Contributions to Discrete Mathematics

FACTORIZATIONS OF COMPLETE GRAPHS INTO CYCLES AND 1-FACTORS

UĞUR ODABAŞI

Abstract

In this paper, we consider factorizations of complete graph K_{v} into cycles and 1-factors. We will focus on the existence of factorizations of K_{v} containing two nonisomorphic factors. We obtain all possible solutions for uniform factors involving m-cycles and 1-factors with a few possible exceptions when m is odd.

1. Introduction

In this paper, we use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of a graph G, respectively. Also, we denote by $K_{a \times b}$ a complete equipartite graph having a parts of size b each. In particular, $K_{2 \times a}$ is called a complete bipartite graph and denoted by $K_{a, a}$ as well.

Given two graphs G and H, an H-decomposition of G is a set $\mathcal{H}=$ $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E\left(H_{i}\right)=$ $E(G)$ and $H_{i} \cong H$ for all $H_{i} \in \mathcal{H}$.

A factor in a graph G is a spanning subgraph of G. An $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{l}}\right\}$ -factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}. If every component of a factor is isomorphic to the same graph, then the factor is said to be uniform. A factorization of G is also known as a resolvable decomposition of G and a factor can be called a parallel class of G.

The case where $G \cong K_{v}$ (or $G \cong K_{v}-I$, where I is a 1 -factor of K_{v} and v is even) and $F_{i} \cong F$ for all $1 \leq i \leq l$ is known as the Oberwolfach problem. If F consists of $k_{i} m_{i}$-cycles, $1 \leq i \leq t$, then the corresponding Oberwolfach problem is denoted by $O P\left(m_{1}^{k_{1}}, m_{2}^{k_{2}}, \ldots, m_{t}^{k_{t}}\right)$. It is known that the solutions to the cases $O P\left(3^{2}\right), O P\left(3^{4}\right), O P(4,5)$, and $O P\left(3^{2}, 5\right)$ do not exist $[3,16,21]$. The Oberwolfach problem for a single cycle size $O P\left(m^{k}\right)$ for all $m \geq 3$ has been solved in two separate cases: odd cycles in [3] and the even cycle case in [15].

[^0]A generalization of the Oberwolfach problem is the Hamilton-Waterloo problem which asks for an $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}\right\}$-factorization of K_{v} (or $K_{v}-I$ for even $v)$ where F_{1} and F_{2} are nonisomorphic.

When all of the parallel classes in the decomposition are uniform we have a uniformly resolvable decomposition of K_{v} (or $K_{v}-I$ for even v) and we use the notation to denote such a decomposition with $r_{i} F_{i}$-factors by $\operatorname{URD}\left(v ; F_{1}^{r_{1}}, F_{2}^{r_{2}}\right)$. We denote the decomposition by $\operatorname{URD}\left(v ; K_{2}^{r_{1}}, C_{m}^{r_{2}}\right)$, while if F_{1} is a 1 -factor of K_{v} and F_{2} contains only copies of cycles C_{m}. We will denote such a decomposition also as a $\left\{K_{2}^{r_{1}}, C_{m}^{r_{2}}\right\}$-factorization. Moreover, if each F_{i} is composed of m_{i}-cycles, then we use the notation to denote such a decomposition by $\operatorname{URD}\left(v ; m_{1}^{r_{1}}, m_{2}^{r_{2}}\right)$.

The first results addressing the Hamilton-Waterloo problem [1] settled the problem for all $v \leq 17$ and in addition considered the cases $\left(m_{1}, m_{2}\right) \in$ $\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$. In [7], Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors, and in [9] Buratti and Rinaldi studied regular 2-factorizations leading to some cyclic solutions to Oberwolfach and Hamilton-Waterloo problems, and also in [8], an infinite class of cyclic solutions to the Hamilton-Waterloo problem is given. El-Zanati et al. [13] have considered the problem for $m_{i}=p^{i}$ and $v=p^{n}$ where p is an odd prime and $1 \leq i \leq n$. In [19], the problem has been solved for 4 -cycles and odd cycle factors with a few possible exceptions. In a recent paper [10], Burgess et al. solve almost completely the HamiltonWaterloo problem for odd cycles. For more recent results we refer the reader to $[6,11,12,24,25]$.

In this paper, we seek factorizations of K_{v} into 1-factors and C_{m}-factors. While doing this we also get new solutions for the Hamilton-Waterloo problem regarding cycles with different parity.

Problem 1.1. For which values of r (or s) and m does there exist a $\left\{K_{2}^{r}, C_{m}^{s}\right\}$-factorization of K_{v} ?

It is not hard to verify that if K_{v} has an C_{m}-factor, then m must divide v and v must be even since it has a 1 -factor. Also note that by counting the degree of any fixed vertex in the factors, we have $r+2 s=v-1$. In the following lemma, we summarize the obvious necessary conditions for the existence of a $\left\{K_{2}^{r}, C_{m}^{s}\right\}$-factorization of K_{v}.
Lemma 1.2. Let v, m, r, and s be nonnegative integers with $m \geq 3$. If there exists a solution to $\operatorname{URD}\left(v ; K_{2}^{r}, C_{m}^{s}\right)$, then

- v is even;
- $m \mid v$;
- $r+2 s=v-1$.

If m is also even, then we have the desired factorizations since K_{v} has a $\left\{C_{m}^{(v-2) / 2}, K_{2}\right\}$-factorization (a solution to the Oberwolfach problem [15]) and each C_{m}-factor in the factorization has a 1 -factorization. Thus we restrict our attention to the case when m is odd. In [23], Rees considered the
problem for the case $m=3$ and proved that the obvious necessary conditions are sufficient also with exceptions $(v, r, s)=(6,1,2)$ and $(v, r, s)=(12,1,5)$ which correspond to the nonexistence of solutions to $O P\left(3^{2}\right)$ and $O P\left(3^{4}\right)$, respectively. Also, Adams et al. [2] solved the problem completely in the case of $m=5$.

2. Preliminaries

In [17], the Oberwolfach problem is considered for complete equipartite graphs where all cycles have the same length and we will use this result in our main construction.

Theorem 2.1 ([17]). The complete equipartite graph $K_{a \times b}$ has a C_{l}-factorization for $l \geq 3$ and $b \geq 2$ if and only if $l \mid a b, b(a-1)$ is even, l is even if $a=2$, and $(a, b, l) \neq(3,2,3),(3,6,3),(6,2,3),(2,6,6)$.

Let H be a finite additive group and let S be a subset of $H-\{0\}$ such that the negative of every element of S also belongs to S. The Cayley graph on H with connection set S, denoted by Cay (H, S), is the graph with vertex set H and edge set $E(\operatorname{Cay}(H, S))=\{(a, b) \mid a, b \in H, a-b \in S\}$. We will make use of the following theorem.

Theorem 2.2 ([5]). Any connected 4-regular Cayley graph on a finite Abelian group has a Hamilton cycle decomposition.

Let G be a graph and $G_{0}, G_{1}, \ldots, G_{k-1}$ be k vertex disjoint copies of G with $v_{i} \in V\left(G_{i}\right)$ for each $v \in V(G)$. Let $G[k]$ denote the graph with vertex set $V(G[k])=V\left(G_{0}\right) \cup V\left(G_{1}\right) \cup \cdots \cup V\left(G_{k-1}\right)$ and edge set $E(G[k])=\left\{u_{i} v_{j}\right.$: $u v \in E(G)$ and $0 \leq i, j \leq k-1\}$. For example $K_{m}[2] \cong K_{2 m}-I$ and $K_{2}[m] \cong K_{m, m}$ where I is a 1 -factor of $K_{2 m}$.

It is easy to see that if a graph G has an H-decomposition, then there exists an $H[k]$-decomposition of $G[k]$. Moreover if a graph G has an $H-$ factorization, then there exists an $H[k]$-factorization of $G[k]$.

In fact, this graph operation is a generalization of Häggkvist's doubling construction and it coincides with a special case of a graph product called the lexicographic product. Häggkvist [14] constructed 2-factorizations containing even cycles using $G[2]$.

Lemma 2.3. [14] Let G be a path or a cycle with m edges and let H be a 2 -regular graph on $2 m$ vertices where each component of H is a cycle of even length. Then $G[2]$ has an H-decomposition.

Baranyai and Szasz [4] have shown that if a graph G can be decomposed into x Hamilton cycles and if H is a graph with y vertices and can be decomposed into z Hamilton cycles then their lexicographic product is decomposable into $x y+z$ Hamilton cycles. So, $C_{m}[n]$ has a $C_{m n}$-factorization. Also Alspach et al. [3] have shown that for an odd integer m and a prime p with $3 \leq m \leq p, C_{m}[p]$ has a C_{p}-factorization.

In $[19,20]$, the authors decomposed $C_{m}[4]$ into 2-factors involving cycles of lengths $4, m, 2 m$, and $4 m$. Burgess et al. have recently shown the following result in [10].

Theorem 2.4 ([10]). For all odd integers $a \geq b \geq 3, C_{b}[a]$ has a C_{a}-factorization.

The following result can be found in [3] and will be used to improve the main result of this paper.

Theorem 2.5 ([3]). Let v be a positive integer with $v \notin\{1,2,4,6,7,11,12\}$. Then there is a 2-factorization of K_{v} (v odd) or $K_{v}-I$ (v even) such that each cycle in each 2-factor is either a 3-cycle or a 5-cycle.

The ring-sum $G_{1} \oplus G_{2}$ of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$, and $G_{2}=\left(V_{2}, E_{2}\right)$, is the graph $G_{1} \oplus G_{2}=\left(\left(V_{1} \cup V_{2}\right),\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap E_{2}\right)\right)$. The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with $V\left(G_{1} \cup G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Also αG will denote the vertex disjoint union of α copies of G.

3. Preliminary Decompositions

First we will give two well-known results of Walecki [18] for Hamilton cycle decompositions of complete graph of odd order, or complete graph of even order minus a 1 -factor, then by using these results we will obtain solutions when $v=2 m$ which will be generalized in Section 4.

Lemma 3.1 ([18]). For all odd $m \geq 3, K_{m}$ has a Hamilton decomposition with prescribed cycles $\left\{C^{*}, \rho\left(C^{*}\right), \rho^{2}\left(C^{*}\right), \ldots, \rho^{\frac{m-3}{2}}\left(C^{*}\right)\right\}$ for the permutation $\rho=(0)(2,4,6 \ldots, m-1, m-2, \ldots, 5,3,1)$ where $C^{*}=(0,1,2, \ldots, m-$ 1).

Lemma 3.2 ([18]). For all even $m \geq 4, K_{m}-I^{*}$ has a Hamilton decomposition with prescribed cycles $\left\{C^{*}, \sigma\left(C^{*}\right), \sigma^{2}\left(C^{*}\right) \ldots, \sigma^{\frac{m-4}{2}}\left(C^{*}\right)\right\}$ for some permutation σ of $\{0,1, \ldots, m-1\}$ where $C^{*}=(0,1, \ldots, m-1)$ and $E\left(I^{*}\right)=$ $\{(0, m / 2),(i, m-i): 1 \leq i \leq(m / 2)-1\}$.

For the sake of brevity, we use C^{*} and ρ to denote the m-cycle of K_{m} and the permutation, respectively, as described in Lemma 3.1.

As we noted before, $K_{2 m}-I \cong K_{m}[2]$ where $V\left(K_{2 m}\right)=V\left(K_{m}[2]\right)$. Also, by Lemma 3.1, $K_{m}[2]$ has a decomposition into graphs of the form $C^{*}[2]$ for odd m. In [22], Piotrowski showed that, when m is odd, the double of any m-cycle cannot be decomposed into m-cycle factors; that is, $C^{*}[2] \nsubseteq$ $2 C_{m} \oplus 2 C_{m}$. However, by the following lemma, we will be able to decompose $K_{m}[2]$ into m-cycle factors and 1-factors via switching some edges of each $C^{*}[2]$ in $K_{m}[2]$ with some edges of $\rho\left(C^{*}\right)[2]$. Also, for brevity, we use Γ to denote $\left(C^{*} \oplus \rho\left(C^{*}\right)\right)[2]$.
Lemma 3.3. Let m be an integer with $m \geq 4$. Then Γ has an m-cycle factorization.

Proof. If m is even, the result follows from Lemma 2.3 since $\Gamma=C^{*}[2] \oplus$ $\rho\left(C^{*}\right)[2]$. So we may assume m is odd.

Let the vertex set of Γ be $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$, and define two m-cycles in Γ as follows: $C^{*}=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ where $v_{i}=(0, i)$ and $C_{(0)}^{*}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{m-1}^{\prime}\right)$ where $v_{0}^{\prime}=(0,0)$ and

$$
v_{i}^{\prime}= \begin{cases}(1, i+1), & \text { if } i \text { is odd } \\ (0, i-1), & \text { if } i \text { is even }\end{cases}
$$

for $1 \leq i \leq m-1$ and when $m=7, v_{5}^{\prime}=(0,5), v_{6}^{\prime}=(1,6)$. Then

$$
\begin{aligned}
& F_{1}=C^{*} \cup\left(C^{*}+(1,0)\right) \\
& F_{2}=\rho^{\prime}\left(F_{1}\right) \\
& F_{3}=C_{(0)}^{*} \cup\left(C_{(0)}^{*}+(1,0)\right) \\
& F_{4}=\Gamma-\left(F_{1} \oplus F_{2} \oplus F_{3}\right)
\end{aligned}
$$

are m-cycle factors of Γ where $\rho^{\prime}(i, j)=(i, \rho(j))$ for $0 \leq j \leq m-2$ and $\rho^{\prime}(i, m-1)=(i+1, \rho(m-1))$. It can be checked that

$$
\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}
$$

is an m-cycle factorization of Γ.
We will also make use of the following lemma which will be very useful in proving the main result of this paper.

Lemma 3.4. Let m be an integer with $m \geq 3$. Then $C_{m}[2]$ has a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$ factorization for nonnegative integers r and s with $r+s=2$ except when m is odd and $r=2$, and except possibly when m is even and $r=1$.

Proof. When m is an even integer, the required decompositions exist by Lemma 2.3. Now we may assume that m is an odd integer. We can represent $C_{m}[2]$ as the Cayley graph over $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$ with the connection set $\mathbb{Z}_{2} \times\{1,-1\}$. Let $C=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ and $C^{\prime}=\left(u_{0}, u_{1}, \ldots, u_{2 m-1}\right)$ be cycles of $C_{m}[2]$ where $v_{i}=(0, i)$ for $0 \leq i \leq m-1$ and

$$
u_{i}= \begin{cases}(0, i), & \text { if } i \text { is even } \\ (1, i), & \text { if } i \text { is odd }\end{cases}
$$

for $0 \leq i \leq 2 m-1$. It can be checked that $F_{1}=C \cup(C+(1,0))$ and $F_{2}=C^{\prime}$ are edge disjoint m-cycle and $2 m$-cycle factors of $C_{m}[2]$, respectively. Thus $\left\{F_{1}, F_{2}\right\}$ is a 2 -factorization of $C_{m}[2]$ for $r=1$. As noted before, there is no m-cycle factorization of $C_{m}[2]$. For $r=0$, since $C_{m}[2]$ is a connected 4 -regular Cayley graph, by Theorem 2.2, $C_{m}[2]$ can be decomposed into two $C_{2 m}$, which are Hamilton cycles and this completes the proof.

Combining the results of Lemma 3.3 and 3.4, we now obtain the following corollary.

Corollary 3.5. Let $r, s \in\{0,1,2,3,4\}$ with $r+s=4$. Then for each integer $k \geq 0$ and $m \geq 4$, $\rho^{k}(\Gamma)$ has a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$-factorization with a possible exception $r=3$ when m is odd.

Proof. First, we will prove the corollary for $k=0$, then state that for all $k \geq 0$ the graph has the required decomposition.

When $r=4$, the corollary follows from Lemma 3.3. By Lemma 3.4, Γ has a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$-factorization for $r=0,1,2$ and also for $r=3$ when m is even since $\Gamma \cong C^{*}[2] \oplus \rho\left(C^{*}\right)[2]$. Moreover, since $\Gamma \cong \rho^{k}(\Gamma)$, for all $k \geq 0$, the graph $\rho^{k}(\Gamma)$ has the required decompositions.

For even $m \geq 4$, since K_{m} has a $\left\{C_{m}^{(m-4) / 2}, C^{*} \oplus I^{*}\right\}$-factorization by Lemma 3.2, $K_{m}[2]$ has a $\left\{\left(C_{m}[2]\right)^{(m-4) / 2},\left(C^{*} \oplus I^{*}\right)[2]\right\}$-factorization where I^{*} is described as in Lemma 3.2. Also, since $I^{*}[2]$ does not contain any m or $2 m$-cycle for $m>4$, we will use edge-disjoint union of $I^{*}[2]$ and $C^{*}[2]$. Now we give 2-factorizations of $\left(C^{*} \oplus I^{*}\right)[2]$ in the following lemma.

Lemma 3.6. Let $m \geq 4$ be an even integer and $G=C^{*} \oplus I^{*}$ where $C^{*}=$ $(0,1, \ldots, m-1)$ is an m-cycle and I^{*} is a 1 -factor of K_{m} with $E\left(I^{*}\right)=$ $\{(0, m / 2),(i, m-i): 1 \leq i \leq(m / 2)-1\}$. Then $G[2]$ has a
(i) $C_{2 m}$-factorization,
(ii) C_{m}-factorization when $m \equiv 0(\bmod 4)$, and
(iii) $\left\{C_{m}^{2}, C_{2 m}^{1}\right\}$-factorization when $m \equiv 2(\bmod 4)$.

Proof. In [20], it is shown that the graph G has a $C_{2 m}$-factorization. Let the vertex set of G be $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$, and define two cycles in G as follows: $C=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ where $v_{i}=(0, i)$ for $0 \leq i \leq m-1$ and $C^{\prime}=$ $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ where $u_{0}=(0,0)$ and for $1 \leq i \leq m-1$,

$$
u_{i}= \begin{cases}\left(\frac{1-(-1)^{i}}{2}, \frac{m}{2}-\left\lfloor\frac{i}{2}\right\rfloor\right), & \text { for } i \equiv 1,2(\bmod 4) \\ \left(\frac{1-(-1)^{i}}{2}, \frac{m}{2}+\left\lfloor\frac{i}{2}\right\rfloor\right), & \text { for } i \equiv 0,3(\bmod 4)\end{cases}
$$

Then $F_{1}=C \cup(C+(1,0))$ and $F_{2}=C^{\prime} \cup\left(C^{\prime}+(1,0)\right)$ are two edge-disjoint m-cycle factors in $G[2]$. Also it can be checked that $F_{3} \cong G-\left(F_{1} \oplus F_{2}\right)$ is a C_{m}-factor in $G[2]$ when $m \equiv 0(\bmod 4)$ or a $C_{2 m}$-factor in $G[2]$ when $m \equiv 2(\bmod 4)$. Then $\left\{F_{1}, F_{2}, F_{3}\right\}$ is a C_{m}-factorization of $G[2]$ when $m \equiv$ $0(\bmod 4)$ or $\left\{C_{m}^{2}, C_{2 m}^{1}\right\}$-factorization of $G[2]$ when $m \equiv 2(\bmod 4)$.

Now we can give new solutions to the Hamilton-Waterloo problem for the case of $v=2 m$.

Lemma 3.7. Let m be an integer with $m \geq 3$. Then there exist a $\operatorname{URD}(2 m$; $\left.m^{r},(2 m)^{s}\right)$ for all nonnegative integers r and s such that $r+s=m-1$ except when $m=3$ and $r=2$.

Proof. Since the problem has a solution for $s=0$ in [15], we may assume that $s \geq 1$. Note that $K_{2 m}-I \cong K_{m}[2]$ where I is a 1 -factor in $K_{2 m}$. When m is even, $K_{m}[2]$ has a $\left\{\left(C_{m}[2]\right)^{(m-4) / 2},\left(C^{*} \oplus I^{*}\right)[2]\right\}$-factorization
by Lemma 3.2. Let r_{i} and s_{i} be nonnegative integers for $i=1,2$ with $r_{1}+s_{1}=(m-4) / 2$ and $r_{2}+s_{2}=3$ where $r_{2}=0$ or

$$
r_{2}= \begin{cases}3, & \text { for } m \equiv 0(\bmod 4) \\ 2, & \text { for } m \equiv 2(\bmod 4)\end{cases}
$$

Then, decomposing $(m-4) / 2$ many $C_{m}[2]$-factors of $K_{2 m}$ into $\left\{C_{m}^{r_{1}}, C_{2 m}^{s_{1}}\right\}-$ factors by Lemma 3.4 and $\left(C^{*} \oplus I^{*}\right)[2]$ into $\left\{C_{m}^{r_{2}}, C_{2 m}^{s_{2}}\right\}$-factors by Lemma 3.6 gives us a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$-factorization of $K_{2 m}-I$ where $r=r_{1}+r_{2}$ and $s=s_{1}+s_{2}$ satisfying $r+s=m-1$ with $1 \leq r, s \leq m-1$ and this completes the proof for even m. So we may assume m is odd.

Let r and s be nonnegative integers and m be an odd integer such that $r+2 s=2 m-1$. It is well-known that $O P\left(3^{2}\right)$ has no solution, thus we may assume $(m, r) \neq(3,1)$. It is also clear that the cases $r=1$ and $r=2 m-1$ correspond to $O P\left(m^{2}\right)$ which has a solution, [3], and well-known 1-factorization of $K_{2 m}$, [18], respectively.

By Lemma 2.3, K_{m} has a decomposition into prescribed cycles $\rho^{k}\left(C^{*}\right)$ for $0 \leq k \leq(m-3) / 2$. Also, since $K_{2 m} \cong K_{m}[2] \oplus K_{2}, K_{2 m}$ has a decomposition into a K_{2}-factor and $(m-1) / 2$ factors isomorphic to $C^{*}[2]$.

We will prove the theorem in two cases; $m \equiv 1$ or $3(\bmod 4)$.
Case 1: $m \equiv 1(\bmod 4)$.
By pairing up consecutive graphs of the form $\rho^{k}\left(C^{*}[2]\right)$ in the decomposition of $K_{m}[2]$, we can obtain a $\left\{\Gamma^{\frac{m-1}{4}}, K_{2}\right\}$-decomposition of $K_{2 m}$. Now, let I be a 1 -factor in $K_{2 m}$, and r_{i} 's be nonnegative integers for $i=0,1,2$, and 4 with $\sum_{i=1(i \neq 3)}^{4} r_{i}=(m-1) / 4$. Placing a $\left\{C_{m}^{i}, C_{2 m}^{4-i}\right\}$-factorization r_{i} of the Γ 's by Corollary 3.5 , gives us a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$-factorization of $K_{2 m}-I$ where $r=\sum_{i=1(i \neq 3)}^{4} i r_{i}$ and $r+s=$ $m-1$. Then, since any nonnegative integer can be written as $r=$ $\sum_{i=1(i \neq 3)}^{4} i r_{i}$ and $r+s=m-1$ for nonnegative integers $r_{i}(0 \leq i \neq 3 \leq 4)$, a solution to $\operatorname{URD}\left(2 m ; m^{r},(2 m)^{s}\right)$ exists for any r satisfying $r+s=m-1$. Case 2: $m \equiv 3(\bmod 4)$.

Similarly, by pairing up the consecutive graphs $\rho^{k}\left(C^{*}[2]\right)$ in the decomposition of $K_{m}[2]$, we can obtain a $\left\{\Gamma^{\frac{m-3}{4}}, C^{*}[2]\right\}$-decomposition of $K_{2 m}-I$. Now, let r_{i} be nonnegative integer with $\sum_{i=1(i \neq 3)}^{4} r_{i}=$ $(m-3) / 4$ and $(x, y) \in\{(0,2),(1,1)\}$. Decomposing $(m-3) / 4 \Gamma$'s into $\left\{C_{m}^{i}, C_{2 m}^{4-i}\right\}$-factors by Lemma 3.3 and $C^{*}[2]$ into a $\left\{C_{m}^{x}, C_{2 m}^{y}\right\}$-factor by Lemma 3.4 gives us a $\left\{C_{m}^{r}, C_{2 m}^{s}\right\}$-factorization of $K_{2 m}-I$ where $r=\sum_{i=1(i \neq 3)}^{4} i r_{i}+x$ and $r+s=m-1$. Thus the result now follows.

4. Conclusions

In this section, we will combine our results to give general solutions to our problem.

Theorem 4.1. For every positive integer $v \equiv 0(\bmod 4)$ and for all nonnegative integers r, s, and odd m with $r+2 s=v-1$, there exists a solution $t o \operatorname{URD}\left(v ; K_{2}^{r}, C_{m}^{s}\right)$.
Proof. In Theorem 14 of [19], for all possible integers r_{1}, s, and $m \geq 3$, a solution to $\operatorname{URD}\left(v ; C_{4}^{r_{1}}, C_{m}^{s}\right)$ has been given with the possible exception when $r_{1}=2$ and $v=8 m$ for $m \geq 5$. It is easy to see that every C_{4}-factor in the factorization can be decomposed into two 1 -factor. Thus, it remains to show that the problem has a solution when $r=5$ and $v=8 m$. It is obvious that $K_{8 m}$ has a $\left\{K_{2 m}, K_{4 \times(2 m)}\right\}$-factorization. Now, decomposing the $K_{2 m}$ into a $\left\{K_{2}^{5}, C_{m}^{m-3}\right\}$-factor by Lemma 3.7 and $K_{4 \times(2 m)}$ into $3 m C_{m}$-factor by Theorem 2.1 completes the proof.

We now consider the cases when $v \equiv 2(\bmod 4)$ and $m \mid v$. Thus, there exists an odd $t \in \mathbb{Z}^{+}$such that $v=2 m t$. Also note that

$$
\begin{equation*}
K_{2 m t} \cong\left(K_{2 t}-I\right)[m] \oplus t K_{2 m} . \tag{4.1}
\end{equation*}
$$

Theorem 4.2. For all nonnegative integers r, s, and odd integers m, t with $r+2 s=2 m t-1$, there exists a solution to $\operatorname{URD}\left(2 m t ; K_{2}^{r}, C_{m}^{s}\right)$ except possibly when $7 \leq m \leq t-4,(m-1) t<s<m(t-1)$ and t is not divisible by 3 or 5 .
Proof. First we assume that $1 \leq t \leq m$. Also let $0 \leq r_{1}, s_{1} \leq t-1$, and $0 \leq r_{2}, s_{2} \leq m-1$ be integers with $r_{1}+s_{1}=t-1$ and $r_{2}+s_{2}=m-1$. By Lemma 3.7, $K_{2 t}-I$ and $K_{2 m}$ has a $\left\{C_{t}^{s_{1}}, C_{2 t}^{r_{1}}\right\}$ and $\left\{C_{m}^{s_{2}}, C_{2 m}^{r_{2}}, K_{2}\right\}$-factorization, respectively, except when $\left(t, s_{1}\right)=(3,2)$. So we have a decomposition of $K_{2 m t}$ into uniform factors including $C_{t}[m], C_{2 t}[m], C_{m}, C_{2 m}$, and K_{2}. By Theorem 2.4, $C_{t}[m]$ has a C_{m}-factorization. Moreover each $C_{2 t}[m]$ has a Hamilton cycle decomposition by Theorem 2.2, and hence has a 1 -factorization. Similarly, we can think of each $C_{2 m}$-factor of $K_{2 m t}$ as a union of two edge disjoint 1-factors. Thus, placing these decompositions of $C_{t}[m], C_{2 t}[m]$, and $C_{2 m}$ on $K_{2 t}-I$ and $K_{2 m}$ in the equivalence (4.1), gives the required decomposition of $K_{2 m t}$ for $r=2 r_{1} m+2 r_{2}+1$ and $s=m s_{1}+s_{2}$ except when $t=3$ and $s_{1}=2$. In the case when $t=3$, we can decompose $K_{6 m}$ into a $K_{3}[2 m]$ and a $K_{2 m}$ factor. Decomposing $K_{3}[2 m]$ into $2 m C_{m}$-factors by Theorem 2.1 and $K_{2 m}$ into a $\left\{C_{m}^{s_{1}}, K_{2}^{r}\right\}$-factor by Lemma 3.7 gives us a $\left\{C_{m}^{s^{\prime}}, K_{2}^{r}\right\}$-factorization of $K_{6 m}$ where $s=2 m+s^{\prime}$ with $2 m \leq s \leq 3 m-1$.

Now, we assume that $t>m \geq 7$. By Theorem 2.5, $K_{2 t}-I$ has a 2 -factorization where every component of each 2 -factor is either a 3 -cycle or a 5 -cycle. Also by Theorem 2.4, both $C_{3}[m]$ and $C_{5}[m]$ have a C_{m}-factorization. Thus, placing these decompositions on $\left(K_{2 t}-I\right)[m]$ and decomposing $K_{2 m}$ into a $\left\{C_{m}^{s_{1}}, C_{2 m}^{r_{1}}\right\}$-factor by Lemma 3.7 yields a solution to the problem for $m(t-1) \leq s=m(t-1)+s_{1} \leq m t-1$ and $0 \leq r=2 r_{1}+1 \leq 2 m-1$. On the other hand, we can decompose $K_{2 m t}$ into a $K_{2 t}$ and a $K_{m}[2 t]$ factors. Here we decompose $K_{2 t}$ into $2 t-1$ 1-factors and $K_{m}[2 t]$ into $(m-1) / 2$ $C_{m}[2 t]$ factors. By Theorem 3.5 of [11], we have also a $\left\{C_{m}^{2 t-r_{i}}, K_{2}^{2 r_{i}}\right\}$-factorization of $C_{m}[2 t]$ whenever $0 \leq i \leq(m-1) / 2$ and $0 \leq r_{i} \neq 2 \leq 2 t$. Taking
$r=\sum_{i=1}^{\frac{m-1}{2}} r_{i}$ and $s=\sum_{i=1}^{\frac{m-1}{2}}\left(2 t-r_{i}\right)$ yields a solution to our problem for $2 t-1 \leq r \leq 2 m t-1$ and $0 \leq s \leq(m-1) t$.

Finally, if t is divisible by 3 , then, in (4.1), $K_{2 t}-I$ has a $\left\{C_{3}^{s_{1}}, K_{2}^{2 r_{1}}\right\}-$ factorization for $0 \leq r_{1}, s_{1} \leq t-1$ with $r_{1}+s_{1}=t-1$ by [23]. Each $C_{3}[m]$ has a C_{m}-factorization by Theorem 2.4. So, in (4.1), decomposing $K_{2 m}$ into a $\left\{C_{3}^{s_{2}}, K_{2}^{2 r_{2}}\right\}$-factorization for $0 \leq r_{2}, s_{2} \leq m-1$ with $r_{2}+s_{2}=m-1$, gives us the required decomposition of $K_{2 m t}$ for $r=2 r_{1} m+2 r_{2}+1$ and $s=m s_{1}+s_{2}$. In a similar manner, when t is divisible by 5 , we may obtain solution to the problem from the result of Adams et al. in [2].

Combining the these results it is now possible to obtain the following main result.

Theorem 4.3. For all nonnegative integers r and s with $2 m \mid v$ and $r+2 s=$ $v-1$, there exists a solution to $\operatorname{URD}\left(v ; K_{2}^{r}, C_{m}^{s}\right)$ except possibly when all the following conditions hold:

- $v \equiv 2(\bmod 4)$;
- m is odd;
- $7 \leq m \leq \frac{v}{2 m}-4$;
- $\frac{v}{2}-\frac{v}{2 m}+1 \leq s \leq \frac{v}{2}-m-1$;
- $\frac{v}{2 m}$ is not divisible by 3 or 5 .

Acknowledgement

The author wishes to thank Saad El-Zanati for helpful suggestions during the course of this work.

References

1. P. Adams, E. J. Billington, D. E. Bryant, and S. I. El-Zanati, On the HamiltonWaterloo problem, Graphs Combin. 18 (2002), 31-51.
2. P. Adams, D. Bryant, S. I. El-Zanati, and H. Gavlas, Factorizations of the complete graph into C_{5}-factors and 1-factors, Graphs Combin. 19 (2003), 289-296.
3. B. Alspach, P. J. Schellenberg, D. R. Stinson, and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Comb. Theory Ser. A 52 (1989), 20-43.
4. Z. Baranyai and Gy. R. Szász, Hamiltonian decomposition of lexicographic product, J. Comb. Theory Ser. B 31 (1981), 253-261.
5. J-C. Bermond, O. Favaron, and M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Comb. Theory Ser. B 46 (1989), 142-153.
6. S. Bonvicini and M. Buratti, Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems, Ars Math. Contemp. 14 (2018), 1-14.
7. D. Bryant, P. Danziger, and M. Dean, On the Hamilton-Waterloo problem for bipartite 2-factors, J. Combin. Des. 21 (2013), 60-80.
8. M. Buratti and P. Danziger, A cyclic solution for an infinite class of HamiltonWaterloo problems, Graphs Combin. 32 (2016), 521-531.
9. M. Buratti and G. Rinaldi, On sharply vertex transitive 2-factorizations of the complete graph, J. Comb. Theory Ser. A 111 (2005), 245-256.
10. A. C. Burgess, P. Danziger, and T. Traetta, On the Hamilton-Waterloo problem with odd orders, J. Combin. Des. 25 (2017), 258-287.
11. _ On the Hamilton-Waterloo problem with cycle lengths of distinct parities, Discrete Math. 341 (2018), 1636-1644.
12._, On the Hamilton-Waterloo problem with odd cycle lengths, J. Combin. Des. 26 (2018), 51-83.
12. N. J. Cavenagh, S. I. El-Zanati, A. Khodkar, and C. Vanden Eynden, On a generalization of the Oberwolfach problem, J. Comb. Theory Ser. A 106 (2004), 255-275.
13. R. Häggkvist, A lemma on cycle decompositions, Ann. Discrete Math. 27 (1985), 227-232.
14. D. G. Hoffman and P. J. Schellenberg, The existence of $C_{k}-$ factorizations of $K_{2 n}-I$, Discrete Math. 97 (1991), 243-250.
15. E. Köhler, Uber das Oberwolfacher Problem, Beiträge zur Geometrischen Algebra, Mathematische Reihe, vol. 21, Birkhäuser, Basel, 1977, pp. 189-201.
16. J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), 20-34.
17. E. Lucas, Récréations mathématiques, vol. 2, Gauthier-Villars, Paris, 1892.
18. U. Odabaşı and S. Özkan, The Hamilton-Waterloo problem with C_{4} and C_{m} factors, Discrete Math. 339 (2016), 263-269.
\qquad , Uniformly resolvable cycle decompositions with four different factors, Graphs Combin. 33 (2017), 1591-1606.
19. W. L. Piotrowski, Untersuchungen uber das Oberwolfacher Problem, Arbeitspapier, 1979.
20. , The solution of the bipartite analogue of the Oberwolfach problem, Discrete Math. 97 (1991), 339-356.
21. R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Comb. Theory Ser. A 45 (1987), 207-225.
22. L. Wang and H. Cao, Completing the spectrum of almost resolvable cycle systems with odd cycle length, Discrete Math. 341 (2018), 1479-1491.
23. L. Wang, F. Chen, and H. Cao, The Hamilton-Waterloo problem for C_{3}-factors and C_{n}-factors, J. Comb. Des. 25 (2017), 385-418.

Department of Engineering Sciences, Faculty of Engineering, Istanbul University, Avcilar - ISTANBUL, 34320 TURKEY
Current address: Illinois State University, Normal, IL 61790-4520, USA
E-mail address: ugur.odabasi@istanbul.edu.tr

[^0]: Received by the editors June 17, 2018, and in revised form June 21, 2019.
 2010 Mathematics Subject Classification. 05C38, 05C70.
 Key words and phrases. Resolvable graph decompositions; Factorizations; 2-factors; 1-factors.

 This work was supported by Scientific Research Projects Coordination Unit of Istanbul University. Project number: FAB-2017-21532.

