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FACTORIZATIONS OF COMPLETE GRAPHS INTO

CYCLES AND 1–FACTORS

UĞUR ODABAŞI

Abstract. In this paper, we consider factorizations of complete graph
Kv into cycles and 1–factors. We will focus on the existence of fac-
torizations of Kv containing two nonisomorphic factors. We obtain all
possible solutions for uniform factors involving m–cycles and 1–factors
with a few possible exceptions when m is odd.

1. Introduction

In this paper, we use V (G) and E(G) to denote the vertex set and the
edge set of a graph G, respectively. Also, we denote by Ka×b a complete
equipartite graph having a parts of size b each. In particular, K2×a is called
a complete bipartite graph and denoted by Ka,a as well.

Given two graphs G and H, an H–decomposition of G is a set H =

{H1, H2, . . . ,Hk} of edge-disjoint subgraphs of G such that
⋃k

i=1E(Hi) =
E(G) and Hi

∼= H for all Hi ∈ H.

A factor in a graphG is a spanning subgraph ofG. An {F k1
1 , F k2

2 , . . . , F kl
l }

–factorization of a graph G is a decomposition which consists precisely of
ki factors isomorphic to Fi. If every component of a factor is isomorphic to
the same graph, then the factor is said to be uniform. A factorization of G
is also known as a resolvable decomposition of G and a factor can be called
a parallel class of G.

The case where G ∼= Kv (or G ∼= Kv − I, where I is a 1–factor of Kv

and v is even) and Fi
∼= F for all 1 ≤ i ≤ l is known as the Oberwolfach

problem. If F consists of ki mi–cycles, 1 ≤ i ≤ t, then the corresponding
Oberwolfach problem is denoted by OP (mk1

1 ,m
k2
2 , . . . ,m

kt
t ). It is known that

the solutions to the cases OP (32), OP (34), OP (4, 5), and OP (32, 5) do not
exist [3, 16, 21]. The Oberwolfach problem for a single cycle size OP (mk)
for all m ≥ 3 has been solved in two separate cases: odd cycles in [3] and
the even cycle case in [15].
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A generalization of the Oberwolfach problem is the Hamilton–Waterloo
problem which asks for an {F k1

1 , F k2
2 }–factorization of Kv(or Kv−I for even

v) where F1 and F2 are nonisomorphic.
When all of the parallel classes in the decomposition are uniform we

have a uniformly resolvable decomposition of Kv(or Kv − I for even v)
and we use the notation to denote such a decomposition with ri Fi–factors
by URD(v;F r1

1 , F r2
2 ). We denote the decomposition by URD(v;Kr1

2 , C
r2
m ),

while if F1 is a 1–factor of Kv and F2 contains only copies of cycles Cm.
We will denote such a decomposition also as a {Kr1

2 , C
r2
m }–factorization.

Moreover, if each Fi is composed of mi–cycles, then we use the notation to
denote such a decomposition by URD(v;mr1

1 ,m
r2
2 ).

The first results addressing the Hamilton–Waterloo problem [1] settled
the problem for all v ≤ 17 and in addition considered the cases (m1,m2) ∈
{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)}. In [7], Bryant et al. set-
tled the Hamilton–Waterloo problem for bipartite 2–factors, and in [9] Bu-
ratti and Rinaldi studied regular 2–factorizations leading to some cyclic
solutions to Oberwolfach and Hamilton–Waterloo problems, and also in [8],
an infinite class of cyclic solutions to the Hamilton–Waterloo problem is
given. El-Zanati et al. [13] have considered the problem for mi = pi and
v = pn where p is an odd prime and 1 ≤ i ≤ n. In [19], the problem has been
solved for 4–cycles and odd cycle factors with a few possible exceptions. In
a recent paper [10], Burgess et al. solve almost completely the Hamilton–
Waterloo problem for odd cycles. For more recent results we refer the reader
to [6, 11, 12, 24, 25].

In this paper, we seek factorizations of Kv into 1–factors and Cm–factors.
While doing this we also get new solutions for the Hamilton–Waterloo prob-
lem regarding cycles with different parity.

Problem 1.1. For which values of r (or s) and m does there exist a
{Kr

2 , C
s
m}–factorization of Kv?

It is not hard to verify that if Kv has an Cm–factor, then m must divide
v and v must be even since it has a 1–factor. Also note that by counting
the degree of any fixed vertex in the factors, we have r + 2s = v − 1. In
the following lemma, we summarize the obvious necessary conditions for the
existence of a {Kr

2 , C
s
m}–factorization of Kv.

Lemma 1.2. Let v, m, r, and s be nonnegative integers with m ≥ 3. If
there exists a solution to URD(v;Kr

2 , C
s
m), then

• v is even;
• m|v;
• r + 2s = v − 1.

If m is also even, then we have the desired factorizations since Kv has

a {C(v−2)/2
m ,K2}–factorization (a solution to the Oberwolfach problem [15])

and each Cm–factor in the factorization has a 1–factorization. Thus we
restrict our attention to the case when m is odd. In [23], Rees considered the
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problem for the case m = 3 and proved that the obvious necessary conditions
are sufficient also with exceptions (v, r, s) = (6, 1, 2) and (v, r, s) = (12, 1, 5)
which correspond to the nonexistence of solutions to OP (32) and OP (34),
respectively. Also, Adams et al. [2] solved the problem completely in the
case of m = 5.

2. Preliminaries

In [17], the Oberwolfach problem is considered for complete equipartite
graphs where all cycles have the same length and we will use this result in
our main construction.

Theorem 2.1 ([17]). The complete equipartite graph Ka×b has a Cl–factor-
ization for l ≥ 3 and b ≥ 2 if and only if l|ab, b(a − 1) is even, l is even if
a = 2, and (a, b, l) 6= (3, 2, 3), (3, 6, 3), (6, 2, 3), (2, 6, 6).

Let H be a finite additive group and let S be a subset of H − {0} such
that the negative of every element of S also belongs to S. The Cayley graph
on H with connection set S, denoted by Cay(H,S), is the graph with vertex
set H and edge set E(Cay(H,S)) = {(a, b)|a, b ∈ H, a − b ∈ S}. We will
make use of the following theorem.

Theorem 2.2 ([5]). Any connected 4-regular Cayley graph on a finite Abelian
group has a Hamilton cycle decomposition.

Let G be a graph and G0, G1, . . . , Gk−1 be k vertex disjoint copies of G
with vi ∈ V (Gi) for each v ∈ V (G). Let G[k] denote the graph with vertex
set V (G[k]) = V (G0)∪V (G1)∪· · ·∪V (Gk−1) and edge set E(G[k]) = {uivj :
uv ∈ E(G) and 0 ≤ i, j ≤ k − 1}. For example Km[2] ∼= K2m − I and
K2[m] ∼= Km,m where I is a 1–factor of K2m.

It is easy to see that if a graph G has an H–decomposition, then there
exists an H[k]–decomposition of G[k]. Moreover if a graph G has an H–
factorization, then there exists an H[k]–factorization of G[k].

In fact, this graph operation is a generalization of Häggkvist’s doubling
construction and it coincides with a special case of a graph product called
the lexicographic product. Häggkvist [14] constructed 2–factorizations con-
taining even cycles using G[2].

Lemma 2.3. [14] Let G be a path or a cycle with m edges and let H be
a 2–regular graph on 2m vertices where each component of H is a cycle of
even length. Then G[2] has an H–decomposition.

Baranyai and Szasz [4] have shown that if a graph G can be decom-
posed into x Hamilton cycles and if H is a graph with y vertices and can be
decomposed into z Hamilton cycles then their lexicographic product is de-
composable into xy+z Hamilton cycles. So, Cm[n] has a Cmn–factorization.
Also Alspach et al. [3] have shown that for an odd integer m and a prime p
with 3 ≤ m ≤ p, Cm[p] has a Cp–factorization.
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In [19, 20], the authors decomposed Cm[4] into 2–factors involving cycles
of lengths 4, m, 2m, and 4m. Burgess et al. have recently shown the
following result in [10].

Theorem 2.4 ([10]). For all odd integers a ≥ b ≥ 3, Cb[a] has a Ca–fac-
torization.

The following result can be found in [3] and will be used to improve the
main result of this paper.

Theorem 2.5 ([3]). Let v be a positive integer with v /∈ {1, 2, 4, 6, 7, 11, 12}.
Then there is a 2–factorization of Kv (v odd) or Kv − I (v even) such that
each cycle in each 2–factor is either a 3–cycle or a 5–cycle.

The ring-sum G1 ⊕ G2 of two graphs G1 = (V1, E1), and G2 = (V2, E2),
is the graph G1⊕G2 = ((V1 ∪V2), (E1 ∪E2)− (E1 ∩E2)). The union of two
graphs G1 and G2, denoted by G1 ∪ G2, is the graph with V (G1 ∪ G2) =
V (G1)∪V (G2) and E(G1 ∪G2) = E(G1)∪E(G2). Also αG will denote the
vertex disjoint union of α copies of G.

3. Preliminary Decompositions

First we will give two well-known results of Walecki [18] for Hamilton
cycle decompositions of complete graph of odd order, or complete graph
of even order minus a 1–factor, then by using these results we will obtain
solutions when v = 2m which will be generalized in Section 4.

Lemma 3.1 ([18]). For all odd m ≥ 3, Km has a Hamilton decomposition

with prescribed cycles {C∗ , ρ(C
∗
), ρ2(C

∗
), . . . , ρ

m−3
2 (C

∗
)} for the permuta-

tion ρ = (0)(2, 4, 6 . . . ,m− 1,m− 2, . . . , 5, 3, 1) where C
∗

= (0, 1, 2, . . . ,m−
1).

Lemma 3.2 ([18]). For all even m ≥ 4, Km − I
∗

has a Hamilton decom-

position with prescribed cycles {C∗ , σ(C
∗
), σ2(C

∗
) . . . , σ

m−4
2 (C

∗
)} for some

permutation σ of {0, 1, . . . ,m−1} where C
∗

= (0, 1, . . . ,m−1) and E(I
∗
) =

{(0,m/2), (i,m− i) : 1 ≤ i ≤ (m/2)− 1}.

For the sake of brevity, we use C
∗

and ρ to denote the m–cycle of Km

and the permutation, respectively, as described in Lemma 3.1.
As we noted before, K2m − I ∼= Km[2] where V (K2m) = V (Km[2]). Also,

by Lemma 3.1, Km[2] has a decomposition into graphs of the form C
∗
[2]

for odd m. In [22], Piotrowski showed that, when m is odd, the double of
any m–cycle cannot be decomposed into m–cycle factors; that is, C

∗
[2] 6∼=

2Cm⊕2Cm. However, by the following lemma, we will be able to decompose
Km[2] into m–cycle factors and 1–factors via switching some edges of each
C
∗
[2] in Km[2] with some edges of ρ(C

∗
)[2]. Also, for brevity, we use Γ to

denote (C
∗ ⊕ ρ(C

∗
))[2].

Lemma 3.3. Let m be an integer with m ≥ 4. Then Γ has an m–cycle
factorization.
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Proof. If m is even, the result follows from Lemma 2.3 since Γ = C
∗
[2] ⊕

ρ(C
∗
)[2]. So we may assume m is odd.

Let the vertex set of Γ be Z2×Zm, and define two m–cycles in Γ as follows:
C
∗

= (v0, v1, . . . , vm−1) where vi = (0, i) and C
∗

(0) = (v′0, v
′
1, . . . , v

′
m−1) where

v′0 = (0, 0) and

v′i =

{
(1, i+ 1), if i is odd

(0, i− 1), if i is even

for 1 ≤ i ≤ m− 1 and when m = 7, v′5 = (0, 5), v′6 = (1, 6). Then

F1 = C
∗ ∪ (C

∗
+ (1, 0))

F2 = ρ′(F1)

F3 = C
∗

(0) ∪ (C
∗

(0) + (1, 0))

F4 = Γ− (F1 ⊕ F2 ⊕ F3)

are m–cycle factors of Γ where ρ′(i, j) = (i, ρ(j)) for 0 ≤ j ≤ m − 2 and
ρ′(i,m− 1) = (i+ 1, ρ(m− 1)). It can be checked that

F = {F1, F2, F3, F4}

is an m–cycle factorization of Γ. �

We will also make use of the following lemma which will be very useful in
proving the main result of this paper.

Lemma 3.4. Let m be an integer with m ≥ 3. Then Cm[2] has a {Cr
m, C

s
2m}-

factorization for nonnegative integers r and s with r+ s = 2 except when m
is odd and r = 2, and except possibly when m is even and r = 1.

Proof. When m is an even integer, the required decompositions exist by
Lemma 2.3. Now we may assume that m is an odd integer. We can represent
Cm[2] as the Cayley graph over Z2×Zm with the connection set Z2×{1,−1}.
Let C = (v0, v1, . . . , vm−1) and C

′
= (u0, u1, . . . , u2m−1) be cycles of Cm[2]

where vi = (0, i) for 0 ≤ i ≤ m− 1 and

ui =

{
(0, i), if i is even

(1, i), if i is odd

for 0 ≤ i ≤ 2m−1. It can be checked that F1 = C∪(C+(1, 0)) and F2 = C
′

are edge disjoint m–cycle and 2m–cycle factors of Cm[2], respectively. Thus
{F1, F2} is a 2–factorization of Cm[2] for r = 1. As noted before, there is
no m–cycle factorization of Cm[2]. For r = 0, since Cm[2] is a connected
4–regular Cayley graph, by Theorem 2.2, Cm[2] can be decomposed into two
C2m, which are Hamilton cycles and this completes the proof. �

Combining the results of Lemma 3.3 and 3.4, we now obtain the following
corollary.
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Corollary 3.5. Let r, s ∈ {0, 1, 2, 3, 4} with r + s = 4. Then for each
integer k ≥ 0 and m ≥ 4, ρk(Γ) has a {Cr

m, C
s
2m}–factorization with a

possible exception r = 3 when m is odd.

Proof. First, we will prove the corollary for k = 0, then state that for all
k ≥ 0 the graph has the required decomposition.

When r = 4, the corollary follows from Lemma 3.3. By Lemma 3.4, Γ
has a {Cr

m, C
s
2m}–factorization for r = 0, 1, 2 and also for r = 3 when m is

even since Γ ∼= C
∗
[2] ⊕ ρ(C

∗
)[2]. Moreover, since Γ ∼= ρk(Γ), for all k ≥ 0,

the graph ρk(Γ) has the required decompositions. �

For even m ≥ 4, since Km has a {C(m−4)/2

m , C
∗ ⊕ I

∗}–factorization by

Lemma 3.2, Km[2] has a {(Cm[2])
(m−4)/2

, (C
∗ ⊕ I∗)[2]}–factorization where

I
∗

is described as in Lemma 3.2. Also, since I
∗
[2] does not contain any m

or 2m–cycle for m > 4, we will use edge-disjoint union of I
∗
[2] and C

∗
[2].

Now we give 2–factorizations of (C
∗ ⊕ I∗)[2] in the following lemma.

Lemma 3.6. Let m ≥ 4 be an even integer and G = C
∗ ⊕ I∗ where C

∗
=

(0, 1, . . . ,m − 1) is an m–cycle and I
∗

is a 1–factor of Km with E(I
∗
) =

{(0,m/2), (i,m− i) : 1 ≤ i ≤ (m/2)− 1}. Then G[2] has a

(i) C2m–factorization,
(ii) Cm–factorization when m ≡ 0 (mod 4), and

(iii) {C2
m, C

1
2m}–factorization when m ≡ 2 (mod 4).

Proof. In [20], it is shown that the graph G has a C2m–factorization. Let
the vertex set of G be Z2 × Zm, and define two cycles in G as follows:
C = (v0, v1, . . . , vm−1) where vi = (0, i) for 0 ≤ i ≤ m − 1 and C

′
=

(u0, u1, . . . , um−1) where u0 = (0, 0) and for 1 ≤ i ≤ m− 1,

ui =

{
(1−(−1)i

2 , m2 − b
i
2c), for i ≡ 1, 2 (mod 4)

(1−(−1)i

2 , m2 + b i2c), for i ≡ 0, 3 (mod 4) .

Then F1 = C ∪ (C + (1, 0)) and F2 = C
′ ∪ (C

′
+ (1, 0)) are two edge-disjoint

m–cycle factors in G[2]. Also it can be checked that F3
∼= G − (F1 ⊕ F2)

is a Cm–factor in G[2] when m ≡ 0 (mod 4) or a C2m–factor in G[2] when
m ≡ 2 (mod 4). Then {F1, F2, F3} is a Cm–factorization of G[2] when m ≡
0 (mod 4) or {C2

m, C
1
2m}–factorization of G[2] when m ≡ 2 (mod 4). �

Now we can give new solutions to the Hamilton–Waterloo problem for
the case of v = 2m.

Lemma 3.7. Let m be an integer with m ≥ 3. Then there exist a URD(2m;
mr, (2m)s) for all nonnegative integers r and s such that r + s = m − 1
except when m = 3 and r = 2.

Proof. Since the problem has a solution for s = 0 in [15], we may assume
that s ≥ 1. Note that K2m − I ∼= Km[2] where I is a 1–factor in K2m.

When m is even, Km[2] has a {(Cm[2])
(m−4)/2

, (C
∗ ⊕ I

∗
)[2]}–factorization
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by Lemma 3.2. Let ri and si be nonnegative integers for i = 1, 2 with
r1 + s1 = (m− 4)/2 and r2 + s2 = 3 where r2 = 0 or

r2 =

{
3, for m ≡ 0 (mod 4)

2, for m ≡ 2 (mod 4) .

Then, decomposing (m−4)/2 many Cm[2]–factors of K2m into {Cr1

m , C
s1

2m}–
factors by Lemma 3.4 and (C

∗ ⊕ I∗)[2] into {Cr2

m , C
s2

2m}–factors by Lemma
3.6 gives us a {Cr

m, C
s

2m}–factorization of K2m − I where r = r1 + r2 and
s = s1 +s2 satisfying r+s = m−1 with 1 ≤ r, s ≤ m−1 and this completes
the proof for even m. So we may assume m is odd.

Let r and s be nonnegative integers and m be an odd integer such that
r+ 2s = 2m−1. It is well-known that OP (32) has no solution, thus we may
assume (m, r) 6= (3, 1). It is also clear that the cases r = 1 and r = 2m− 1
correspond to OP (m2) which has a solution, [3], and well-known 1–factor-
ization of K2m, [18], respectively.

By Lemma 2.3, Km has a decomposition into prescribed cycles ρk(C
∗
) for

0 ≤ k ≤ (m− 3)/2. Also, since K2m
∼= Km[2]⊕K2, K2m has a decomposi-

tion into a K2–factor and (m− 1)/2 factors isomorphic to C
∗
[2].

We will prove the theorem in two cases; m ≡ 1 or 3 (mod 4).
Case 1 : m ≡ 1 (mod 4).

By pairing up consecutive graphs of the form ρk(C
∗
[2]) in the de-

composition of Km[2], we can obtain a {Γ
m−1

4 ,K2}–decomposition of
K2m. Now, let I be a 1–factor in K2m, and ri’s be nonnegative in-
tegers for i = 0, 1, 2, and 4 with

∑4
i=1(i 6=3) ri = (m− 1)/4. Placing

a {Ci
m, C

4−i
2m }–factorization ri of the Γ’s by Corollary 3.5, gives us a

{Cr
m, C

s
2m}–factorization of K2m− I where r =

∑4
i=1(i 6=3) iri and r+ s =

m − 1. Then, since any nonnegative integer can be written as r =∑4
i=1(i 6=3) iri and r+s = m−1 for nonnegative integers ri (0 ≤ i 6= 3 ≤ 4),

a solution to URD(2m;mr, (2m)s) exists for any r satisfying r+s = m−1.
Case 2 : m ≡ 3 (mod 4).

Similarly, by pairing up the consecutive graphs ρk(C
∗
[2]) in the de-

composition of Km[2], we can obtain a {Γ
m−3

4 , C
∗
[2]}–decomposition

of K2m − I. Now, let ri be nonnegative integer with
∑4

i=1(i 6=3) ri =

(m− 3)/4 and (x, y) ∈ {(0, 2), (1, 1)}. Decomposing (m− 3)/4 Γ’s into
{Ci

m, C
4−i
2m }–factors by Lemma 3.3 and C

∗
[2] into a {Cx

m, C
y
2m}–factor

by Lemma 3.4 gives us a {Cr
m, C

s
2m}-factorization of K2m − I where

r =
∑4

i=1(i 6=3) iri + x and r + s = m− 1. Thus the result now follows.
�

4. Conclusions

In this section, we will combine our results to give general solutions to
our problem.
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Theorem 4.1. For every positive integer v ≡ 0 (mod 4) and for all non-
negative integers r, s, and odd m with r+ 2s = v− 1, there exists a solution
to URD(v;Kr

2 , C
s
m).

Proof. In Theorem 14 of [19], for all possible integers r1, s, and m ≥ 3,
a solution to URD(v;Cr1

4 , C
s
m) has been given with the possible exception

when r1 = 2 and v = 8m for m ≥ 5. It is easy to see that every C4–factor in
the factorization can be decomposed into two 1–factor. Thus, it remains to
show that the problem has a solution when r = 5 and v = 8m. It is obvious
that K8m has a {K2m,K4×(2m)}–factorization. Now, decomposing the K2m

into a {K5
2 , C

m−3
m }–factor by Lemma 3.7 and K4×(2m) into 3m Cm–factor

by Theorem 2.1 completes the proof. �

We now consider the cases when v ≡ 2 (mod 4) and m|v. Thus, there
exists an odd t ∈ Z+ such that v = 2mt. Also note that

(4.1) K2mt
∼= (K2t − I)[m]⊕ tK2m.

Theorem 4.2. For all nonnegative integers r, s, and odd integers m, t
with r + 2s = 2mt− 1, there exists a solution to URD(2mt;Kr

2 , C
s
m) except

possibly when 7 ≤ m ≤ t− 4, (m− 1)t < s < m(t− 1) and t is not divisible
by 3 or 5.

Proof. First we assume that 1 ≤ t ≤ m. Also let 0 ≤ r1, s1 ≤ t − 1, and
0 ≤ r2, s2 ≤ m− 1 be integers with r1 + s1 = t− 1 and r2 + s2 = m− 1. By
Lemma 3.7, K2t−I and K2m has a {Cs1

t , C
r1
2t } and {Cs2

m , C
r2
2m,K2}–factoriza-

tion, respectively, except when (t, s1) = (3, 2). So we have a decomposition
of K2mt into uniform factors including Ct[m], C2t[m], Cm, C2m, and K2. By
Theorem 2.4, Ct[m] has a Cm–factorization. Moreover each C2t[m] has a
Hamilton cycle decomposition by Theorem 2.2, and hence has a 1–factoriza-
tion. Similarly, we can think of each C2m–factor of K2mt as a union of two
edge disjoint 1–factors. Thus, placing these decompositions of Ct[m], C2t[m],
and C2m on K2t − I and K2m in the equivalence (4.1), gives the required
decomposition of K2mt for r = 2r1m + 2r2 + 1 and s = ms1 + s2 except
when t = 3 and s1 = 2. In the case when t = 3, we can decompose K6m

into a K3[2m] and a K2m factor. Decomposing K3[2m] into 2m Cm–factors
by Theorem 2.1 and K2m into a {Cs1

m ,K
r
2}–factor by Lemma 3.7 gives us a

{Cs′
m,K

r
2}–factorization of K6m where s = 2m+ s′ with 2m ≤ s ≤ 3m− 1.

Now, we assume that t > m ≥ 7. By Theorem 2.5, K2t − I has a 2–fac-
torization where every component of each 2–factor is either a 3–cycle or a
5–cycle. Also by Theorem 2.4, both C3[m] and C5[m] have a Cm–factoriza-
tion. Thus, placing these decompositions on (K2t − I)[m] and decomposing
K2m into a {Cs1

m , C
r1
2m}–factor by Lemma 3.7 yields a solution to the problem

for m(t−1) ≤ s = m(t−1)+s1 ≤ mt−1 and 0 ≤ r = 2r1 +1 ≤ 2m−1. On
the other hand, we can decompose K2mt into a K2t and a Km[2t] factors.
Here we decompose K2t into 2t − 1 1–factors and Km[2t] into (m − 1)/2

Cm[2t] factors. By Theorem 3.5 of [11], we have also a {C2t−ri
m ,K2ri

2 }–fac-
torization of Cm[2t] whenever 0 ≤ i ≤ (m−1)/2 and 0 ≤ ri 6= 2 ≤ 2t. Taking
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r =
∑m−1

2
i=1 ri and s =

∑m−1
2

i=1 (2t − ri) yields a solution to our problem for
2t− 1 ≤ r ≤ 2mt− 1 and 0 ≤ s ≤ (m− 1)t.

Finally, if t is divisible by 3, then, in (4.1), K2t − I has a {Cs1
3 ,K

2r1
2 }–

factorization for 0 ≤ r1, s1 ≤ t− 1 with r1 + s1 = t− 1 by [23]. Each C3[m]
has a Cm–factorization by Theorem 2.4. So, in (4.1), decomposing K2m into

a {Cs2
3 ,K

2r2
2 }–factorization for 0 ≤ r2, s2 ≤ m − 1 with r2 + s2 = m − 1,

gives us the required decomposition of K2mt for r = 2r1m + 2r2 + 1 and
s = ms1 + s2. In a similar manner, when t is divisible by 5, we may obtain
solution to the problem from the result of Adams et al. in [2]. �

Combining the these results it is now possible to obtain the following
main result.

Theorem 4.3. For all nonnegative integers r and s with 2m|v and r+ 2s =
v−1, there exists a solution to URD(v;Kr

2 , C
s
m) except possibly when all the

following conditions hold:

• v ≡ 2 (mod 4);
• m is odd;
• 7 ≤ m ≤ v

2m − 4;
• v

2 −
v

2m + 1 ≤ s ≤ v
2 −m− 1;

• v
2m is not divisible by 3 or 5.
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