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RESOLVABILITY IN HYPERGRAPHS

IMRAN JAVAID, AZEEM HAIDER, MUHAMMAD SALMAN,

AND SADAF MEHTAB

Abstract. This article presents an extension of the study of metric

and partition dimension to hypergraphs. We give sharp lower bounds

for the metric and partition dimension of hypergraphs in general and

give exact values under specified conditions.

1. Introduction

A hypergraph H is a pair (V,H), where V is a finite non-empty set of

vertices and H is a finite family of distinct non-empty subsets of V , called

hyperedges, with ⋃
E∈H

E = V.

The “order” and the “size” of H is denoted by n and m, respectively. A

hypergraph K = (V1,K) is a subhypergraph of H if and only if V1 ⊆ V and

K ⊆ H. A hypergraph H is linear if for distinct hyperedges Ei, Ej ∈ H,

|Ei ∩ Ej | ≤ 1, so for a linear hypergraph there are no repeated hyperedges

of cardinality greater than one. A hypergraph H such that no hyperedge is

a subset of any other is called Sperner.

A vertex v ∈ V is incident with a hyperedge E of H if v ∈ E. If v

is incident with exactly d hyperedges, then we say that the degree of v is

d; if all the vertices v ∈ V has degree r, then H is r-regular. Similarly,

if there are exactly k vertices incident with a hyperedge E, then we say

that the size of E is k; if all the hyperedges E ∈ H have size k, then H

is k-uniform. A graph is simply a 2-uniform hypergraph. A hyperedge

E of H is called a pendant hyperedge if for Ei, Ej ∈ H, E ∩ Ei ̸= ∅ and

E ∩ Ej ̸= ∅ implies (E ∩ Ei) ∩ (E ∩ Ej) ̸= ∅. A path of length l from a
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vertex v to another vertex u in a hypergraph is a finite sequence of the

form v,E1, w1, E2, w2, . . . , El−1, wl−1, El, u such that v ∈ E1, wi ∈ Ei ∩
Ei+1 for i = 1, 2, . . . l − 1 and u ∈ El. A hypergraphH is said to be connected

if there is a path between any two vertices of H. All hypergraphs considered

in this paper are connected Sperner hypergraphs.

A hypergraph H is said to be a hyperstar if there exists a subset C of

vertices such that Ei ∩ Ej = C ̸= ∅, for any Ei, Ej ∈ H. Then C is

called the center of the hyperstar. If there exists a sequence of hyperedges

E1, E2, . . . , Em in a hypergraph H, then H is said to be (1) a hyperpath if

Ei ∩ Ej ̸= ∅ if and only if |i− j| = 1; (2) a hypercycle if, Ei ∩ Ej ̸= ∅ if and

only if i− j ∈ {1,−1} (mod m) for m ≥ 3. A connected hypergraph H with

no hypercycle is called a hypertree. A subhypertree of a hypertree H with

edge set, say E = {Ep1 , Ep2 , . . . , Epl} ⊂ H, is called a branch of H if Ep1

(say) is the only hyperedge such that, for Ei, Ej ∈ H− E , Ep1 ∩Ei ̸= ∅ and

Ep1 ∩Ej ̸= ∅ implies (Ep1 ∩Ei)∩ (Ep1 ∩Ej) ̸= ∅ as well as Epi ∩Ej = ∅ for

each 2 ≤ i ≤ l and for all Ej ∈ H−E . The hyperedge Ep1 is then called the

joint of the branch.

An ordered set W of vertices of a connected graph G is called a resolving

set for G if for every two distinct vertices u, v ∈ V (G), there is a vertex

w ∈ W such that d(u,w) ̸= d(v, w). A resolving set of minimum cardinality

is called a basis for G and the number of vertices in a basis is called the

metric dimension of G, denoted by dim(G). An ordered t-partition Π =

{S1, S2, . . . , St} of V (G) is called a resolving partition if for every two distinct

vertices u, v ∈ V (G), there is a set Si in Π such that d(u, Si) ̸= d(v, Si),

where

d(v, s) = min
s∈S

d(u, s).

The minimum t for which there is a resolving t-partition of V (G) is called

the partition dimension of G, denoted by pd(G). In this article, we consider

hypergraphs in the context of metric dimension and partition dimension,

which are defined in Sections 2 and 3, respectively. We give sharp lower

bounds for the metric and partition dimension of graphs. The metric di-

mension of some well-known families of hypergraphs such as hyperpaths,

hypertrees and k-uniform linear hypercycles is investigated. Further, we

find the metric and partition dimensions of 3-uniform linear hypercycles as

well as the partition dimension of k-uniform hyperpath.

2. Metric Dimension of Hypergraphs

The metric dimension of a graph was studied by Slater [14] and indepen-

dently by Harary and Melter [6]. It is a parameter that has appeared in
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various applications, as diverse as combinatorial optimization, pharmaceu-

tical chemistry, robot navigation and sonar. In recent years, considerable

literature has been developed (see [12, 4, 10, 1, 7, 8, 13, 11]). The problem

of determining whether dim(H) < M (M > 0), where H is a simple graph,

is an NP-complete problem [5, 13]. The metric dimension of a hypergraph

H is defined as follows:

The distance between any two vertices v and u of a hypergraph H, d(v, u),

is the length of the shortest path between them and d(v, u) = 0 if and only

if v = u. The diameter of H is the maximum distance between the vertices

of H, and is denoted by diam(H). Two vertices u and v of H are said to be

“diametral” vertices if d(u, v) = diam(H). The representation, r(v|W ), of a

vertex v of H with respect to an ordered set W = {w1, w2, . . . , wq} ⊆ V is

the q-tuple r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wq)) . The set W is called

a resolving set for a hypergraph H if r(v|W ) ̸= r(u|W ) for any two different

vertices v, u ∈ V. A resolving set with minimum cardinality is called a basis

for H and that minimum cardinality is called the metric dimension of H,

denoted by dim(H).

To determine whether a given set W ⊆ V is a resolving set for a hyper-

graph H, W needs only to be verified for the vertices in V −W since every

vertex w ∈ W is the only vertex of H whose distance from w is 0.

For a hypergraph H, let the set of hyperedges in H be

H = {E1, E2, . . . Em}. Let us denote the set of all the vertices in the set

Ei1 ∩ Ei2 ∩ · · · ∩ Eid having degree d by C(i1, i2, . . . , id), where each ij ∈
{1, 2, . . . ,m} is distinct. That is

C(i1, i2, . . . , id) = {v ∈ V | v ∈ Ei1 ∩ Ei2 ∩ . . . ∩ Eid and deg(v) = d}.

Then, the collection of all such classes defines a partition of the vertex set

V . Let η(i1, i2, . . . , id) = |C(i1, i2, . . . , id)| − 1 whenever C(i1, i2, . . . , id) ̸= ∅,
otherwise we take η(i1, i2, . . . , id) = 0.

Example. The hypergraph H shown in the Figure 1 with set of vertices

V = {v1, v2, v3, . . . , v9} and hyperedges E1 = {v1, v2, v3, v4},
E2 = {v3, v4, v5, v6, v7}, E3 = {v6, v7, v8, v9}, E4 = {v2, v3, v9}.

In the graph H, C(1) = {v1}, C(2) = {v5}, C(3) = {v8}, C(4) = ∅;
C(1, 2) = {v4}, C(1, 3) = ∅, C(1, 4) = {v2}, C(2, 3) = {v6, v7}, C(2, 4) = ∅,
C(3, 4) = {v9}; C(1, 2, 3) = ∅, C(1, 2, 4) = {v3}, C(1, 3, 4) = ∅, C(2, 3, 4) = ∅
and C(1, 2, 3, 4) = ∅. Note that the set of all given classes form a partition

for V .

Thus, we have the following straightforward proposition:

Proposition. For any two distinct vertices u, v ∈ C(i1, i2, . . . , id), we have

d(u,w) = d(v, w) for any w ∈ V − {u, v}.
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Figure 1. Hypergraph H

Thus, we extract the following Lemma related to the resolving set for H:

Lemma. If u, v ∈ C(i1, i2, . . . , id) and W ⊆ V resolves H, then at least one

of the vertices u and v is in W . Moreover, if u ∈ W and v ̸∈ W , then

(W − {u}) ∪ {v} also resolves H.

Now, we can establish a lower bound for the metric dimension of a hy-

pergraph in the following result.

Proposition. For any hypergraph H with m hyperedges,

dim(H) ≥
m∑
j=1

m∑
i1<···<ij

η(i1, i2, . . . , ij).

Proof. It follows from the fact that if there are |C(i1, i2, . . . , id)| number of

vertices of degree d in Ei1 ∩ Ei2 ∩ . . . ∩ Eid , then Lemma 2.3 yields that at

least η(i1, i2, . . . , id) vertices should belong to any basis W . □

Remark. By Proposition 2.4, it is clear that, in order to obtain a basis

of any hypergraph H, it suffices to consider only one vertex, say vi1,i2,...,id,

from each class C(i1, i2, . . . , id) if C(i1, i2, . . . , id) ̸= ∅. We call this vertex,

a representative vertex of the class C(i1, i2, . . . , id). We denote the set of all

representative vertices in a hypergraph H by R(H), and hence we always

have, V −R(H) ⊆ W for any basis W of H.

Now we discuss some classes of hypergraphs for which the equality holds

in the Proposition 2.4.

Theorem. For any hypergraph H with m hyperedges, if η(i) ̸= 0 for all

Ei ∈ E(H), then

dim(H) =

m∑
j=1

m∑
i1<···<ij

η(i1, i2, . . . , ij).
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Moreover, there are

m∏
j=1

m∏
i1<···<ij

(η(i1, i2, . . . , ij) + 1)

basis for H.

Proof. Consider W = V −R(H), we have to show that W is a basis for H.

Take any two different vertices v, v′ ∈ R(H). Since both the vertices v and

v′ are representative vertices of different classes, there exists a hyperedge Ej

such that v′ ∈ Ej and v ̸∈ Ej . It follows from η(i) ̸= 0 that there exists a

vertex of degree one wj ∈ V such that wj ∈ Ej ∩W . Clearly, d(v′, wj) = 1

and d(v, wj) ̸= 1, hence W is a basis for H. Further, by Lemma 2.3, there

are
m∏
j=1

m∏
i1<···<ij

(η(i1, i2, . . . , ij) + 1) such W . □

If H is a linear hypergraph with m hyperedges, then η(i, j) = 0 for every

Ei, Ei ∈ H. Thus, we have the following corollary:

Corollary. Let H be a linear hypergraph with m hyperedges and η(i) ̸= 0

for all Ei ∈ H. Then dim(H) =
m∑
i=1

η(i).

We give two examples which show that the condition in Theorem 2.6

cannot be relaxed in general.

Example. Let H be a hypergraph with vertex set V = {v1, v2, v3, v4} and

edge set H = {E1, E2}, where E1 = {v1, v2, v3} and E2 = {v3, v4}. Clearly,

η(2) = 0 so H does not satisfy the condition of Theorem 2.6. Without loss of

generality, we can take the set of representative vertices R(H) = {v1, v3, v4},
and hence W = V − R(H) = {v2}. But, W is not a resolving set for H

since r(v1|W ) = r(v3|W ). In fact, dim(H) = 2 > 1.

Example. Let H be a hypergraph with vertex set V = {v1, v2, v3, v4, v5, v6}
and edge set H = {E1, E2, E3}, where E1 = {v1, v2, v3, v4},
E2 = {v3, v4, v5, v6} and E3 = {v1, v2, v5, v6}. Clearly, η(i) = 0 for all

i = 1, 2, 3 and η(1, 2) = η(2, 3) = η(3, 1) ̸= 0. Without loss of generality,

we can take the set of representative vertices R(H) = {v1, v3, v5}, and hence

W = V − R(H) = {v2, v4, v6}. But, W is not a resolving set for H since

r(v1|W ) = r(v3|W ) = r(v5|W ). In fact, dim(H) = 5 > 3.

However, the condition in Theorem 2.6 can be reduced in some special

cases as shown in the following result.



RESOLVABILITY IN HYPERGRAPHS 181

Theorem. Let H be a hyperpath with m hyperedges E1, E2, . . . Em in a

canonical way. Then

dim(H) =
m∑
i=1

η(i) +
m−1∑
i=1

η(i, i+ 1)

if both η(1) and η(m) are non-zero.

Proof. Let W = V − R(H). Then it follows from the facts η(1) ̸= 0 and

η(m) ̸= 0 that there exists a vertex of degree one w1 ∈ E1 ∩ W and

there exists a vertex of degree one wm ∈ Em ∩ W. To prove the theo-

rem, we only have to show that the representative vertices are resolved

by the set W , and it yields from the fact that for any 1 ≤ j ≤ m, we have

(d(vj , w1), d(vj , wm)) = (j,m− j + 1), and for any 1 ≤ j < m− 1, we have

(d(vj,j+1, w1), d(vj,j+1, wm)) = (j,m− j). □

Theorem. Let H be a hypertree with m hyperedges and let Ep1 , Ep2 , . . . , Ept

be its pendant hyperedges. Then

dim(H) =

m∑
j=1

m∑
i1<···<ij

η(i1, i2, . . . , ij)

if η(ps) ̸= 0 for all s = 1, 2, . . . , t.

Proof. Consider W = V − R(H), similarly as in the proof of Theorem 2.6,

again we have to show that W is a basis for H. Take any two different

vertices v, v′ ∈ R(H), then both vertices are representative of two different

classes, and hence there exists a hyperedge Ej such that v′ ∈ Ej but v ̸∈ Ej .

Now, consider a hyperpath contained in the hypertree H which starts and

ends at the pendant hyperedges and contains both v and Ej . By using the

proof of Theorem 2.10, it can be seen that the vertices v and v′ has different

representations for W , which proves the theorem. □

In a k-uniform (k ≥ 3) linear hyperstar H is a special case of hypertree

in which η(i) ̸= 0 for all Ei ∈ H, so we have the following corollary:

Corollary. If H is a k-uniform (k ≥ 3) linear hyperstar with m (m ≥ 2)

hyperedges, then dim(H) = m(k − 2).

Consider a k-uniform (k ≥ 4) linear hypercycle Cm,k with m hyperedges.

Then η(i) ̸= 0 for all edges Ei of Cm,k. By Corollary 2.7, dim(Cm,k) =

m(k − 3). A 3-uniform linear hypercycle with four hyperedges is shown in

Figure 2. For the case k = 3, we have η(i) = 0 for all Ei ∈ H, hence the

lower bound given in Proposition 2.4 is zero and every vertex in Cm,3 is the

representative vertex. We discuss this case in the following result:
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Figure 2. A 3-uniform linear hypercycle with 4 hyperedges

Theorem. Let Cm,3 be a 3-uniform linear hypercycle with m hyperedges.

Then dim (C3,3) = 2 and for all m ≥ 4,

dim (Cm,3) =

{
2, if k is even,

3, if k is odd.

Proof. In Cm,3, each vj ∈ Ej represents a vertex of degree one and vj,j+1 ∈
Ej ∩ Ej+1 with vm,m+1 = vm,1. Clearly, dim(Cm,3) > 1 for any m.

If m is even, then we take W = {v1, vm
2
}.

For 1 < j < m
2 , we have r(vj |W ) = (j, m2 − j + 1) and for 1 ≤ j <

m
2 , r(vj,j+1|W ) = (j, m2 − j). Now, if m

2 + 1 ≤ j < k, then r(vj |W ) =

(m + 2 − j, j − m
2 + 1) and r(vj,j+1|W ) = (m + 1 − j, j − m

2 + 1) with

r(vm|W ) = (2, m2 + 1), r(vm
2
,m
2
+1|W ) = (m2 , 1) and r(vm,1|W ) = (1, m2 ). It

is easy to see that the representations of all the vertices with respect to W

are distinct, hence W forms a basis for Cm,3 and dim(Cm,3) = 2.

For the special case when m = 3, the set W = {v1, v2} forms a basis for

C3,3. Hence dim(C3,3) = 2.

If m > 3 is odd, then we first show that dim(Cm,3) > 2. Suppose to the

contrary that dim(Cm,3) = 2 and let W be a basis of Cm,3. Let us call the

vertices vi,i+1, i ∈ {1, 2, . . . ,m}, of Cm,3, the common vertices. We have the

following three possibilities:

(1) W contains two common vertices. Without loss of generality, we

may assume that one vertex is v1,2 and the second vertex is vj,j+1

(2 ≤ j ≤ m). Then r(vj+1|W ) = r(vj+1,j+2|W ), for 2 ≤ j < m+1
2 ;

r(v2|W ) = r(vm,1|W ), for j = m+1
2 ; r(v1|W ) = r(v2,3|W ), for j =

m+1
2 + 1 and r(vj |W ) = r(vj−1,j |W ), for m+1

2 + 1 < j ≤ m, a

contradiction.

(2) (2) W contains one common vertex. Without loss of generality,

we may assume that one vertex is v1,2 and the second vertex is
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vj (1 ≤ j ≤ m). Then r(vj+1|W ) = r(vj+1,j+2|W ), for 1 ≤ j <
m+1
2 ; r(v1|W ) = r(vm,1|W ), for j = m+1

2 ; r(v1|W ) = r(v2|W ), for

j = m+1
2 + 1 and r(v2|W ) = r(v2,3|W ), for m+1

2 + 1 < j ≤ m, a

contradiction.

(3) W contains no common vertex. Without loss of generality, we may

assume that one vertex is v1 and the second vertex is vj (2 ≤ j ≤ m).

Then it will lead to a contradiction as in (1).

Now, we will show that dim(Cm,3) ≤ 3. Take W = {v1, v2, vm+1
2

}. We

note that, r(v1,2|W ) = (1, 1, m−1
2 ) and

r(vj |W ) =


(j, j − 1, m+1

2 − j + 1), for 2 < j < m+1
2 ,

(m+1
2 , m+1

2 , 2), for j = m+1
2 + 1,

(m− j + 2,m− j + 3, j − m−1
2 ), for m+1

2 + 1 < j ≤ k,

r(vj,j+1|W ) =


(j, j − 1, m+1

2 − i), for 2 ≤ j < m+1
2 ,

(m+1
2 , m−1

2 , 1), for j = m+1
2 ,

(m− j + 1,m− j + 2, j − m−1
2 ), for m+1

2 < j ≤ k.

One can see that all the vertices of V (Cm,3) −W have distinct represen-

tations. This implies that dim(Cm,3) = 3 when m > 3 is odd. □

The primal graph, prim(H), of a hypergraph H is the graph with vertex

set V such that vertices x and y of prim(H) are adjacent if and only if x

and y are contained in the same hyperedge. A loop on a vertex in prim(H)

will exist if it is the only vertex incident with a hyperedge. The middle

graph, M(H), of H is a subgraph of prim(H) obtained by deleting loops

and parallel edges. Since the adjacencies between the vertices in prim(H)

are due to the adjacencies in the hypergraph H, so determining the length of

a path between two vertices u and v in prim(H) is equivalent to determine

the length of a path between the vertices u and v in H. This fact yields the

following result:

Theorem. Let H be a hypergraph. Then

dim(H) = dim(prim(H)) = dim(M(H)).

The dual of H = ({v1, v2, . . . , vn}, {E1, E2, . . . , Em}), denoted by H∗, is

the hypergraph whose vertices are {E1, E2, . . . , Em} corresponding to the

hyperedges of H and with hyperedges Vi = {Ej : vi ∈ Ej in H}, where i =
1, 2, . . . , n. In other words, the dual H∗ swaps the vertices and hyperedges

of H. The primal graph of the dual H∗ of a hypergraph H is not a simple

graph, in this case, the middle graph of H∗ is a simple graph. Since the dual

H∗ of a hypergraph H is also a hypergraph so dim(H∗) = dim(M(H∗)).

Moreover, the middle graph of dual H∗ of H is (1) a simple path Pn if
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and only if H is a hyperpath; (2) a simple cycle Cn if and only if H is a

hypercycle. In [4], all the simple connected graphs having metric dimension

one were characterized by proving the result “dim(G) is one if and only if G

is a simple path Pn (n ≥ 1)”. It is straightforward that the metric dimension

of the dual of a hypergraph H∗ is 1 if and only if H is a hyperpath. In [6],

it was shown that the metric dimension of a simple cycle Cn (n ≥ 3) is 2,

So, the metric dimension of the dual H∗ of a hypercycle is 2.

3. Partition Dimension of Hypergraphs

Possibly to gain insight into the metric dimension, Chartrand et al. in-

troduced the notion of a resolving partition and partition dimension [3, 2].

To define the partition dimension, the distance d(v, S) between a vertex v

in H and S ⊆ V is defined as

min
s∈S

d(v, s).

Let Π = {S1, S2, . . . , St} be an ordered t-partition of V and v be any vertex

of H. Then the representation, r(v|Π), of v with respect Π is the t-tuple

r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, St)) . The partition Π is called a resolv-

ing partition for a hypergraph if r(v|Π) ̸= r(u|Π) for any two distinct vertices

v, u ∈ V . The partition dimension of a hypergraph H is the cardinality of a

minimum resolving partition, denoted by pd(H).

From the definition of a resolving partition, it can be observed that the

property of a given partition Π of a hypergraph H to be a resolving partition

of H can be verified by investigating the pairs of vertices in the same class.

Indeed, d(x, Si) = 0 for every vertex x ∈ Si but d(x, Sj) ̸= 0 with j ̸= i.

It follows that x ∈ Si and y ∈ Sj are resolved either by Si or Sj for every

i ̸= j. From Proposition 2.2, we have the following lemma:

Lemma. Let Π be a resolving partition of V . If u, v ∈ C(i1, i2, . . . , id), then
u and v belong to distinct classes of Π.

The following result gives the lower bound for the partition dimension of

hypergraphs.

Proposition. Let H be a Sperner hypergraph with m ≥ 2 hyperedges. Then

pd(H) ≥ λ+ 1, where λ = max |C(i1, i2, . . . , id)| in H.

Proof. Since λ = max |C(i1, i2, . . . , id)| in H, by Lemma 3.1, we have at

least λ disjoint classes in any resolving partition S1, S2, . . . , Sλ of V . Since

H is Sperner, there exists an edge E of H such that C(i1, i2, . . . , id) ⊂ E. If

u ∈ E−C(i1, i2, . . . , id), v ∈ C(i1, i2, . . . , id) and u, v ∈ Si for some 1 ≤ i ≤ λ,

then r(u|Π) = r(v|Π) which is a contradiction. Thus pd(H) ≥ λ+ 1. □
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The lower bound given in Proposition 3.2 is attainable for k-uniform linear

hyperpaths as proved in Theorem 3.4.

A 2-uniform hypercycle Cm,2 is a simple connected cycle on n vertices

and it was shown that the partition dimension of a simple connected cycle

is 3 [2], so pd(Cm,2) = 3. In the next result, we investigate the partition

dimension of a k-uniform hypercycle Cm,k for m ≥ 3 and k ≥ 4.

Theorem. For k ≥ 4, let Cm,k be a k-uniform linear hypercycle with m ≥ 3

hyperedges. Then pd(Cm,k) = k.

Proof. Firstly, we discuss the case when k = 3. In this case, let vj ∈ Ej

be a vertex of degree one and vj,j+1 ∈ Ej ∩ Ej+1 with vm,m+1 = vm,1 be a

vertex of 2 in Cm,3. If we put all the vertices of Cm,3 into two classes S1 and

S2, then they do not form a resolving partition Π of V (Cm,3), because for

some hyperedge Ej ∈ H such that Ei ∩ S1 ̸= ϕ, Ej ∩ S2 ̸= ϕ and u, v ∈ Si,

r(u|Π) = r(v|Π), which is a contradiction. Thus, pd(H) ≥ 3. On the other

hand, pd(Cm,3) ≤ 3, because we have a resolving partition of cardinality 3

for (Cm,3) in each of the following cases:

For m ≡ 0 (mod 6), we have a resolving partition for pd(Cm,3) as

Π =
{{

vm,1, . . . , v 1
3
m, 1

3
m+1

}
,
{
v 1

3
m+1, . . . , v 2

3
m, 2

3
m+1

}
,
{
v 2

3
m+1, . . . , vm

}}
.

For m ≡ 1, 4 (mod 6), we have a resolving partition for pd(Cm,3) as

Π =
{{

vm,1, . . . , v 1
3
(m+2)

}
,
{
v 1

3
(m+2), 1

3
(m+2)+1, . . . , v 2

3
(m+2)−1, 2

3
(m+2)

}
,{

v 2
3
(m+2), . . . , vm

}}
.

For m ≡ 2 (mod 6), we have a resolving partition for pd(Cm,3) as

Π =
{{

vm,1, . . . , v 1
3
(m+1)

}
,
{
v 1

3
(m+1), 1

3
(m+1)+1, . . . , v 2

3
(m+1)−1, 2

3
(m+1)

}
,{

v 2
3
(m+1), . . . , vm

}}
.

For m ≡ 3 (mod 6), we have a resolving partition for pd(Cm,3) as

Π =
{{

v1, . . . , v 1
3
m+1

}
,
{
v 1

3
m+1, 1

3
m+2, . . . , v 2

3
m+1

}
,{

v 2
3
m+1, 2

3
m+2, . . . , vm,1

}}
.

For m ≡ 5 (mod 6), we have a resolving partition for pd(Cm,3) as

Π =
{{

v1, . . . , v 1
3
(m+1), 1

3
(m+1)+1

}
,
{
v 1

3
(m+1)+1, . . . , v 2

3
(m+1)

}
,{

v 2
3
(m+1), 2

3
(m+1)+1, . . . , vm,1

}}
.

Now, for k ≥ 4, let us denote the vertices of degree one in jth hyperedge

Ej (1 ≤ j ≤ m) by vj1, v
j
2, . . . , v

j
k−2, and let the vertex vj,j+1 ∈ Ej ∩Ej+1 be
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of degree 2 in Cm,k. Construct a partition Π with k parts of the vertex set

of Cm,k as follows: Copy the resolving partition for Cm,3 and for the other

vertices that are in the middle of hyperedges, put ith vertex (for i > 1) in

the (i+2)th part. Then it is an easy exercise to verify, by following Lemma

3.1 and Proposition 3.2, that Π is a minimum resolving partition for Cm,3,

and it completes the proof. □

Every 2-uniform linear hyperpath is a simple path graph whose partition

dimension is 2 as shown in [3]. Now, we generalize this result for more than

two uniform linear hyperpaths as follows.

Theorem. For k ≥ 3, let H be a k-uniform linear hyperpath with m hyper-

edges. Then pd(H) = k.

Proof. Let H be a k-uniform linear hyperpath. Then it is a routine exercise

to verify that a partition Π = {S1, S2, . . . , Sk} of V , where each Si, 1 ≤ i ≤
k − 1, contains the ith vertex of every hyperedge of H and Sk contains the

kth vertex of the mth hyperedge, is a resolving partition for H. It follows

that pd(H) ≤ k.

Since H is Sperner and max |C(i1, i2, . . . , id)| = k−1 in H, so Proposition

3.2 implies that pd(H) ≥ k. □

The rank of a hypergraph H is the maximum number of vertices in a

hyperedge. One might think that the partition dimension of H is always

greater than or equal to the rank of H. This is true for a k-uniform linear

hyperpath and a k-uniform linear hypercycle Cm,3. But, in general, it is not

true as shown in the following example:

Example. Let H be a hypergraph with vertex set V = {vi : 1 ≤ i ≤ 11}
and edge set H = {E1, E2}, where E1 = {vi; 1 ≤ i ≤ 7} and E2 = {vi; 6 ≤
i ≤ 11}. Clearly, rank(H) = 7, λ = 5 and

Π = {Si = {vi, vi+5}; 1 ≤ i ≤ 5, S6 = {v11}}

is a minimum resolving partition of V. This implies that pd(H) = 6 ̸=
rank(H).

Likewise the results on the metric dimension of the primal, we have the

following result on the partition dimension of the primal graph of a hyper-

graph.

Theorem. Let H be a hypergraph. Then pd(H) = pd(prim(H)).

Let H∗ be the dual of a hypergraph H, since H∗ is also a hypergraph, so

pd(H∗) = pd(M(H∗)). Since it was shown that the simple paths Pn are the

only graphs with pd(Pn) = 2 [3] and the partition dimension of the simple

cycles Cn is 3. Therefore, partition dimension of dual H∗ of a hyperpath is
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2 and partition dimension of dual H∗ of a hypercycle is 3.
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