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FACTORIZATIONS OF COMPLETE GRAPHS INTO
CYCLES AND 1-FACTORS

UGUR ODABASI

ABSTRACT. In this paper, we consider factorizations of complete graph
K, into cycles and 1-factors. We will focus on the existence of fac-
torizations of K, containing two nonisomorphic factors. We obtain all
possible solutions for uniform factors involving m—cycles and 1-factors
with a few possible exceptions when m is odd.

1. INTRODUCTION

In this paper, we use V(G) and E(G) to denote the vertex set and the
edge set of a graph G, respectively. Also, we denote by K,xp a complete
equipartite graph having a parts of size b each. In particular, Koy, is called
a complete bipartite graph and denoted by K, , as well.

Given two graphs G and H, an H-—decomposition of G is a set H =
{Hi,Hs,...,Hy} of edge-disjoint subgraphs of G such that Ule E(H;)
E(G) and H; = H for all H; € H.

A factor in a graph G is a spanning subgraph of G. An {Flk1 ) F2k2, cee Flkl}
—factorization of a graph G is a decomposition which consists precisely of
k; factors isomorphic to F;. If every component of a factor is isomorphic to
the same graph, then the factor is said to be uniform. A factorization of G
is also known as a resolvable decomposition of G and a factor can be called
a parallel class of G.

The case where G = K, (or G = K, — I, where [ is a 1-factor of K,
and v is even) and F; & F for all 1 < i <[ is known as the Oberwolfach
problem. If F consists of k; m;—cycles, 1 < i < ¢, then the corresponding
Oberwolfach problem is denoted by OP ('mlf1 , mSQ, ol mft) It is known that
the solutions to the cases OP(32),0P(3%),OP(4,5), and OP(32%,5) do not
exist [3, 16, 21]. The Oberwolfach problem for a single cycle size OP(m*)
for all m > 3 has been solved in two separate cases: odd cycles in [3] and
the even cycle case in [15].
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A generalization of the Oberwolfach problem is the Hamilton—Waterloo
problem which asks for an {Flk1 ) FQkZ }—factorization of K, (or K, — I for even
v) where F} and F, are nonisomorphic.

When all of the parallel classes in the decomposition are uniform we
have a uniformly resolvable decomposition of K,(or K, — I for even v)
and we use the notation to denote such a decomposition with r; F;—factors
by URD(v; F|*, F3?). We denote the decomposition by URD(v; K3', C)2),
while if Fy is a 1-factor of K, and F> contains only copies of cycles Cy,.
We will denote such a decomposition also as a {K3', Cr2}—factorization.
Moreover, if each F; is composed of m;—cycles, then we use the notation to
denote such a decomposition by URD(v; m7*, m3?).

The first results addressing the Hamilton-Waterloo problem [1] settled
the problem for all v < 17 and in addition considered the cases (mq,mg) €
{(4,6),(4,8), (4,16),(8,16),(3,5),(3,15),(5,15)}. In [7], Bryant et al. set-
tled the Hamilton—Waterloo problem for bipartite 2—factors, and in [9] Bu-
ratti and Rinaldi studied regular 2-factorizations leading to some cyclic
solutions to Oberwolfach and Hamilton-Waterloo problems, and also in [§8],
an infinite class of cyclic solutions to the Hamilton—Waterloo problem is
given. El-Zanati et al. [13] have considered the problem for m; = p’ and
v = p" where p is an odd prime and 1 < i < n. In [19], the problem has been
solved for 4—cycles and odd cycle factors with a few possible exceptions. In
a recent paper [10], Burgess et al. solve almost completely the Hamilton—
Waterloo problem for odd cycles. For more recent results we refer the reader
to [6, 11, 12, 24, 25].

In this paper, we seek factorizations of K, into 1-factors and C,,,—factors.
While doing this we also get new solutions for the Hamilton—Waterloo prob-
lem regarding cycles with different parity.

Problem 1.1. For which values of r (or s) and m does there exist a
{K%,Cs Y—factorization of K,?

It is not hard to verify that if K, has an C,,—factor, then m must divide
v and v must be even since it has a 1-factor. Also note that by counting
the degree of any fixed vertex in the factors, we have r +2s = v — 1. In
the following lemma, we summarize the obvious necessary conditions for the
existence of a { K7, C% }—factorization of K.

Lemma 1.2. Let v, m, r, and s be nonnegative integers with m > 3. If
there exists a solution to URD(v; K3, C5,), then

® U 1S even;

e mv;

o r+2s=v—1.

If m is also even, then we have the desired factorizations since K, has

a {CTSZZ -2/ 2, K }—factorization (a solution to the Oberwolfach problem [15])
and each C,,—factor in the factorization has a l1-factorization. Thus we
restrict our attention to the case when m is odd. In [23], Rees considered the
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problem for the case m = 3 and proved that the obvious necessary conditions
are sufficient also with exceptions (v,r,s) = (6,1,2) and (v,7,s) = (12,1,5)
which correspond to the nonexistence of solutions to OP(32) and OP(3%),
respectively. Also, Adams et al. [2] solved the problem completely in the
case of m = 5.

2. PRELIMINARIES

In [17], the Oberwolfach problem is considered for complete equipartite
graphs where all cycles have the same length and we will use this result in
our main construction.

Theorem 2.1 ([17]). The complete equipartite graph K,xp has a Ci—factor-
ization for 1 > 3 and b > 2 if and only if l|ab, b(a — 1) is even, [ is even if
a=2, and (a,b,1) # (3,2,3),(3,6,3),(6,2,3),(2,6,6).

Let H be a finite additive group and let S be a subset of H — {0} such
that the negative of every element of S also belongs to S. The Cayley graph
on H with connection set S, denoted by Cay(H, S), is the graph with vertex
set H and edge set E(Cay(H,S)) = {(a,b)|a,b € Hya —b € S}. We will

make use of the following theorem.

Theorem 2.2 ([5]). Any connected 4-reqular Cayley graph on a finite Abelian
group has a Hamilton cycle decomposition.

Let G be a graph and Gg, Gy, ...,Gir_1 be k vertex disjoint copies of G
with v; € V(G;) for each v € V(G). Let G[k] denote the graph with vertex
set V(G[K]) = V(Go)UV(G1)U- - - UV (Gj—1) and edge set E(G[k]) = {u;v; :
w € E(G) and 0 <i,j <k —1}. For example K,,[2] = Ky, — I and
Ksm] = K, where I is a 1-factor of Kop,.

It is easy to see that if a graph G has an H—decomposition, then there
exists an H[k|-decomposition of G[k]. Moreover if a graph G has an H-
factorization, then there exists an H [k]-factorization of G[k].

In fact, this graph operation is a generalization of Haggkvist’s doubling
construction and it coincides with a special case of a graph product called
the lexicographic product. Haggkvist [14] constructed 2—factorizations con-
taining even cycles using G|[2].

Lemma 2.3. [14] Let G be a path or a cycle with m edges and let H be
a 2-reqular graph on 2m wvertices where each component of H is a cycle of
even length. Then G[2] has an H—-decomposition.

Baranyai and Szasz [4] have shown that if a graph G can be decom-
posed into x Hamilton cycles and if H is a graph with y vertices and can be
decomposed into z Hamilton cycles then their lexicographic product is de-
composable into xy+ z Hamilton cycles. So, Cy,[n] has a C,,,,—factorization.
Also Alspach et al. [3] have shown that for an odd integer m and a prime p
with 3 <m < p, Cy,[p] has a C,—factorization.
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In [19, 20], the authors decomposed C,,[4] into 2—factors involving cycles
of lengths 4, m, 2m, and 4m. Burgess et al. have recently shown the
following result in [10].

Theorem 2.4 ([10]). For all odd integers a > b > 3, Cyla] has a Cy—fac-
torization.

The following result can be found in [3] and will be used to improve the
main result of this paper.

Theorem 2.5 ([3]). Let v be a positive integer with v ¢ {1,2,4,6,7,11,12}.
Then there is a 2—factorization of K, (v odd) or K, — I (v even) such that
each cycle in each 2—factor is either a 3—cycle or a 5—cycle.

The ring-sum G1 @ G2 of two graphs G1 = (V1, E1), and Gy = (Va, Ea),
is the graph G1 @ G2 = (V1 UWa), (E1 U Es) — (E1 N E3)). The union of two
graphs G; and Go, denoted by G U Go, is the graph with V(G U Ga) =
V(G1)UV(G2) and E(G1UG3) = E(G1) U E(G3). Also aG will denote the
vertex disjoint union of a copies of G.

3. PRELIMINARY DECOMPOSITIONS

First we will give two well-known results of Walecki [18] for Hamilton
cycle decompositions of complete graph of odd order, or complete graph
of even order minus a 1-factor, then by using these results we will obtain
solutions when v = 2m which will be generalized in Section 4.

Lemma 3.1 ([18]). For all odd m > 3, K., has a Hamilton decomposition
with prescribed cycles {C’*,,0((7*),,02(0*),...,me_3 (C)} for the permuta-
tion p = (0)(2,4,6...,m—1,m—2,...,5,3,1) where C" = (0,1,2,...,m —
1).

Lemma 3.2 ([18]). For all even m > 4, K,, — I has a Hamilton decom-
position with prescribed cycles {C”,a(C"),0%(C7) ... ot (C™)} for some
permutation o of {0,1,...,m—1} where C" = (0,1,...,m—1) and E(I') =
{(0,m/2),(i,m—1):1<i<(m/2)—1}.

For the sake of brevity, we use C” and p to denote the m—cycle of K,,
and the permutation, respectively, as described in Lemma 3.1.

As we noted before, Ko, — I = K,,[2] where V (Kay,,) = V(Kp,[2]). Also,
by Lemma 3.1, K,,[2] has a decomposition into graphs of the form C”[2]
for odd m. In [22], Piotrowski showed that, when m is odd, the double of
any m-cycle cannot be decomposed into m-cycle factors; that is, C"[2] 2
2C, ®2C,,. However, by the following lemma, we will be able to decompose
K, [2] into m—cycle factors and 1-factors via switching some edges of each
C"[2] in K,,[2] with some edges of p(C”)[2]. Also, for brevity, we use I' to
denote (C” @ p(C™))[2].

Lemma 3.3. Let m be an integer with m > 4. Then I' has an m—cycle
factorization.
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*

Proof. If m is even, the result follows from Lemma 2.3 since I' = C' 2] &
p(C)[2]. So we may assume m is odd.

Let the vertex set of I' be Zg X Z,,,, and define two m—cycles in I as follows:
C" = (vg,v1,...,Vm_1) where v; = (0,i) and C(*o) = (v}, v],...,v),_1) where
vy = (0,0) and

, (1,i+1), ifiis odd
C0i-1)
for 1 <i<m —1and when m =7, vf = (0,5), v5 = (1,6). Then
=C U(C +(1,0)

F2—P( 1)

, if i is even

*

= Cpy U (Clpy + (1,0

)
F4 =T — (F1 & FRaeF)

are m-—cycle factors of I' where p/(i,7) = (i,p(j)) for 0 < j < m — 2 and
p'(i,m—1)=(i+1,p(m —1)). It can be checked that

F ={F, Fy, F3, Fy}
is an m—cycle factorization of I'. O

We will also make use of the following lemma which will be very useful in
proving the main result of this paper.

Lemma 3.4. Let m be an integer withm > 3. Then Cy,[2] has a {C},,,C5,}-
factorization for nonnegative integers r and s with r + s = 2 except when m
is odd and r = 2, and except possibly when m is even and r = 1.

Proof. When m is an even integer, the required decompositions exist by
Lemma 2.3. Now we may assume that m is an odd integer. We can represent
Cn[2] as the Cayley graph over Zg X Z,, with the connection set Zg x {1, —1}.
Let C = (vo,v1,...,Um—1) and C = (ug,u1,...,uzm—1) be cycles of Cp,[2]
where v; = (0,7) for 0 <i <m — 1 and

(0,4), ifis even
Uy =
(1,7), if 7 is odd

for 0 < i < 2m—1. It can be checked that F; = CU(C+(1,0)) and Fy = C
are edge disjoint m—cycle and 2m—cycle factors of C,,[2], respectively. Thus
{F1, F»} is a 2-factorization of Cp,[2] for r = 1. As noted before, there is
no m-cycle factorization of Cp,[2]. For r = 0, since C),[2] is a connected
4-regular Cayley graph, by Theorem 2.2, C),[2] can be decomposed into two
Com, which are Hamilton cycles and this completes the proof. O

Combining the results of Lemma 3.3 and 3.4, we now obtain the following
corollary.
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Corollary 3.5. Let r,s € {0,1,2,3,4} with r + s = 4. Then for each
integer k > 0 and m > 4, pF(T') has a {CI,, Cs, Y—factorization with a
possible exception r = 3 when m is odd.

Proof. First, we will prove the corollary for £ = 0, then state that for all
k > 0 the graph has the required decomposition.

When r = 4, the corollary follows from Lemma 3.3. By Lemma 3.4, I’
has a {C},, C3,, }-factorization for » = 0,1, 2 and also for r = 3 when m is
even since T' = C"[2] @ p(C")[2]. Moreover, since I' 2 p*(T"), for all k& > 0,
the graph p*(I') has the required decompositions. O

For even m > 4, since K,, has a {C;;L%)/Q,C* @ I }-factorization by
Lemma 3.2, K,,[2] has a {(C), [2])("174)/2, (C” @ I')[2]}factorization where
I" is described as in Lemma 3.2. Also, since I [2] does not contain any m
or 2m-cycle for m > 4, we will use edge-disjoint union of I"[2] and C"[2].

Now we give 2-factorizations of (C” @ I")[2] in the following lemma.

Lemma 3.6. Let m > 4 be an even integer and G = C~ & I where C" =
(0,1,...,m — 1) is an m—cycle and I" is a 1-factor of K, with E(I') =
{(0,m/2),(i,m —1):1<4i<(m/2)—1}. Then G[2] has a
(i) Copm—factorization,
(ii) Cy,—factorization when m =0 (mod 4), and
(iii) {C2,,C1 }—factorization when m =2 (mod 4).

Proof. In [20], it is shown that the graph G has a Cy,,—factorization. Let
the vertex set of G be Zy X Z,,, and define two cycles in G as follows:
C = (vo,v1y...,Um—1) where v; = (0,7) for 0 < i < m — 1 and c =

(ug,u1, ..., un—1) where ug = (0,0) and for 1 <i <m —1,
y (H;Ui,% = 15)), fori=1,2 (mod 4)
(#, 2+15]), fori=0,3 (mod4).

Then F; = CU(C +(1,0)) and F, = C' U(C" 4 (1,0)) are two edge-disjoint
m~—cycle factors in G[2]. Also it can be checked that F3 = G — (F} & F»)
is a Cp,—factor in G[2] when m =0 (mod 4) or a Cy,—factor in G[2] when
m =2 (mod 4). Then {F}, Fy, F3} is a Cy,—factorization of G[2] when m =
0 (mod 4) or {C2,Ci }—factorization of G[2] when m =2 (mod 4). O

Now we can give new solutions to the Hamilton—Waterloo problem for
the case of v = 2m.

Lemma 3.7. Let m be an integer with m > 3. Then there exist a URD(2m;
m”, (2m)®) for all nonnegative integers r and s such that r +s = m — 1
except when m =3 and r = 2.

Proof. Since the problem has a solution for s = 0 in [15], we may assume
that s > 1. Note that Ky, — I = K,,[2] where I is a 1-factor in Kyp,.

When m is even, Kn[2] has a {(Cn[2)" ", (C” & I")[2]}factorization
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by Lemma 3.2. Let r; and s; be nonnegative integers for ¢ = 1,2 with
r1+s1 = (m—4)/2 and ro + s2 = 3 where ro =0 or

_— 3, form=0 (mod4)
2 2, form=2 (mod 4).

Then, decomposing (m —4)/2 many Cy,[2]-factors of Ky, into {C,,, Cor }—
factors by Lemma 3.4 and (C~ @ I')[2] into {C,, Cy2 }-factors by Lemma
3.6 gives us a {C,,, Cy, }-factorization of Ky, — I where r = rq + ry and
s = 81+ 89 satisfying r+s =m—1 with 1 <7, s < m—1 and this completes
the proof for even m. So we may assume m is odd.

Let r and s be nonnegative integers and m be an odd integer such that
r+2s = 2m— 1. It is well-known that OP(32) has no solution, thus we may
assume (m,r) # (3,1). It is also clear that the cases r =1 and r = 2m — 1
correspond to OP(m?) which has a solution, [3], and well-known 1-factor-
ization of Koy, [18], respectively.

By Lemma 2.3, K, has a decomposition into prescribed cycles p*(C”) for
0 <k < (m-—3)/2. Also, since Ko, = K,[2] ® K2, Koy, has a decomposi-
tion into a Ky-factor and (m — 1)/2 factors isomorphic to C” [2].

We will prove the theorem in two cases; m =1 or 3 (mod 4).

Case 1: m =1 (mod 4).

By pairing up consecutive graphs of the form p*(C"[2]) in the de-
composition of K,,[2], we can obtain a {I'"7 , Ky}-decomposition of
Ko,,. Now, let I be a 1-factor in Ks,,, and r;’s be nonnegative in-
tegers for i = 0,1,2, and 4 with Z?:l(i;é?)) r; = (m—1)/4. Placing
a {C%,Cé;}ffactorization r; of the I'’s by Corollary 3.5, gives us a
{Cr.,Cs, }—factorization of Ko, — I where r = 2321(1';&3) ir; and r+s =
m — 1. Then, since any nonnegative integer can be written as r =
Z?zl(#?)) ir; and r+s = m—1 for nonnegative integers r; (0 < i # 3 < 4),
a solution to URD(2m;m", (2m)®) exists for any r satisfying r+s = m—1.

Case 2: m =3 (mod 4).

Similarly, by pairing up the consecutive graphs p*(C"[2]) in the de-
composition of K,,[2], we can obtain a {I'"7 ,C"[2]} decomposition
of Koy — I. Now, let r; be nonnegative integer with Z?:l(i;é?)) r; =
(m—3)/4 and (z,y) € {(0,2),(1,1)}. Decomposing (m — 3)/4 I'’s into
{Ci,, CyT}—factors by Lemma 3.3 and C"[2] into a {CZ,CY }-factor
by Lemma 3.4 gives us a {C},,Cs  }-factorization of Ky, — I where

= Z?:l(i;&) ir; + x and r + s = m — 1. Thus the result now follows.
O

4. CONCLUSIONS

In this section, we will combine our results to give general solutions to
our problem.
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Theorem 4.1. For every positive integer v = 0 (mod 4) and for all non-
negative integers r, s, and odd m with r +2s = v — 1, there exists a solution
to URD(v; K3,C%).

Proof. In Theorem 14 of [19], for all possible integers ri, s, and m > 3,
a solution to URD(v; C}', C;,) has been given with the possible exception
when 1 = 2 and v = 8m for m > 5. It is easy to see that every Cy—factor in
the factorization can be decomposed into two 1-factor. Thus, it remains to
show that the problem has a solution when r = 5 and v = 8m. It is obvious
that Ky, has a {Kom, Kyx(2m)}-factorization. Now, decomposing the Koy,
into a {K3,C™" 3}factor by Lemma 3.7 and Ky (2m) into 3m Cp,—factor
by Theorem 2.1 completes the proof. O

We now consider the cases when v = 2 (mod 4) and m|v. Thus, there
exists an odd t € Z* such that v = 2mt. Also note that

(4.1) Kgmt = (th — I)[m] D tKQm.

Theorem 4.2. For all nonnegative integers r, s, and odd integers m, t
with r + 2s = 2mt — 1, there exists a solution to URD(2mt; K}, C3)) except
possibly when 7<m <t—4, (m—1)t <s<m(t—1) andt is not divisible
by 3 or 5.

Proof. First we assume that 1 < ¢t < m. Alsolet 0 < ry,s1 <t —1, and
0 < 719,590 <m —1 be integers with r1 +s; =t —1and ro +so =m —1. By
Lemma 3.7, Ko —1I and Ky, has a {C;*,C5} } and {C;2, C3?2 , Ko }-factoriza-
tion, respectively, except when (¢, s1) = (3,2). So we have a decomposition
of Koyt into uniform factors including Cy¢[m], Cat[m], Cyp,, Com, and Ko. By
Theorem 2.4, Ci[m] has a Cj,~factorization. Moreover each Cy[m] has a
Hamilton cycle decomposition by Theorem 2.2, and hence has a 1-factoriza-
tion. Similarly, we can think of each Cy,,—factor of Ko+ as a union of two
edge disjoint 1-factors. Thus, placing these decompositions of Cy[m], Cot[m],
and Cap, on Koy — I and Koy, in the equivalence (4.1), gives the required
decomposition of Ko, for ¥ = 2rim + 2r9 + 1 and s = ms1 + so except
when ¢t = 3 and s; = 2. In the case when t = 3, we can decompose Kg,,
into a K3[2m| and a Ka,, factor. Decomposing K3[2m] into 2m C,,—factors
by Theorem 2.1 and Ky, into a {C%!, K% }—factor by Lemma 3.7 gives us a
{Cs, K5}factorization of Kg,, where s = 2m + s’ with 2m < s < 3m — 1.
Now, we assume that t > m > 7. By Theorem 2.5, K9 — I has a 2—fac-
torization where every component of each 2—factor is either a 3—cycle or a
5—cycle. Also by Theorem 2.4, both C3[m| and C5[m| have a C,,—factoriza-
tion. Thus, placing these decompositions on (Ka; — I)[m] and decomposing
Ko, into a {C5}, C5) }—factor by Lemma 3.7 yields a solution to the problem
form(t—1)<s=m(t—1)+s1 <mt—land0<r=2r1+1<2m—1. On
the other hand, we can decompose Ko, into a Ko and a K, [2t] factors.
Here we decompose Ky into 2t — 1 1-factors and K,,[2t] into (m — 1)/2
Cpn[2t] factors. By Theorem 3.5 of [11], we have also a {C2~7"¢, K3"}fac-
torization of Cy, [2t] whenever 0 < ¢ < (m—1)/2and 0 < r; # 2 < 2¢. Taking
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m—1 m—1

r=>3%,% mand s =3 ,% (2t —r;) yields a solution to our problem for
20—-1<r<2mt—1and 0<s<(m-—1)t.

Finally, if ¢ is divisible by 3, then, in (4.1), Kot — I has a {C5', K™}~
factorization for 0 < ry,s; <t — 1 with  +s; =t — 1 by [23]. Each C3[m)]
has a Cy,—factorization by Theorem 2.4. So, in (4.1), decomposing K, into
a {C§2,K22T2}ffactorization for 0 < 79,80 < m—1with r9 +s9 = m — 1,
gives us the required decomposition of Koy for r = 2rym + 2ry + 1 and
s = ms1 + s9. In a similar manner, when ¢ is divisible by 5, we may obtain
solution to the problem from the result of Adams et al. in [2]. O

Combining the these results it is now possible to obtain the following
main result.

Theorem 4.3. For all nonnegative integers r and s with 2mlv and r 4 2s =
v—1, there ezists a solution to URD(v; K3, C},) except possibly when all the

following conditions hold:

e v=2 (mod 4);

e m is odd;

e 7T<m< ﬁ —4;

o5 —5-+1<s<5-m—1;
[ ]

5 18 not divisible by 3 or 5.
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