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ON CHARACTERIZATION AND RECOGNITION OF

PROPER TAGGED PROBE INTERVAL GRAPHS

SANCHITA PAUL, SHAMIK GHOSH, SOURAV CHAKRABORTY,
AND MALAY SEN

Abstract. Interval graphs were used in the study of the human genome
project by the molecular biologist Benzer. Later on probe interval
graphs were introduced by Zhang as a generalization of interval graphs
for the study of cosmid contig mapping of DNA. Further research in this
area required more useful and cost-effective tools. The concept of tagged
probe interval graphs is motivated from this point of view. In this paper,
we consider a natural subclass of it, namely, the class of proper tagged
probe interval graphs. In this paper, we present a characterization the-
orem and a linear time recognition algorithm for proper tagged probe
interval graphs. Also, we discuss the interrelations between the classes
of proper tagged probe interval graphs and tagged probe interval graphs
with probe interval graphs and probe proper interval graphs.

1. Introduction

One of the most intriguing problems in molecular biology, especially in the
human genome project, is the physical mapping of DNA that aims to recon-
struct the relative position of DNA fragments along the genome. In 1959,
Benzer [2] applied interval graphs to obtain such a physical map from in-
formation on pairwise overlaps of the fragments. A graph G = (V,E) is
an interval graph if one can map each vertex into an interval on the real
line so that any two vertices are adjacent if and only if their corresponding
intervals intersect. A natural and well-studied subclass of interval graphs is
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the class of proper interval graphs. A proper interval graph G is an interval
graph with an interval representation of G such that no interval contains an-
other properly. There are several characterizations of proper interval graphs
[5, 6, 8, 11].

In 1994, Zhang introduced the concept of probe interval graphs which
worked successfully as a model for a new concept known as cosmid contig
mapping [10, 17]. This generates overlapped information by hybridization.
A set of clones is placed on a filter for colony hybridization, and the filter is
probed with labeled clones. Thus the set of vertices (clones) is partitioned
into probes and nonprobes, and the adjacency requires the overlap informa-
tion between a pair of clones only when one of them is a probe. A graph
G = (V,E) is a probe interval graph (PIG) if the vertex set V is partitioned
into two disjoint sets, probe vertices P and nonprobe vertices N and one
can map each vertex x ∈ V into an interval Ix on the real line such that
there is an edge between two vertices x and y if and only if at least one of
them is in P and Ix ∩ Iy ̸= ∅. In 2010, Ghosh, Podder, and Sen [7] obtained
a characterization of probe interval graphs in terms of the adjacency ma-
trix. When the interval representation of PIG is proper (i.e., no interval is
properly contained in another interval), the graph is called a probe proper
interval graph (PPIG). In 2014, Nussbaum [11] gave a linear time algorithm
for probe proper interval graphs.

Shortly after the introduction of probe interval graphs, the development
of research in molecular biology requires further refinements. In the new
model, a set of clones (probes) are radioactively labeled at their ends, and
one can easily detect the overlapping of a pair of clones when one is labeled
and the other contains at least one end of the labeled one. To capture this
model, the concept of tagged probe interval graphs is defined in [14, 15, 16].
A graph G = (V,E) is a tagged probe interval graph (TPIG) if the vertex
set V can be partitioned into two disjoint sets P (called “probe vertices”)
and N (called “nonprobe vertices”) and one can map each vertex into an
interval on the real line (vertex x ∈ V mapped to Ix = [lx, rx]) such that N
is an independent set in G, there is an edge between x, y ∈ P if and only
if Ix ∩ Iy ̸= ∅ and there is an edge between x ∈ P and y ∈ N if and only
if either lx ∈ Iy or rx ∈ Iy. We call the collection {Ix |x ∈ V } a TPIG
representation of G. If the partition of the vertex set V into probe and
nonprobe vertices is given, then we denote the graph as G = (P,N,E).

Interestingly, when the subgraph of a TPIG induced by its probe ver-
tices is proper, then each pair of distinct intervals corresponding to probe
vertices contain one endpoint of the other, and so it helps the overlap de-
tection process. Also, in some biological frameworks, the set of clones is
virtually inclusion-free, especially when all clones have similar lengths as in
the case of cosmid clones. In this case, the physical mapping problem can
be modeled using proper interval structures [9]. Thus it becomes interest-
ing to consider the subclass of the class of tagged probe interval graphs,
namely, proper tagged probe interval graphs. A tagged probe interval graph
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G = (P,N,E) is a proper tagged probe interval graph (PTPIG) if G has a
TPIG representation {Ix | x ∈ P ∪N} such that {Ip | p ∈ P} is a proper
interval representation of GP where GP is the subgraph induced by the ver-
tex set P . We call such an interval representation a PTPIG representation
of G.

Since the inception of tagged probe interval graphs, there is still no char-
acterization theorem or recognition algorithm for this class of graphs or
any natural subclass of it, except probe proper interval graphs. However,
it is proved that, like probe interval graphs, tagged probe interval graphs
are also weakly chordal and hence perfect [14]. In this paper, we obtain a
characterization theorem and a linear time recognition algorithm for proper
tagged probe interval graphs. We hope these results will benefit molecular
biologists involved in the human genome project. For more detailed infor-
mation on applications of interval graphs, probe interval graphs, and tagged
probe interval graphs in molecular biology and other areas, one may consult
[4, 8, 14, 17].

2. Preliminaries

Let G = (V,E) be a graph and v ∈ V . Then the closed neighborhood of v
in G is the set N [v] = {u ∈ V | u is adjacent to v} ∪ {v}. A graph is called
reduced if no two vertices have the same closed neighborhood. If the graph is
not reduced then we define an equivalence relation on the vertex set V such
that vi and vj are equivalent if and only if vi and vj have the same (closed)
neighbors in V . Each equivalence class under this relation is called a block
of G. For any vertex v ∈ V we denote the equivalence class containing v

by B(v). The reduced graph of G (denoted by G̃ = (Ṽ , Ẽ)) is the graph
obtained by merging all the vertices that are in the same equivalence class.
A straight enumeration of G is a linear ordering of blocks in G, such that
for every block, the block and its neighbouring blocks are consecutive in the
ordering.

IfM is a (0, 1)-matrix, then we sayM satisfies the consecutive 1’s property
if in each row and column, 1’s appear consecutively. We will denote by A(G)
the augmented adjacency matrix of the graph G, in which all the diagonal
entries are 1, and nondiagonal elements are the same as the adjacency matrix
of G.

The class of proper interval graphs is an extremely rich class of graphs
with several other characterizations of it. Among them, we repeatedly use
the following equivalent conditions in the rest of the paper:

Theorem 2.1 ([5, 6, 8, 11]). Let G = (V,E) be an interval graph. then the
following are equivalent:

(1) G is a proper interval graph.
(2) There is an ordering of V such that for all v ∈ V , elements of N [v]

are consecutive (the closed neighborhood condition).
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v1 v2 v3 v4 v5 v6 v7 v8
v1 1 1 0 0 0 0 0 0
v2 1 1 1 1 1 0 0 0
v3 0 1 1 1 1 1 0 0
v4 0 1 1 1 1 1 0 0
v5 0 1 1 1 1 1 1 0
v6 0 0 1 1 1 1 1 0
v7 0 0 0 0 1 1 1 1
v8 0 0 0 0 0 0 1 1

v1 v2 v3 v4 v5 v6 v7 v8
v1 1 2 1
v2 3 4 5 2
v3 6 3
v4 4
v5 7 5
v6 6
v7 8 7
v8 8

Table 1. The matrix A(G) with its stair partition and the
canonical sequence (1 2 1 3 4 5 2 6 3 4 7 5 6 8 7 8) of A(G)
of the graph G in Example 3.2.

(3) There is an ordering of V such that the augmented adjacency matrix
A(G) of G satisfies the consecutive 1’s property.

(4) There is an ordering {v1, v2, . . . , vn} of V such that G has a proper
interval representation
{Ivi = [ai, bi] | i = 1, 2, . . . , n} where ai ̸= bj, i, j ∈ {1, 2, . . . , n} and
a1 < a2 < · · · < an and b1 < b2 < · · · < bn.

(5) G has a straight enumeration which is unique up to reversal, if G is
connected.

Remark 2.2: We note that in a proper interval graph G = (V,E), the order-
ing of V that satisfies any one of the conditions (2), (3) and (4) in the above
theorem also satisfies the other conditions among them. Henceforth we call
such an ordering, a natural or canonical ordering of V . But this canonical
ordering is not unique. Interestingly, it follows from Corollary 2.5 of [6] (also
see [11]) that the canonical ordering is unique up to reversal for a connected
reduced proper interval graph.

3. Canonical Sequence of Proper Interval Graphs

Definition 3.1. Let G = (V,E) be a proper interval graph with V =
{vi | i = 1, 2, . . . , n} and A(G) be the augmented adjacency matrix of G with
consecutive 1’s property. We partition positions of A(G) into two sets (L,U)
by drawing a polygonal path from the upper left corner to the lower right cor-
ner such that the set L [resp. U ] is closed under leftward or downward [re-
spectively, rightward or upward] movement (called a stair partition [1]) and
U contains precisely all the zeros right to the principal diagonal of A(G)
(see Table 1(left)). We obtain a sequence of positive integers belonging to
{1, 2, . . . , n}, each occurs exactly twice, by writing the row or column num-
bers as they appear along the stair. We call this sequence, the canonical
sequence of A(G) (see Table 1(right)).

There is an alternative way to get this sequence from the interval repre-
sentation of G. Let {v1, v2, . . . , vn} be a canonical ordering of the set V with
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the interval representation be {Ivi = [ai, bi] | i = 1, 2, . . . , n} where ai ̸= bj
for all i, j ∈ {1, 2, . . . , n}, a1 < a2 < · · · < an and b1 < b2 < · · · < bn. We
combine all ai and bi (i = 1, 2, . . . , n) in a single increasing sequence (say IG,
the interval canonical sequence) and replace ai or bi by i for all i = 1, 2, . . . , n,
then we obtain a sequence of integers belonging to {1, 2, . . . , n} each occur-
ring twice. We denote this sequence by SG. Moreover if we replace i by
vi for all i = 1, 2, . . . , n in SG we get a sequence of vertices (say, VGP

, the
vertex canonical sequence) of G. A similar concept described in a different
language is found in [13].

Example 3.2. Consider the proper interval graph GP = (P,E) where P =
{pi|i = 1, 2, . . . , 8} in Example 4.3. Let [ai, bi] be the interval corresponding
to the vertex pi for i = 1, 2, . . . , 8 in a proper interval representation of
GP ,where

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 b7 b8
1 2 4 5 6 8 11 14 3 7 9 10 12 13 15 16

Then the sequence combining ai and bi is given by

IGP
= (a1, a2, b1, a3, a4, a5, b2, a6, b3, b4, a7, b5, b6, a8, b7, b8).

Therefore SG = (1 2 1 3 4 5 2 6 3 4 7 5 6 8 7 8) and
VG = (v1, v2, v1, v3, v4, v5, v2, v6, v3, v4, v7, v5, v6, v8, v7, v8) with respect to the
given canonical vertex ordering.

Lemma 3.3. Let G = (V,E) be a proper interval graph and {v1, v2, . . . , vn}
be a canonical ordering of vertices of G. Then the sequence SG is indepen-
dent of proper interval representations that satisfy the given canonical or-
dering. Moreover, SG is unique up to reversal for connected reduced proper
interval graphs.

Proof. Let {Ivi = [ai, bi] | i = 1, 2, . . . , n} and {Jvi = [ci, di] | i = 1, 2, . . . , n}
be two proper interval representations of G that satisfy the given canonical
ordering. We have for any i < j, aj < bi if and only if vi is adjacent to vj if
and only if cj < di. Thus the sequence SG is independent of proper interval
graph representations. Since the canonical ordering is unique up to reversal
for a connected reduced proper interval graph, the sequence SG is unique
up to reversal for connected reduced proper interval graphs. □

In the following, we will show that the canonical sequence of A(G) is the
same as SG with respect to the given canonical ordering of vertices of G.
Moreover, SG and its corresponding VG and IG can be obtained uniquely
from each other. Hence abuse of notations, we will use the term canonical
sequence to mean any of these throughout the paper.

Theorem 3.4. Let G = (V,E) be a proper interval graph with a canonical
ordering V = {v1, v2, . . . , vn} of vertices of G. Let A(G) be the augmented
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adjacency matrix of G arranging vertices in the same order as in the canon-
ical ordering. Then the sequence SG of G is the same as the canonical
sequence of A(G).

Proof. We show that the canonical sequence of A(G) is an S(G) sequence for
some proper interval representation. So the proof follows by the uniqueness
mentioned in Lemma 3.3. Given the matrix A(G), a proper interval repre-
sentation of G is obtained as follows. Let ai = i and bi = U(i)+1− 1

i where
U(i) = max {j | j ≥ i and vivj = 1 in A(G)} for each i = 1, 2, . . . , n. Then
{Ivi = [ai, bi] | i = 1, 2, . . . , n} is a proper interval representation of G [6]. If
U(1) > 1, to make all the endpoints distinct, we slightly increase the value
of b1 (which is the only integer-valued right endpoint and is equal to aU(1))
so that it is still less than its nearest endpoint which is greater than it. Thus
we get a proper interval representation of G that satisfies the condition 4 of
Theorem 2.1. Then the sequence SG merges with the canonical sequence of
A(G) for this proper interval representation of G as for i < j, aj = j < bi if
and only if vivj = 1 if and only if the column number j appears before the
row number i in the canonical sequence of A(G). □

Remark 3.5: We note that it follows from the above theorem and Lemma 1
of [13] or Corollary 2.5 of [6] that for any connected proper interval graph
G, SG is unique up to reversal.

4. Structure of PTPIG

Let us consider a graph G = (V,E), in general, with an independent set
N and P = V \N such that the subgraph GP of G induced by P is a proper
interval graph. Let us order the vertices of P in a canonical ordering. The
adjacency matrix of G looks like the following:

P N

P A(P ) A(P,N)

N A(P,N)T 0

Note that the (augmented) adjacency matrix A(P ) of GP satisfies the
consecutive 1’s property, and the P × N submatrix A(P,N) of the adja-
cency matrix of G represents edges between probe vertices and nonprobe
vertices. For convenience, henceforth, a continuous stretch (a subsequence
of consecutive entries) in a canonical sequence will be called a substring.

Theorem 4.1. Let G = (V,E) be a graph with an independent set N and
P = V \ N such that GP , the subgraph induced by P is a proper interval
graph. Then G is a proper tagged probe interval graph with probes P and
nonprobes N if and only if there is a canonical ordering of vertices belonging
to P such that the following condition holds:

(A) For every nonprobe vertex w ∈ N , there is a substring in the canon-
ical sequence with respect to the canonical ordering such that all the
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vertices in the substring are neighbors of w and all the neighbors of
w are present at least once in the substring.

Proof. Necessary condition: Let G = (V,E) be a PTPIG with probes P
and nonprobes N such that V = P ∪ N . Let {Ix = [ℓx, rx] | x ∈ V } be
a PTPIG representation of G such that {Iu | u ∈ P} be a proper interval
representation of GP . Then a probe vertex u ∈ P is adjacent to w ∈ N if
and only if ℓu ∈ Iw or ru ∈ Iw. Let u1, u2, . . . , up be a canonical ordering
of vertices in P that satisfies the conditions of Theorem 2.1. Consider the
corresponding canonical sequence SGP

which is obtained from the combined
increasing sequence of ℓui and rui for i = 1, 2, . . . , p. Since both sequences
ℓui and rui are increasing and Iw is an interval, all the ℓui ’s and rui ’s which
are belonging to Iw occur consecutively in the canonical sequence. Thus for
any w ∈ N there exists a substring of SGP

such that all the vertices in the
substring are neighbors of w and all the neighbors of w are present at least
once in the substring.

Sufficiency condition: Let G = (V,E) be a graph with an independent set
N and P = V \ N such that GP , the subgraph induced by P is a proper
interval graph, P = {u1, u2, . . . , up} and N = {w1, w2, . . . , wq}. Suppose
there is a canonical ordering u1, u2, . . . , up of vertices belonging to P such
that for any nonprobe vertex w ∈ N , there is a substring in the canonical
sequence S = SGP

with respect to this canonical ordering such that all the
vertices in the substring are neighbors of w and all the neighbors of w are
present at least once in the substring. Let us count the positions of each
element in S from 1 to 2p. For each probe vertex ui, we assign the closed in-
terval [ℓui , rui ] such that ℓui and rui are position numbers of first and second
occurrences of i in S respectively. By definition of a canonical sequence, we
have ℓu1 < ℓu2 < · · · < ℓup and ru1 < ru2 < · · · < rup . Also since all position
numbers are distinct, ℓui ̸= ruj for all i, j ∈ {1, 2, . . . , p}. Thus this interval
representation obeys the given canonical ordering of vertices belonging to P
and by construction, the canonical sequence with respect to it is same as S.

We show that this interval representation is indeed an interval represen-
tation of GP which is proper. Let i < j, i, j ∈ {1, 2, . . . , p}. Then ℓui < ℓuj

and rui < ruj . Thus none of [ℓui , rui ] and [ℓuj , ruj ] contains other properly.
We have ui is adjacent to uj in GP if and only if uiuj = 1 in A(P ) when
vertices of A(P ) are arranged as in the given canonical ordering. Again
uiuj = 1 with i < j if and only if j is lying between two occurrences of i
in the canonical sequence of A(P ) and hence in S by Theorem 3.4. Also
since i < j, the second occurrence of j is always after the second occur-
rence of i in S. Thus uiuj = 1 with i < j if and only if ℓuj ∈ [ℓui , rui ].
This completes the verification that {[ℓui , rui ] | i = 1, 2, . . . , p} is a proper
interval representation of GP and that corresponds to S.

Next, for each j = 1, 2, . . . , q, consider the substring in the canonical
sequence S such that all the vertices in the substring are neighbors of wj

and all the neighbors of wj are present at least once in the substring. Let
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the substring start at ℓwj and end at rwj in S. Then we assign the interval
[ℓwj , rwj ] to the vertex wj . If wj is an isolated vertex, then we assign a closed
interval whose endpoints are greater than ℓui and rui for all i = 1, 2, . . . , p. It
suffices to show that {[ℓui , rui ] | i = 1, 2, . . . , p}∪

{
[ℓwj , rwj ] | j = 1, 2, . . . , q

}
is a PTPIG representation of G, i.e., if ui is a probe vertex and wj is a
nonprobe vertex then there is an edge between them if and only if either
ℓui ∈ [ℓwj , rwj ] or rui ∈ [ℓwj , rwj ]. Note that since N is an independent set
by definition, there are no edges between nonprobe vertices.

First let us assume that there is an edge between ui and wj . Therefore
the vertex ui must be present in the substring of S that contains all the
neighbors of wj and contains only the neighbors of wj . Since ℓwj and rwj are
the beginning and ending positions of the substring respectively, either ℓui

or rui must be in the interval [ℓwj , rwj ]. Conversely, let either ℓui ∈ [ℓwj , rwj ]
or rui ∈ [ℓwj , rwj ]. Then we have either ℓui or rui must be present in the
substring. Since the substring contains vertices that are neighbors of wj , we
have ui must be a neighbor of wj . □

Remark 4.2: If G is a PTPIG such that GP is connected and reduced, then
there is a unique (up to reversal) canonical ordering of vertices belonging
to P , as we mentioned in Remark 2.2. Thus the corresponding canonical
sequence is also unique up to reversal. Also if condition (A) holds for a
canonical sequence, it also holds for its reversal. Thus in this case condition
(A) holds for any canonical ordering of vertices belonging to P .

[1, 3] [2, 7] [4, 9] [5, 10] [6, 12] [8, 13] [11, 15] [14, 16]
p1 p2 p3 p4 p5 p6 p7 p8

[1, 3] p1 1 1 0 0 0 0 0 0
[2, 7] p2 1 1 1 1 1 0 0 0
[4, 9] p3 0 1 1 1 1 1 0 0
[5, 10] p4 0 1 1 1 1 1 0 0
[6, 12] p5 0 1 1 1 1 1 1 0
[8, 13] p6 0 0 1 1 1 1 1 0
[11, 15] p7 0 0 0 0 1 1 1 1
[14, 16] p8 0 0 0 0 0 0 1 1

[6, 8] [4, 10] [10, 16] [1, 10] [17, 17] [1, 16]
n1 n2 n3 n4 n5 n6

[1, 3] p1 0 0 0 1 0 1
[2, 7] p2 1 1 0 1 0 1
[4, 9] p3 0 1 0 1 0 1
[5, 10] p4 0 1 1 1 0 1
[6, 12] p5 1 1 1 1 0 1
[8, 13] p6 1 1 1 1 0 1
[11, 15] p7 0 0 1 0 0 1
[14, 16] p8 0 0 1 0 0 1

Table 2. A proper tagged probe interval representation of
the graph G in Example 4.3.
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Example 4.3. Consider the graph G = (V,E) with an independent set
N = {n1, n2, . . . , n6} and P = V \ N = {p1, p2, . . . , p8}, where the matri-
ces A(P ) and A(P,N) are given in Table 2. First note that A(P ) satis-
fies consecutive 1’s property. Hence GP is a proper interval graph. Sec-
ondly, each column of A(P,N) does not have more than two consecutive
stretches of 1’s (see Proposition 5.1). Here the canonical sequence S =
SGP

= (1 2 1 3 4 5 2 6 3 4 7 5 6 8 7 8). The required substrings of probe
neighbors for nonprobe vertices n1, n2, . . . , n6 are (5 2 6), (3 4 5 2 6 3 4),
(4 7 5 6 8 7 8), (1 2 1 3 4 5 2 6 3 4), ∅, S respectively. Note that G is
indeed a PTPIG with an interval representation shown in Table 2 which is
constructed by the method described in the sufficiency part of Theorem 4.1.

5. Further structural properties of PTPIG

In this section we give further structural properties of PTPIG which we
require for the recognition algorithm.

Proposition 5.1. Let G = (P,N,E) be a PTPIG. Then for any canonical
ordering of the vertices belonging to P each column of A(P,N) cannot have
more than two consecutive stretches of 1’s.

Proof. Let us prove by contradiction. Consider a canonical ordering of ver-
tices belonging to P , say, {u1, u2, . . . , um}. Let wj be a vertex in N such
that in the matrix A(P,N) the column corresponding to wj has at least
three consecutive stretches of 1’s. That is, there are five vertices in P ,
say ui1 , ui2 , ui3 , ui4 and ui5 (with i1, i2, i3, i4, i5 ∈ {1, 2, . . . ,m}) such that
i1 < i2 < i3 < i4 < i5 and ui1 , ui3 and ui5 are neighbors of wj while ui2 and
ui4 are not neighbors of wj . Let us prove its impossibility. We prove it case
by case.

Let the interval corresponding to the vertex vik be Ivik = [ℓk, rk] for
k = 1, 2, 3, 4, 5 in a PTPIG representation. Then by Theorem 2.1, we have
ℓ1 < ℓ2 < ℓ3 < ℓ4 < ℓ5 and r1 < r2 < r3 < r4 < r5. Since G is a PTPIG,
either ℓi ∈ Iwj or ri ∈ Iwj for each j = 1, 3, 5.

Case 1: (ℓ1, ℓ5 ∈ Iwj ). In this case, for t such that i1 ≤ t ≤ i5, we have
ℓt ∈ Iwj . In particular we have ℓ2 and ℓ4 are in Iwj , i.e., ui2 and ui4
are neighbors of wj which is a contradiction.

Case 2: (r1, r5 ∈ Iwj ). In this case, for all t such that i1 ≤ t ≤ i5, we
have rt ∈ Iwj . And again here we have a contradiction just like the
previous case.

Case 3: (ℓ1, r5 ∈ Iwj but r1, ℓ5 /∈ Iwj ). Let Iwj be [ℓwj , rwj ]. Thus in this
case, ℓ5 < ℓwj ⩽ ℓ1 which is a contradiction.

Case 4: (r1, ℓ5 ∈ Iwj ). If ℓ3 ∈ Iwj , then ℓt ∈ Iwj for all t ∈ {i3, . . . , i5} and
this would mean that ℓ4 ∈ Iwj which is a contradiction. Similarly,
if r3 ∈ Iwj , then rt ∈ Iwj for all t ∈ {i1, . . . , i3} and then r2 ∈ Iwj

which also gives a contradiction.
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Note that all the cases are taken care of and thus each column of A(P,N)
cannot have more than two consecutive stretches of 1’s. □

There are examples in [12] showing that the condition in the above lemma
is not sufficient.

Definition 5.2. Let G = (V,E) be a graph with an independent set N and
P = V \ N such that GP , the subgraph induced by P is a proper interval
graph. Let SGP

be a canonical sequence of GP . Let w ∈ N . If there exists a
substring in SGP

which contains all the neighbors of w and all the vertices in
the substring are neighbors of w then we call the substring a perfect substring
of w. If the canonical sequence SGP

contains a perfect substring of w in SGP

for all w ∈ N , we call it a perfect canonical sequence for G.

The following Proposition shows that unless the trivial case no nonprobe
vertex has more than one disjoint perfect substrings.

Proposition 5.3. Let G = (P,N,E) be a PTPIG such that GP is a con-
nected reduced proper interval graph and SGP

be a canonical sequence of GP .
Then for any nonprobe vertex w ∈ N , there cannot exist more than one dis-
joint perfect substring of w in SGP

, unless the substring consists of a single
element.

Proof. Let u1, u2, . . . , up be the canonical ordering of the probe vertices of
G with the proper interval representation {[ℓi, ri] | i = 1, 2, . . . , p} that sat-
isfies the condition 4 of Theorem 2.1 and S be the corresponding canonical
sequence SGP

. We first note that, since each vertex in S appears twice,
there cannot be more than two disjoint perfect substrings of S.

Suppose there is a nonprobe vertex w in G such that there are two disjoint
perfect substrings of length greater than 1. We will refer to them as the first
substring and the second substring corresponding to the relative location
of the substrings in S. In S, each number i appears twice due to li and
ri only. Thus if we think of the canonical sequence as an ordering of ℓi’s
and ri’s, then we have that the first substring contains all the ℓi’s and the
second substring contains all the ri’s for all the probe vertices ui those are
neighbors of w, as ℓi < ri and both substrings contain all numbers i such
that ui is a neighbor of w.

Moreover due to the increasing order of ℓi’s and ri’s, both substrings
contain numbers k, k+1, . . . , k+r for some integers k, r with 1 ⩽ k ⩽ m and
1 ⩽ r ⩽ m− k. Then the first substring must comprise of some consecutive
collection of ℓi and similarly for the second substring, i.e., the first substring
is ℓk, ℓk+1, . . . , ℓk+r and the second substring is rk, rk+1, . . . , rk+r (in IGP

).
Therefore the vertices uk, . . . , uk+r form a clique.

Suppose ui is adjacent to uk+t for some i < k and 1 ≤ t ≤ r. Then
ℓi < ℓk and ℓk+r < ri as ℓk to ℓk+r are consecutive in the first substring
(in IGP

). But this implies ui is adjacent to all uk, uk+1, . . . , uk+r. Similarly,
one can show that if uj is adjacent to uk+t for some j > k+r and 1 ≤ t ≤ r.
Then uj is adjacent to all uk, uk+1, . . . , uk+r. Thus (closed) neighbors of
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uk, uk+1, . . . , uk+r are same in GP which contradicts the assumption that
GP is reduced as r ≥ 1. □

In fact, we can go one step more in understanding the structure of a
PTPIG. If G is a PTPIG, not only there cannot be two disjoint perfect
substrings (of length more than 1) for any nonprobe vertex in any canoni-
cal sequence but also any two perfect substrings for the same vertex must
intersect at least two places, except two trivial cases.

Proposition 5.4. Let G = (P,N,E) be a PTPIG such that GP is a con-
nected reduced proper interval graph with a canonical ordering of vertices
{u1, u2, . . . , up} and let VGP

be the corresponding vertex canonical sequence
of GP . Let w ∈ N be such that w has at least two neighbors in P and T1, T2

be two perfect substrings for w in VGP
intersecting in exactly one place.

Then one of the following holds:

(1) VGP
begins with u1u2u1 and only u1 and u2 are neighbors of w.

(2) VGP
ends with upup−1up and only up−1 and up are neighbors of w.

Proof. Let [ai, bi] be the interval corresponding to ui for i = 1, 2, . . . , p. Let
the place where T1 and T2 intersect be the first occurrence of the vertex uk.

Without loss of generality, let the substring T1 end with the first occur-
rence of uk and the substring T2 start with the first occurrence of uk. Thus
for all i > k, the vertex ui cannot appear before the first occurrence of uk
in the VGP

. Therefore T1 does not contain any ui such that i > k. Thus w
is not a neighbor of any ui such that i > k. Note that, it also means that
for any vertex in the neighbor of w (except for uk) the substring T1 contains
the first occurrence, while the substring T2 contains the second occurrence.
Thus the vertices in the neighborhood of w has to be consecutive vertices in
the canonical ordering of GP . Let the vertices in the neighborhood of w be
uk−r, . . . , uk−1, uk, where 1 ≤ r ≤ k − 1.

For any vertex ui such that i < k − r, we have ui is not in T1 and T2. So
the first occurrence of ui is before the first occurrence of uk−r and the second
occurrence of ui is either also before the first occurrence of uk−r or after T2,
i.e., after the second occurrence of uk−r. But if the second case happens,
then we would violate the fact that GP is proper. So the only option is that
both the first and second occurrence of ui are before the first occurrence of
uk−r and this would violate the condition that the graph GP is connected.
Thus there exists no ui such that i < k − r. This implies k − r = 1. Thus
we have the neighbors of w precisely u1, . . . , uk.

If we look at the interval canonical sequence of GP , we have T1 corre-
sponds to a1, . . . , ak and T2 corresponds to ak, b1, . . . , bk−1. But this would
mean that all the vertices u1, . . . , uk−1 have the same (closed) neighborhood
in GP which is not possible as we assumed GP is reduced, unless the set
{u1, . . . , uk−1} is a single element set. In that case, w has neighbors u1 and
u2 and the T1 and T2 correspond to a1, a2 and a2, b1 respectively (in IGP

).
This is the first option in Proposition 5.4. By a similar argument, if we
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assume that T1 and T2 intersect in the second occurrence of the vertex uk,
we get the other option. □

6. Recognition algorithm

In this section, we present a linear-time recognition algorithm for PTPIG.
That is, given a graph G = (V,E), and a partition of the vertex set into N
and P = V \N we can check whether the graph G = (P,N,E) is a PTPIG
or not in O(|V |+ |E|) time. We have G = (P,N,E) is a PTPIG if and only
if it is a TPIG, and GP is a proper interval graph for a TPIG representation
of G. Note that it is easy to check in linear time if N is an independent set
in the graph. We will use the characterization we obtained in Theorem 4.1
to test if the graph satisfies the other properties.

In order to shorten the length of the paper, the algorithm is briefly out-
lined here. The full details and pseudo codes are available in [12].

We will employ the recognition algorithm for proper interval graph H =
(V ′, E′) given by Booth and Lueker [3] as a black box that runs in O(|V ′|+
|E′|). The main idea of their algorithm is that H is a proper interval graph
if and only if the adjacency matrix of the graph satisfies the consecutive
1’s property. So for every vertex v in H, they consider restrictions, on the
ordering of the vertices, of the form “all vertices in the neighborhood of v
must be consecutive”. This is done with the help of the data structure of
PQ-trees. The PQ-tree helps in storing all the possible orderings that adhere
to all these restrictions. It is important to note that all the orderings that
satisfy the restrictions are precisely all the canonical orderings of vertices of
H.

The key idea behind our recognition algorithm is that if the graph G =
(P,N,E) is PTPIG then, from Condition (A) in Theorem 4.1, we can obtain
a series of restrictions on the ordering of vertices, that also can be “stored”
by the use of PQ-tree data structure. These restrictions are on and above
the restrictions that we need to ensure the graph GP is a proper interval
graph. Finally, if there exists an ordering of the vertices satisfying all the
restrictions, then that ordering will be a canonical ordering that satisfies
condition (A) in Theorem 4.1. Thus the main challenge is to discover all
the additional restrictions on the ordering and how to store them in the
PQ-tree.

We first verify that N is an independent set and that the graph GP is
a proper interval graph. In this process, we have stored all the possible
canonical ordering of the vertices of the subgraph GP = (P,E1) in a PQ-
tree (in O(|P |+ |E1|) time). We proceed to find the extra restrictions that
must be applied to the orderings.

We present our algorithm in three cases - each case handling a class of
graphs that is a generalization of the class of graphs handled in the previous
one.
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• Case I: First we consider the case when GP is a connected reduced
proper interval graph.

• Case II: Next we consider the case when GP is a connected proper
interval graph, but not necessarily reduced.

• Case III: Finally we consider the general case when the graph GP

is a proper interval graph, but may not be connected or reduced.

For all the cases we will assume that the vertices in P are v1, . . . , vp and
the vertices in N are w1, . . . , wq. Let Aj be the adjacency list of the vertex
wj and let dj be the degree of the vertex wj . Then the neighbors of wj are
Aj [1], Aj [2], . . . , Aj [dj ] for j = 1, 2, . . . , q.

6.1. Case I: The graph GP is a connected reduced proper interval
graph.

By Lemma 3.3, there is a unique (up to reversal) canonical ordering of
the vertices of GP . By Theorem 4.1, we know that the graph G is PTPIG
if and only if the following condition is satisfied:
Condition (A1): For all 1 ≤ j ≤ q, there is a substring in SGP

where only
the neighbors of wj appear and all the neighbors of wj appear at least once.

In this case, when the graph GP is connected reduced proper interval
graph, since there is a unique canonical ordering of the vertices, it suffices
to check if the corresponding canonical sequence satisfies Condition (A1).
The rest of the algorithm in this case is to check if the property is satisfied.
Idea of the algorithm: Since we know the canonical sequence SGP

(or
obtain by using known algorithms described before in O(|P | + |E1|) time,
where E1 is the set of edges between probe vertices), we form two lookup
tables L and R such that for any vertex vi ∈ P , the L(vi) and R(vi) hold
the indices of the first and the second appearance of vi in SGP

respectively.
We can obtain the lookup tables in time O(|P |) steps.

Also by SGP
[k1, k2] (where 1 ≤ k1 ≤ k2 ≤ 2p) we will denote the substring

of the canonical sequence SGP
that start at the kth1 position and ends at the

kth2 position in SGP
.

To check Condition (A1), we will go over all the wj ∈ N . For j ∈
{1, 2, . . . , q}, let L(Aj [1]) = ℓj and R(Aj [1]) = rj . Since all the neighbors of
wj have to be in a substring, there must be a substring of length at least dj
and at most 2dj (as each number appears twice) in SGP

[ℓj −2dj , ℓj +2dj ] or
SGP

[rj−2dj , rj+2dj ] which contains only and all the neighbors of wj . We can
find all such substrings by first marking the positions in SGP

[ℓj−2dj , ℓj+2dj ]
and SGP

[rj − 2dj , rj + 2dj ] those are neighbors of wj and then by doing a
double pass, we find all the possible substrings of length greater than or
equal to dj in SGP

[ℓj−2dj , ℓj+2dj ] and SGP
[rj−2dj , rj+2dj ] that contains

only neighbors of wj . Naturally Propositions 5.1, 5.3, and 5.4 play important
roles in the construction of the above algorithm.

Going through this way one can correctly decide whether G is a PTPIG
with probes P and nonprobes N in time O(|P | + |N | + |E2|), where E2 is
the set of edges between probes P and nonprobes N when GP is connected
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reduced proper interval graph. Since obtaining SGP
requires O(|P | + |E1|)

time, the total recognition time is O(|P |+ |N |+ |E1|+ |E2|) = O(|V |+ |E|).

6.2. Case II: The graph GP is a connected (but not necessarily
reduced) proper interval graph.

In this case, since the graph GP is not reduced, a unique canonical or-
dering of vertices of GP may not exist. By Theorem 4.1, all we can say is
that among the set of canonical orderings of the vertices of GP , is there an
ordering such that the corresponding canonical sequence satisfies Condition
(A) of Theorem 4.1. As mentioned before, we will assume that we have all
the possible canonical ordering of the vertices of GP stored in a PQ-tree.
We will impose more constraints on the orderings to satisfy the required
condition.

Let G̃P be the reduced graph of GP . Then G̃P has a unique (up to
reversal) canonical ordering of vertices, say, b1, . . . , bt (corresponding to the
blocks B1, . . . , Bt of the vertices of GP ) and the canonical orderings of the
vertices of GP are obtained by all possible permutations of the vertices of
G within each block. For any w ∈ N and any block Bk, we say that Bk

is a block-neighbor of w if there exists at least one vertex in Bk that is a
neighbor of w. If all the vertices in Bk are neighbors of w, we call Bk a
full-block-neighbor of w.
Idea of the algorithm: If G is PTPIG then from condition (A) in Theo-
rem 4.1 we can see that the following condition is a necessary (though not
a sufficient) condition:
Condition (B1): For all 1 ≤ j ≤ q, there is a substring of S

G̃P
where

only the block-neighbors of wj ∈ N appear. All the block-neighbors of wj

appear at least once, and any block that is not at the beginning or end of
the substring must be a full-block-neighbor of wj (i.e., all vertices of the
block are neighbors of wj).

As condition (B1) is not sufficient for G to be a PTPIG, we need to find
a suitable ordering of vertices in each block. We will have a number of cases
and for each of the cases, some restrictions will be imposed on the ordering
of the vertices within blocks depending upon the neighbors of wi within
each block. We identify all the various kinds of restrictions on σ1, . . . , σt
(orderings of the vertices of blocks B1, B2, . . . , Bt respectively) which are
necessary to be imposed so that G becomes a PTPIG.

This case is in fact the most technical step. This step crucially uses an
algorithm that solves a generalization of the consecutive 1’s problem. We
call it the Oriented-consecutive 1’s problem.
Oriented-consecutive 1’s problem: As an extension of the consecutive
1’s problem, we introduce Oriented-consecutive 1’s problem that reduces the
difficulty of determining if there exist orderings of the vertices that meet all
of the constraints to this problem. The PQ-tree can be used to solve the
oriented-consecutive 1′s problem. The Oriented-consecutive 1’s problem is
the following:
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Input: A set Ω = {s1, . . . , sm} and n restrictions (S1, b1), . . . , (Sn, bn) where
Si ⊆ Ω and bi ∈ {−1, 0, 1, 2}.
Output: All the linear ordering, σ, of Ω such that, in the linear ordering
sσ(1), . . . , sσ(m), for 1 ≤ i ≤ n the following are satisfied:

• If bi = 0, then all the elements in Si are consecutive in the linear
ordering.

• If bi = −1, then all the elements in Si are consecutive in the linear
ordering and all the elements of Si are flushed towards Left, i.e.,
sσ(1) ∈ Si.

• If bi = 1, then all the elements in Si are consecutive in the linear
ordering and all the elements of Si are flushed towards Right, i.e.,
sσ(m) ∈ Si.

• If bi = 2, then all the elements in Si are consecutive in the linear
ordering and all the elements of Si are either flushed towards Left
or flushed towards Right, i.e., either sσ(1) ∈ Si or sσ(m) ∈ Si.

If bi = 2 implies bj = 2 for all j ≥ i, then we can design an algorithm that
stores all the valid ordering in the PQ-tree T and the amortized running
time of the algorithm is linear. The whole algorithm runs in O(|V | + |E|)
time.

6.3. Case III: The graph GP is a proper interval graph (not neces-
sarily connected or reduced).

Finally, we consider the graph G = (V,E) with an independent set N
(nonprobes) and P = V \ N (probes) such that GP is a proper interval
graph, which may not be connected. Let the connected components of GP

be G1, . . . , Gr with vertex sets P1, P2, . . . , Pr. For G to be a PTPIG, it is
essential that the subgraphs of G induced by Pk ∪ N is a PTPIG for each
k = 1, 2, . . . , r. As we have seen in the last case, we can check if all the
subgraphs are PTPIG in time O(|V | + |E|). In fact, for each k, we can
store all the possible canonical orderings of vertices in Pk such that the
corresponding canonical sequence satisfies condition (A) of Theorem 4.1 so
that the graph induced by Pk ∪N is a PTPIG.
Idea of the algorithm: To check if the whole graph G is a PTPIG, we
have to find if there exists a canonical ordering of all the vertices in GP such
that for the whole graph, condition (A) of Theorem 4.1 is satisfied. Note
that a canonical ordering of the vertices of GP would place the vertices in
each connected component next to each other, and moreover, for each k,
the ordering of the vertices of Gk would be a canonical ordering for the
graph Gk. In order to check if G is a PTPIG we have to find if there exist
an ordering of the connected components and canonical ordering of vertices
in each of the components such that the corresponding canonical ordering
satisfies condition (A) of Theorem 4.1. In fact, G is a PTPIG if and only if
the following condition is satisfied:
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Condition (C1): There exists permutation π : {1, . . . , r} → {1, . . . , r}
and canonical sequences SG1 , . . . ,SGr of G1, . . . , Gr such that the canonical
sequence SGP

of GP obtained by concatenation of the canonical sequences
of Gπ(1), . . . , Gπ(r) (that is, SGP

= SGπ(1)
· · · SGπ(r)

) has the property that

for all w ∈ N there exists a perfect substring of w in SGP
(that is, there

exists a substring of SGP
where only the vertices of w appear and all the

neighbors of w appears at least once).
Using previous cases, we store all the possible canonical orderings of the

vertices in each component so that the graphs induced by Gk∪N are PTPIG
for each k. As usual, we will store the restrictions using the PQ-tree. Next,
we will have to add more restrictions on the canonical ordering of the vertices
in each of the connected components, which are necessary for the graph G to
be a PTPIG. These restrictions will be stored in the same PQ-tree. Finally,
we check if an ordering of the components exists such that condition (C1)
is satisfied. All this can be done in O(|V |+ |E|) time.

7. PTPIG and its relation with other variants

In this section, we provide the relation between PTPIG and other similar
variants. The graphs discussed here are presented in Figure 1. The definition
of PIG is very similar to that of TPIG, but the two classes of graphs are
not comparable. For example, the graph Ga is PIG, but it is not a TPIG,
whereas the graph Gb is a TPIG, but it is not a PIG [14]. But PPIG is
a proper subclass of PTPIG as well as of PIG. For example, C4 with the
alternating probe, nonprobe vertices (see the graph G4) is a PPIG, which
is a PIG and a PTPIG with the same interval representation [1, 4], [5, 8] for
probe vertices and [2, 6], [3, 7] for the nonprobes.

On the other hand, K1,3 with a single nonprobe at the center (see the
graph G2) cannot be a PPIG, for otherwise, it would be a proper interval
graph (as any probe interval graph with a single nonprobe vertex is an
interval graph). But it is a PTPIG by choosing three disjoint intervals for
probe vertices and an interval containing all of them corresponding to the
nonprobe vertex. As K1,3 is an interval graph, G2 is an example of PIG and
PTPIG, but not a PPIG.

Similarly, C4 with a single nonprobe vertex (see the graph G3) is a PTPIG
with an interval representation [3, 4] for the nonprobe and {[1, 3], [2, 5], [4, 6]}
for probes, but this is not a PIG (for otherwise it would be an interval graph).
Next, we consider the graph G1. It is a PIG, and TPIG follows from the
interval representation described in the figure. But G1 is not a PTPIG as the
subgraph induced by probe vertices is K1,3, which is not a proper interval
graph.

Finally, it is interesting to note that there are examples of TPIG, G for
which GP is a proper interval graph, but G is not a PTPIG. For example,
the graph Gb in [14] is a TPIG in which (Gb)P consists of a path of length 4
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along with 2 isolated vertices, which is a proper interval graph. But Gb has
no TPIG representation with a proper interval representation of (Gb)P .
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• PPIG ⊂ PTPIG ⊂ TPIG and PPIG ⊂ PIG

Graph TPIG PTPIG PPIG PIG
G4 ✓ ✓ ✓ ✓

G2 ✓ ✓ ✗ ✓

G3 ✓ ✓ ✗ ✗

G1 ✓ ✗ ✗ ✓

Ga ✗ ✗ ✗ ✓

Gb ✓ ✗ ✗ ✗

Figure 1. The relation between graph classes TPIG, PT-
PIG, PPIG and PIG.
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