+ j + t+ u)!
.

Finally we get

∑
max{i,j}≤d≤N−1

B−1
i,dA

−1
d,j =

u!

(2u)!

(2i+ 2j + 2t)!(2u)!

(i+ j + t)!u!(i+ j + t+ u)!
= Fi,j ,

which completes the proof.
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13. Proofs related to the sixth matrix

For L and L−1:∑
j≤d≤i

LidL
−1
dj

=
∑
j≤d≤i

(i+ t+ u)!i!(i+ d+ t)!(4d+ 2t)!

(2i+ 2d+ 2t)!(i− d)!(d+ t+ u)!d!(2d+ t)!

bi
bd

× (−1)d−jd!(d+ t+ u)!(2d− 1 + t)!(2d+ 2j − 2 + 2t)!

(4d− 2 + 2t)!(d− j)!(d+ j − 1 + t)!j!(j + t+ u)!

bd
bj

=
2bi(i+ t+ u)!i!

bj(j + t+ u)!j!

×
∑
j≤d≤i

(−1)d−j(i+ d+ t)!(2d+ 2j − 2 + 2t)!(4d+ 2t− 1)

(2i+ 2d+ 2t)!(i− d)!(d− j)!(d+ j − 1 + t)!
.

The Zeilberger algorithm computes the sum on the RHS of the last equation
as 0 when i 6= j. If i = j, it is obvious that LjjL

−1
jj = 1. Thus∑

j≤d≤k
LkdL

−1
dj = δk,j ,

as claimed.
For U and U−1,∑
i≤d≤j

UidU
−1
dj

=
∑
i≤d≤j

22i+3−2u(2i− 1 + t)!(2i− 2 + 2t)!(i+ d+ t)!d!(d+ t+ u)!

(i− 1 + t)!(4i− 2 + 2t)!(2i+ 2d+ 2t)!(d− i)!

×
√
π(−1)i(2u+ 1)!

Γ(3
2 − i+ u)u!

adbi
Γ(3

2 − j + u)u!

(2u+ 1)!22j−2u+3
√
π

1

adbj

× (−1)d(4j + 2t)!(2d+ 2j − 2 + 2t)!(j − 1 + t)!

(d+ t+ u)!d!(d+ j − 1 + t)!(2j + t)!(j − d)!(2j − 2 + 2t)!

=
22i−2j(2i− 1 + t)!(2i− 2 + 2t)!(−1)i(4j + 2t)!(j − 1 + t)!

(i− 1 + t)!(4i− 2 + 2t)!(2j + t)!

× bi
bj

Γ(3
2 − j + u)

Γ(3
2 − i+ u)

×
∑
i≤d≤j

(−1)d(i+ d+ t)!(2d+ 2j − 2 + 2t)!

(2i+ 2d+ 2t)!(d− i)!(d+ j − 1 + t)!(j − d)!(2j − 2 + 2t)!
.
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The Zeilberger algorithm computes the sum on the RHS of the last equa-
tion as 0 when i 6= j. If i = j, it is obvious that UiiU

−1
ii = 1. Thus∑

j≤d≤k
UidU

−1
dj = δi,j ,

as claimed.
For A and A−1, consider∑

j≤d≤k
AkdA

−1
dj

=
∑
j≤d≤k

(−1)k−d(2d+ 1 + t+ u)!(N − 1− d)!(N − 1 + d+ t)!

(k − d)!(k + d+ 1 + t+ u)!(2d− 2 + 2N + 2t)!

× (2k − 2 + 2N + 2t)!

(N − 1− k)!(N − 1 + k + t)!

ad
ak

× (2d− 2 + 2N + 2t)!(d+ j + t+ u)!

(2d+ t+ u)!(N − 1− d)!(N − 1 + d+ t)!(d− j)!

× (N − 1− j)!(N − 1 + j + t)!

(2j − 2 + 2N + 2t)!

aj
ad

=
(2k − 2 + 2N + 2t)!(N − 1− j)!(N − 1 + j + t)!

(N − 1− k)!(N − 1 + k + t)!(2j − 2 + 2N + 2t)!

aj
ak

×
∑
j≤d≤k

(−1)k−d(d+ j + t+ u)!(2d+ 1 + t+ u)

(k − d)!(k + d+ 1 + t+ u)!(d− j)!
.

By the Zeilberger algorithm, for the second sum in the last equation, we
obtain that it is equal to 0 provided that k 6= j. If k = j, it is obvious that
Ak,kA

−1
k,k = 1. Thus ∑

k≤d≤j
AkdA

−1
dj = δk,j ,

as claimed.
By a similar argument, one can obtain that∑

j≤d≤k
BidB

−1
dj = δi,j .

For LU -decomposition, we have to prove that∑
0≤d≤min{i,j}

LidUdj = Fij .
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Now consider∑
0≤d≤min{i,j}

LidUdj

=
∑

0≤d≤min{i,j}

(i+ t+ u)!i!(i+ d+ t)!(4d+ 2t)!

(2i+ 2d+ 2t)!(i− d)!(d+ t+ u)!d!(2d+ t)!

bi
bd

× 22d+3−2u(2d− 1 + t)!(2d− 2 + 2t)!(d+ j + t)!j!(j + t+ u)!

(d− 1 + t)!(4d− 2 + 2t)!(2d+ 2j + 2t)!(j − d)!

×
√
π(−1)d(2u+ 1)!

Γ(3
2 − d+ u)u!

ajbd

= ajbi
∑

0≤d≤min{i,j}

(i+ t+ u)!i!(i+ d+ t)! (4d+ 2t− 1)

(2i+ 2d+ 2t)!(i− d)!(d+ t+ u)!d!

× 22d−2u+3(2d− 2 + 2t)!(d+ j + t)!j!(j + t+ u)!

(d− 1 + t)!(2d+ 2j + 2t)!(j − d)!

×
√
π(−1)d(2u+ 1)!

Γ(3
2 − d+ u)u!

.

The algorithm gives the recursion

SUMi+1 =
(1 + i+ j + t+ u)

2(1 + 2i+ 2j + 2t)
SUMi

and we can compute the initial value

SUM0 =
(j + t)!(j + t+ u)!

(2j + 2t)!

23−2u√π(2u+ 1)!

Γ(3
2 + u)u!

.

By the duplication formula we write

Γ(3
2 + u) =

Γ(1
2 + (u+ 1))Γ(u+ 1)

Γ(u+ 1)

=

√
π21−2u+2Γ(2u+ 2)

Γ(u+ 1)
=

√
π23−2u(2u+ 1)!

u!

and so

SUM0 =
(j + t)!(j + t+ u)!

(2j + 2t)!
.

Consequently,

SUMi =
(i+ j + t+ u)

2(2i+ 2j + 2t− 1)
SUMi−1 =

(i+ j + t+ u)i

2i(2i+ 2j + 2t− 1)i
SUM0

=
(i+ j + t+ u)i

2i(2i+ 2j + 2t− 1)i
(j + t)!(j + t+ u)!

(2j + 2t)!

=
(i+ j + t)! (i+ j + t+ u)!

(2i+ 2j + 2t)!
,

as claimed.
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For the LU -decomposition of F−1, we should show that F−1 = AB which
is the same as F = B−1A−1. So it is sufficient to show that∑

max{i,j}≤d≤n−1

B−1
id A

−1
dj = Fi,j .

Consider∑
max{i,j}≤d≤N−1

B−1
id A

−1
d,j =

∑
j≤d≤N−1

22N−2d−2u+1√π(2u+ 1)!

u!Γ(d−N + 5
2 + u)

aj
ad
adbi

× (N − 1− i)!(N − 1 + i+ t)!(2d+ 1 + t+ u)!(i+ d+ t+ u)!(−1)d

(2i− 2 + 2N + 2t)!(d− i)!(N + d+ t+ u)!

× (2d− 2 + 2N + 2t)!(d+ j + t+ u)!(N − 1− j)!(N − 1 + j + t)!

(2d+ t+ u)!(N − 1− d)!(N − 1 + d+ t)!(d− j)!(2j − 2 + 2N + 2t)!

= ajbi
∑

j≤d≤N

22N−2d−2u+3√π(2u+ 1)!

u!Γ(d−N + 3
2 + u)

× (N − i)!(N + i+ t)!(2d+ 1 + t+ u)!(i+ d+ t+ u)!(−1)d

(2i+ 2N + 2t)!(d− i)!(N + d+ t+ u+ 1)!

× (2d+ 2N + 2t)!(d+ j + t+ u)!(N − j)!(N + j + t)!

(2d+ t+ u)!(N − d)!(N + d+ t)!(d− j)!(2j + 2N + 2t)!
.

The Zeilberger algorithm gives the recursion for the sum on the RHS of
the last equation

SUMN = SUMN−1.

So we write

SUMN = SUMj =
2−2u+3√π(2u+ 1)!(j + i+ t)!(i+ j + t+ u)!

u!Γ(3
2 + u)(2i+ 2j + 2t)!

,

which, since Γ(3
2 + u) =

√
π23−2u(2u+1)!

u! , equals

2−2u+3√π(2u+ 1)!

u!
√
π23−2u(2u+1)!

u!

(j + i+ t)!(i+ j + t+ u)!

(2i+ 2j + 2t)!
=

(j + i+ t)!(i+ j + t+ u)!

(2i+ 2j + 2t)!
,

as claimed.

14. Hypergeometric proofs related to the seventh matrix

As one reviewer remarked, instead of relying on the machinery of au-
tomated proofs (Zeilberger’s algorithm), one can also use hypergeometric
functions. A user-friendly introduction to the subject can be found in [3].

A note on notation: The most common notation today is the one used
in [1]:

pFq

(a1, . . . , ap
b1, . . . , bp

; z
)

with (x)n := x(x+ 1) . . . (x+ n− 1) = Γ(x+n)
Γ(x+n) .
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Knuth comments in [3] that instead of ‘pFq’ one could simply write ‘F ’
as the numbers of upper (resp. lower) parameters can be simply read off is
certainly true. However, most people still use the notation with p and q.

Slater’s influential book [14] uses the notation pFq[a1, . . . , ap; b1, . . . , bq; z].
This book appeared at a time when the typesetting of fractions was very
complicated and costly and thus avoided. Nowadays people prefer the two-
line notation, as it is so much more readable.

To show that the matrices

Ui,j =
(2i+ 1)!(i+ t)!(2j + 2t)!j!

i!(2i+ t)!(i+ j + 1 + t)!(j − i)!(j + t)!
ajbi

and

U−1
j,k =

(−1)j−k(j + t)!(j + k + t)!(2k + 1 + t)!k!

j!(2j + 2t)!(k − j)!(2k + 1)!(k + t)!

1

ajbk

are indeed inverses, we need to evaluate

∑
j

Ui,jU
−1
j,k =

bi(2i+ 1)!(i+ t)!(2k + 1 + t)!k!(−1)i+k

bki!(2i+ t)!(2k + 1)!(k + t)!

×
∑

0≤j≤k−i

(−1)j(j + i+ k + t)!

(2i+ j + 1 + t)!j!(k − i− j)!
.

Calling the term in the sum Tj , we compute the quotient (“term ratio”)

Tj+1

Tj
= −(j + 1 + i+ k + t)(k − i− j)

(2i+ j + 2 + t)(j + 1)
.

The sum (without the extra factors) is then given by

T0 · 2F1

(1 + i+ k + t, i− k
2i+ 2 + t

; 1
)

= T0
Γ(1)Γ(2i+ 2 + t)

Γ(i+ 1− k)Γ(i+ 2 + t+ k)
,

where the 2F1 summation of Gauss was employed. Note that the special
(=terminating) case of the summation is the celebrated Chu–Vandermonde
identity (=summation). Because of the factor Γ(i+1−k) in the denominator,
the only nonzero term of the sum occurs for i = k, and it is

bi(2i+ 1)!(i+ t)!(2i+ 1 + t)!i!(−1)2i

bii!(2i+ t)!(2i+ 1)!(i+ t)!

(2i+ t)!

(2i+ 1 + t)!

Γ(2i+ 2 + t)

Γ(2i+ 2 + t)
= 1,

as it should.
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Here is a second example, worked out in full detail, namely to show that
B and B−1 are inverse:

(BB−1)ik =
ak(2i+ t)!(2i+ 2N + 2t)!(N − 1− i)!
ai(N + i+ t)!(2N − 1− 2i)!(4i+ 2t)!

× (2N − 1− 2k)!(N + k + t)!(4k + 2 + 2t)!

(2k + 2N + 2t)!(N − 1− k)!(2k + 1 + t)!

×
∑

0≤j≤k−i

(−1)j(2i+ j + 1 + t)!(2j + 2i+ 2k + 2t)!

(4i+ 2j + 2 + 2t)!j!(j + i+ k + t)!(k − i− j)!
.

Let us again compute the term ratio of two consecutive summands:

Tj+1

Tj
=

(j + 1
2 + i+ k + t)(j + i− k)

(j + 3
2 + 2i+ t)(j + 1)

.

Consequently we have to evaluate

2F1

( 1
2 + i+ k + t, i− k

3
2 + 2i+ t

; 1
)

=
Γ(1)Γ(3

2 + 2i+ t)

Γ(1 + i− k)Γ(3
2 + i+ t+ k)

,

again by the Gauss 2F1 summation. For i < k, this evaluates to 0, and we
get

(BB−1)ii =
ai(2i+ t)!(2i+ 2N + 2t)!(N + i+ t)!(4i+ 2 + 2t)!

ai(N + i+ t)!(4i+ 2t)!(2k + 2N + 2t)!(2i+ 1 + t)!

× (N − 1− i)!(2N − 1− 2i)!(2i+ 1 + t)!(4i+ 2t)!

(2N − 1− 2i)!(N − 1− i)!(4i+ 2 + 2t)!(2i+ t)!
= 1.

Other proofs can also be done in this style, but require heavy human in-
teraction (as Krattenthaler [6] calls it: “Do it yourself !”) While it is fun
to work through a few of the proofs using hypergeometric summations, to
do all of them would be a time consuming procedure that might be a good
project for a graduate student.

One referee suggested saying something about possible generalizations.
The first thought in this direction is finding so-called q-analogues. Nothing
about this has been done, but in any case, we would like to stress the
fact that the important and challenging part of such an enterprise is to
find the relevant formulæ (by inspired guessing), while proofs are somehow
routine, using the well-oiled machinery of the q-Zeilberger algorithm (resp. q-
hypergeometric functions and identities).
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