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NEW COMBINATORIAL INTERPRETATIONS OF SOME

ROGERS-RAMANUJAN TYPE IDENTITIES

MEGHA GOYAL

Abstract. In present paper, three Rogers–Ramanujan type identities
are interpreted combinatorially in terms of certain associated lattice
path functions. Out of these three identities, two are further explored
using the Bender–Knuth matrices. These results give new combinatorial
interpretations of these basic series identities. Using two bijections,
first between the associated lattice path functions and the (n + t)-color
partitions and second between the associated lattice path functions and
the weighted lattice path functions, we extend the recent work of Sareen
and Rana to three new 5-way combinatorial identities. By using the
bijection between Bender–Knuth matrices and the n-color partitions,
we further extend their work to two new 6-way combinatorial identities.

1. Introduction and Definitions

Among the famous discoveries in the world of mathematics are the cele-
brated Rogers–Ramanujan identities [15, 16]:

∞∑
λ=0

qλ
2

(q; q)λ
=
∞∏
λ=1

1

(1− q5λ−1)(1− q5λ−4)
,

∞∑
λ=0

qλ
2+λ

(q; q)λ
=
∞∏
λ=1

1

(1− q5λ−2)(1− q5λ−3)
,

where (a; q)0 = 1 and (a; q)λ = (1− a)(1− aq) · · · (1− aqλ−1).
In 1916, MacMahon [14] interpreted these identities combinatorially in

terms of ordinary partitions. In 1985, Agarwal [2] introduced n-color par-
titions and in 1987, Agarwal and Andrews [7] generalized these partitions
to (n + t)-color partitions. Several identities of Rogers–Ramanujan type
had been interpreted combinatorially using (n + t)-color partitions, see for
instance [3, 7, 13, 12]. In 1989, Agarwal and Bressoud [8] established a bijec-
tion between the appropriate class of lattice paths of weight µ and a set of
(n+t)-color partitions of µ. This bijection provides new combinatorial inter-
pretations of the basic series identities which had already been interpreted in
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terms of (n+ t)-color partitions such as in [4, 9]. By establishing a bijection
between certain class of F -partitions and between (n + t)-color partitions,
many more Rogers–Ramanujan type identities are further explored combi-
natorially, see [5, 19]. Using the bijection between the appropriate classes of
these combinatorial tools, recently Sareen and Rana [17] gave combinatorial
interpretations of three Rogers–Ramanujan type identities that are listed
in the Slater’s compendium [18]. These results lead to three 4-way combi-
natorial identities. The objective of this paper is to further extend these
results using associated lattice paths [10] and the Bender–Knuth matrices
[11]. We do this by establishing a bijection between the associated lattice
path functions and the (n+ t)-color partitions and a bijection between the
associated lattice path functions and the weighted lattice path functions.
We will use the bijection between n-color partitions and the Bender–Knuth
matrices established in [6]. Before we recall the main results of [17] and
state our main results, let us first have a look at some definitions:

Definition 1.1 ([2]). A partition with “n copies of n” is a partition in which
a part of size n, n ≥ 0, can come in n different colors denoted by subscripts:
n1, n2, · · · , nn.

Definition 1.2 ([7]). A partition with “(n + t) copies of n”, t ≥ 0, is a
partition in which a part of size n, n ≥ 0, can come in (n + t) different
colors denoted by subscripts: n1, n2, ..., nn+t. Note that zeros are permitted
if and only if t is greater than or equal to one. Furthermore, zeros are not
permitted to repeat in any partition.

Remark: We note that if we take t = 0, then these are nothing but the
n-color partitions.

Definition 1.4. The weighted difference of two parts gk, hl, g ≥ h, is
defined by g − h− k − l and is denoted by ((gk − hl)).

In [8] the lattice paths are described as follows:

Definition 1.5. All paths will be of finite length lying in the first quadrant.
They will begin on the y-axis and terminate on the x-axis. Only three moves
are allowed at each step:

Northeast: from (i, j) to (i+ 1, j + 1);
Southeast: from (i, j) to (i+ 1, j − 1), only allowed if j > 0;
Horizontal: from (i, 0) to (i+ 1, 0), only allowed along x-axis.

All our lattice paths are either empty or terminate with a southeast step:
from (i, 1) to (i + 1, 0). Furthermore, when describing lattice paths the fol-
lowing terminology is used:

Peak: Either a vertex on the y-axis which is followed by a south-
east step or a vertex preceded by a northeast step and followed by a
southeast step.
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Valley: A vertex preceded by a southeast step and followed by a north-
east step. Note that a southeast step followed by a horizontal step
followed by a northeast step does not constitute a valley.
Mountain: A section of the path which starts on either the x-axis
or y-axis, which ends on the x-axis and which does not touch the
x-axis anywhere in between the end points. Every mountain has at
least one peak and may have more than one.
Plain: A section of the path consisting of only horizontal steps which
starts either on the y-axis or at a vertex preceded by a southeast step
and ends at a vertex followed by a northeast step.
Height: Height of a vertex is its y-coordinate.
Weight: Weight of a vertex is its x-coordinate.
Weight of a Path: It is the sum of the weights of its peaks.

Definition 1.6. A two rowed array of nonnegative integers(
a1 a2 · · · al
b1 b2 · · · bl

)
where, a1 ≥ a2 ≥ · · · ≥ al ≥ 0, b1 ≥ b2 ≥ · · · ≥ bl ≥ 0, is known as a
generalized Frobenius partition or simply an F -partition of µ if

µ = l +
l∑

k=1

ak +
l∑

k=1

bk.

Anand and Agarwal [10] gave the following description of associated lattice
paths:

Definition 1.7. All paths will be of finite length lying in the first quadrant.
They will begin on the y-axis and terminate on the x-axis. Only three moves
are allowed at each step:

Northeast: from (i, j) to (i+ 1, j + 1);
Southeast: from (i, j) to (i+ 1, j − 1), only allowed if j > 0.
Horizontal: from (i, 0) to (i+ 1, 0), only allowed when the first step
is preceded by a northeast step and the last is followed by a southeast
step.

The following terminology is used in describing associated lattice paths:

Truncated Isosceles Trapezoidal Section (TITS): A section of the
path which starts on the x-axis with northeast steps followed by hori-
zontal steps and then followed by southeast steps ending on the x-axis
forms a Truncated Isosceles Trapezoidal Section. Since the lower
base lies on x-axis and is not a part of the path, we use the term
truncated.
Slant Section (SS): A section of the path consisting of only southeast
steps which starts on the y-axis (origin not included) and ends on
the x-axis.
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Height of a slant section: It is ‘t’ if it starts from (0, t). Clearly, a
path can have an SS only in the beginning of the path. An associated
lattice path can have at most one SS.
Weight of a TITS: This is defined by representing every TITS by an
ordered pair {a, b} where a denotes its altitude and b the length of
the upper base. For instance, the weight of a TITS with ordered pair
{a, b} is a units.
Weight of a Path: It is the sum of weights of its TITSs.

Note. A Slant Section is assigned weight zero.

Figure 1. TITS with ordered pair {2, 3}.

Example 1.8. In Figure-1, the associated lattice path has one SS of height
1 and one TITS with ordered pair {2, 3} and its weight is 2 units.

Definition 1.9. A plane partition δ of a positive integer µ is an array

a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 a2,3 · · ·

...
...

...

of nonnegative integers for which
∑

i,j ai,j = µ and rows and column are
arranged in nonincreasing order. The nonzero entries ai,j are called the
parts of δ.

Remark: In [7], it is observed that the number of n-color partitions of µ is
equivalent to the number of plane partitions of µ.

E.A. Bender and D. E. Knuth proved the following theorem in [11]. For
the definition and other details of the 1-1 correspondence of this theorem,
which is denoted by φ, the reader is referred to [11].

Theorem 1.11 ( [11]). There is a 1-1 correspondence between plane parti-
tions of µ, on one hand, and infinite matrices γu,v with u, v ≥ 1, of nonneg-
ative integer entries such that∑

t≥1
t

( ∑
u+v=t+1

γu,v

)
= µ,

on the other.
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Corresponding to every nonnegative integer µ the matrices of the above
theorem were called BKµ-matrices by Agarwal in [6], where BK stands for
Bender and Knuth. These are infinite matrices, but will be represented in
the sequel by the largest possible square matrices whose last row (or column)
is nonzero. Thus, for example, the six BK3-matrices are represented by

(
3
)
,

(
1 0
1 0

)
,

(
1 1
0 0

)
,

(
0 0
0 1

)
,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 .

We state here three more definitions:

Definition 1.12 ([6]). We define a matrix Ui,j as an infinite matrix whose

(i, j)th entry is 1 and all other entries are zeros. We call the Ui,j the units
of the BKµ-matrices.

Definition 1.13 ([1]). We define the following order on the set of all units
of BKµ-matrices: If k + l < g + h then Uk,l < Ug,h, and if k + l = g + h,
then Uk,l < Ug,h when k < g. Thus, the units satisfy the order:

U1,1 < U1,2 < U2,1 < U1,3 < U2,2 < U3,1 < U1,4 < U2,3 < U3,2 < · · ·

Definition 1.14 ([1]). The order difference of two units Ug,h, Uk,l, where
g + h ≥ k + l is defined by h− l − 2k and is denoted by [[Ug,h − Uk,l]].

Note. The representation of a BKµ-matrix as the linear combination of the
units Ui,j is called the standard factorization of that BKµ-matrix.

The following are the three basic series identities which appear in Slater’s
compendium [18]:

∞∑
λ=0

qλ
2

(q4; q4)λ(q; q2)λ
=

(q3, q11, q14; q14)∞(q8, q20; q28)∞(−q; q2)∞
(q2; q2)∞

, (1.1)

∞∑
λ=0

qλ(λ+2)

(q4; q4)λ(q; q2)λ
=

(q, q13, q14; q14)∞(q12, q16; q28)∞(−q; q2)∞
(q2; q2)∞

, (1.2)

∞∑
λ=0

qλ(λ+2)

(q4; q4)λ(q; q2)λ+1
=

(q5, q9, q14; q14)∞(q4, q24; q28)∞(−q; q2)∞
(q2; q2)∞

, (1.3)

where (α1, α2, · · ·αk; z)∞ =
∏k
l=1(αl; z)∞.

The combinatorial interpretations of basic series identities (1.1)-(1.3) are
given in [17] in the form of following theorems.

Theorem 1.15. Let G1(µ) denote the number of n-color partitions of µ into
parts such that if mi is the smallest or the only part in the partition, then
m ≡ i (mod 4) and the weighted difference of any two consecutive parts is
nonnegative and is congruent to 0 (mod 4). Let H1(µ) denote the number of
lattice paths of weight µ which start from (0, 0), have no valley above height
0, the length of plains, if any, are congruent to 0 (mod 4). Let I1(µ) denote
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the number of F -partitions of µ such that al ≡ 0 (mod 2), ak ≤ bk and
ak > bk+1, with ak and bk+1 of opposite parity. Let

J1(µ) =

µ∑
t=0

M1(µ− t)N1(t),

where M1(µ) is the number of partitions of µ into parts congruent to ±2,±4,
± 10,±12 (mod 28) and N1(µ) denotes the number of partitions of µ into
distinct parts congruent to ±1,±5, 7 (mod 14). Then

G1(µ) = H1(µ) = I1(µ) = J1(µ),

for all µ.

Theorem 1.16. Let G2(µ) denote the number of n-color partitions of µ into
parts greater than or equal to 3 such that if mi is the smallest or the only part
in the partition, then m− i ≡ 2 (mod 4) and the weighted difference of any
two consecutive parts is nonnegative and congruent to 0 (mod 4) . Let H2(µ)
denote the number of lattice paths of weight µ which start from (0, 0), have
no valley above height 0, have a plain of length congruent to 2 (mod 4) in the
beginning of the path, and the length of other plains, if any, are congruent
to 0 (mod 4). Let I2(µ) denote the number of F -partitions of µ such that
al ≡ 1 (mod 2), ak ≤ bk, and ak > bk+1 with ak and bk+1 of opposite parity.
Let

J2(µ) =

µ∑
t=0

M2(µ− t)N2(t),

where M2(µ) is the number of partitions of µ into parts congruent to ±4,±6,
± 8,±10 (mod 28) and N2(µ) denotes the number of partitions of µ into
distinct parts congruent to ±3,±5, 7 (mod 14). Then G2(µ) = H2(µ) =
I2(µ) = J2(µ), for all µ.

Theorem 1.17. Let G3(µ) denote the number of partitions of µ with (n+2)
copies of n into parts such that for some i, ii+2 is a part and the weighted
difference of any two consecutive parts is nonnegative and is congruent to
0 (mod 4) . Let H3(µ) denote the number of lattice paths of weight µ which
start from (0, 2), have no valley above height 0, the length of plains, if any,
are congruent to 0 (mod 4). Let I3(µ) denote the number of F -partitions
of µ such that al = 0, ak ≤ bk + 2, and ak > bk+1 + 2 with ak and bk+1 of
opposite parity. Let

J3(µ) =

µ∑
t=0

M3(µ− t)N3(t),

where M3(µ) is the number of partitions of µ into parts congruent to ±2,±6,
± 8,±12 (mod 28) and N3(µ) denotes the number of partitions of µ into
distinct parts congruent to ±1,±3, 7 (mod 14). Then G3(µ) = H3(µ) =
I3(µ) = J3(µ) for all µ.
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Our aim is to further extend these results by means of associated lattice
paths and Bender–Knuth matrices. In Section 2, we will extend Theorems
1.15-1.17 by the aid of associated lattice paths and in Section 3, Theorems
1.15 and 1.16 are further explored by using Bender–Knuth matrices.

2. Combinatorial interpretation in terms of associated lattice
paths

In this section our main objective is to interpret identities (1.1)-(1.3)
by means of associated lattice paths. These results will yield three new
combinatorial identities which will extend Theorems 1.15-1.17 to three new
5-way combinatorial identities. We shall prove the following theorems.

Theorem 2.1. Let K1(µ) denote the number of associated lattice paths of
weight µ such that:

(i) for any TITS with ordered pair {a, b}, b does not exceed a;
(ii) the TITSs are arranged in order of nondecreasing altitudes and the

TITSs with same altitude are ordered by the length of their upper
base;

(iii) for any two TITSs with respective ordered pairs {a1, b1} and {a2, b2},
a1 ≤ a2, a2 − b2 = a1 + b1 + h, where h is a nonnegative multiple of
4.

Then

G1(µ) = H1(µ) = I1(µ) = J1(µ) = K1(µ),

for all µ.

Example 2.2. G1(5) = 3. The relevant partitions are: 51, 55, 42 + 11 and
H1(5) = 3. The relevant Lattice paths are as follows:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Figure 2. Peak with height 1 and weight 5.
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Figure 3. Peak with height 5 and weight 5.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Figure 4. Two Peaks with heights 1, 2 and weights 1, 4 respectively.

Furthermore, I1(5) = 3.
The relevant F -partitions are:(

2
2

)
,

(
0
4

)
,

(
1 0
2 0

)
,

while

J1(5) =
5∑
t=0

M1(5− t)N1(t)

= 0(1) + 2(1) + 0(0) + 1(0) + 0(0) + 1(1) = 3,

and K1(5) = 3.
The relevant Associated lattice paths are:

Figure 5. TITS with ordered pair {5,1}.
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Figure 6. TITS with ordered pair {5,5}.

Figure 7. Two TITSs with ordered pairs {1,1} and {4,2}.

Theorem 2.3. Let K2(µ) denote the number of associated lattice paths of
weight µ such that:

(i) for any TITS with ordered pair {a, b}, b does not exceed a;
(ii) the TITSs are arranged in order of nondecreasing altitudes and the

TITSs with the same altitude are ordered by the length of their upper
base;

(iii) the altitude of each TITS is greater than or equal to 3;
(iv) for any two TITSs with respective ordered pairs {a1, b1} and {a2, b2}

such that a1 ≤ a2, a2 − b2 = a1 + b1 + h where h is a nonnegative
multiple of 4.

Then

G2(µ) = H2(µ) = I2(µ) = J2(µ) = K2(µ), for all µ.

Theorem 2.4. Let K3(µ) denote the number of associated lattice paths of
weight µ such that:

(i) for any TITS with ordered pair {a, b}, b does not exceed (a+ 2);
(ii) the TITSs are arranged in order of nondecreasing altitudes and the

TITSs with the same altitude are ordered by the length of their upper
base;

(iii) there is an SS of height 2 or a TITS with ordered pair {a, a+ 2};
(iv) for any two TITSs with respective ordered pairs {a1, b1} and {a2, b2}

such that a1 ≤ a2, a2 − b2 = a1 + b1 + h, where h is a nonnegative
multiple of 4.

Then

G3(µ) = H3(µ) = I3(µ) = J3(µ) = K3(µ), for all µ.
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We will discuss the detailed proof of Theorem-2.1 and give the outline of
the proofs of the remaining theorems.

Proof of Theorem 2.1. We will prove this theorem in three steps. First we
will show that the L.H.S. of Equation (1.1) also generates the associated
lattice paths enumerated by K1(µ). Then we will show a bijection between
n-color partitions enumerated by G1(µ) and the associated lattice paths enu-
merated by K1(µ). Finally we will establish a bijection between weighted
lattice paths enumerated by H1(µ) and the associated lattice paths enumer-
ated by K1(µ).

Step I. We shall prove that
∞∑
µ=0

K1(µ)qµ =

∞∑
λ=0

qλ
2

(q; q2)λ(q4; q4)λ
. (2.1)

In qλ
2
/(q; q2)λ(q4; q4)λ, the factor qλ

2
generates an associated lattice path

having λ TITSs such that ith TITS has the ordered pair {2i − 1, 1}. For
λ = 3, the path begins as:

Figure 8. TITSs when λ = 3.

In the above Figure we consider two successive TITSs, say, the ith and
(i + 1)th. Their corresponding ordered pairs are {2i − 1, 1} and {2i + 1, 1}
respectively.

Figure 9. ith and (i+ 1)th TITSs.

The factor 1/(q4; q4)λ generates λ nonnegative multiples of 4, say α1 ≥
α2 ≥ · · ·αλ ≥ 0, which are encoded by increasing the altitude of the ith

TITS by αλ−i+1, 1 ≤ i ≤ λ. Thus the ordered pair associated with the ith

TITS becomes {(2i− 1) + αλ−i+1, 1}.
Figure-9 now becomes Figure-10.



NEW COMBINATORIAL INTERPRETATIONS OF SOME RR TYPE IDENTITIES 53

Figure 10. ith and (i+ 1)th TITSs.

The factor 1/(q; q2)λ generates λ nonnegative multiples of (2i − 1), 1 ≤
i ≤ λ, say, β1 × 1, β2 × 3, · · · , βλ × (2λ− 1). This is encoded by increasing
the altitude of ith TITS by 2(βλ + βλ−1 + · · · + βλ−i+2) + βλ−i+1 and the
length of the upper base by βλ−i+1. So the associated ordered pair becomes
{2i− 1 + αλ−i+1 + 2(βλ + βλ−1 + · · ·+ βλ−i+2) + βλ−i+1, 1 + βλ−i+1}.

Figure-10 now changes to Figure-11.

Figure 11. ith and (i+ 1)th TITSs.

Every associated lattice path enumerated by K1(µ) is uniquely generated
in this manner; this proves (2.1).

Step II. We now establish a 1−1 correspondence between the associated
lattice paths enumerated by K1(µ) and the n-color partitions enumerated
by G1(µ).

We do this by encoding each associated lattice path as the sequence of
weights of TITSs with each altitude of the TITS subscripted by the length
of the respective upper base. Thus, if we denote the two TITS’s in Figure-11
by Pr and Qs respectively, then

P = (2i− 1) + αλ−i+1 + 2(βλ + βλ−1 + · · ·+ βλ−i+2) + βλ−i+1;

r = βλ−i+1 + 1;

Q = (2i+ 1) + αλ−i + 2(βλ + βλ−1 + · · ·+ βλ−i+1) + βλ−i;

s = βλ−i + 1.

The weighted difference of these two parts is ((Qs−Pr)) = Q−P − r− s =
αλ−i − αλ−i+1 which is nonnegative and is a multiple of 4.

Obviously, if {P, r} is the ordered pair of first TITS in the associated
lattice path then it will correspond to the smallest part in the corresponding
n-color partition, or to the singleton part if the n-color partition has only
one part; in both cases P − r = αλ ≡ 0 (mod 4) .
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To see the reverse implication, we consider two n-color parts of a partition
enumerated by G1(µ), say, Pr and Qs with Q ≥ P . Clearly r ≤ P and s ≤ Q.

Since Pr and Qs are the parts of n-color partition enumerated by G1(µ),
the weighted difference is equal to ((Qs − Pr)) ≡ 0 (mod 4). This implies
that Q−P − r− s = h, where h is nonnegative multiple of 4, which in turn
implies that Q− s = P + r + h, where h is nonnegative multiple of 4.
Step III. Finally, we establish a bijection between the weighted lattice
paths enumerated by H1(µ) and the associated lattice paths enumerated
by K1(µ). We do this by mapping each peak of weight a and height b of
a weighted lattice path enumerated by H1(µ) to a TITS with ordered pair
{a, b} of an associated lattice path enumerated by K1(µ),and conversely.
Under this mapping, all the conditions on the weighted lattice paths enu-
merated by H1(µ) are translated to the conditions on the associated lattice
paths enumerated by K1(µ) and vice-versa. Hence this completes the bi-
jection between the weighted lattice paths enumerated by H1(µ) and the
associated lattice paths enumerated by K1(µ). �

Outline of the Proofs of Theorems 2.3-2.4. Here, the changes re-
quired to prove the remaining theorems are discussed briefly.
Theorem-2.3 : An appeal to Theorem-2.1, the extra factor q2λ causes an
increase by 2 in the altitude of each of the TITSs. Thus the altitude of each
TITS is ≥ 3.
Theorem-2.4 : An appeal to Theorem-2.1, the extra factor q2λ/(1 − q2λ+1)
puts an SS of height 2 in the beginning of the path or a TITS with ordered
pair {a, a + 2}. Clearly, it will correspond to aa+2 or we can say ii+2 part
of the corresponding colored partition.

3. Combinatorial interpretation in terms of Bender–Knuth
matrices

This section is fully devoted to interpret identities (1.1) and (1.2) by
means of the Bender–Knuth matrices. This will further extend Theorems
1.15 and 1.16 to two new 6-way combinatorial identities.

Theorem 3.1. Let L1(µ) denote the number of BKµ-matrices X such that,
in the standard factorization of X, the order difference between any two
consecutive units Ug,h and Uk,l is nonnegative and is congruent to 0 (mod 4)
where if Ui,j is the only or least unit then j ≡ 1 (mod 4). Then

G1(µ) = H1(µ) = I1(µ) = J1(µ) = K1(µ) = L1(µ)

for all µ.



NEW COMBINATORIAL INTERPRETATIONS OF SOME RR TYPE IDENTITIES 55

Example 3.2. For L1(5) = 3, the relevant BKµ-matrices are
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,

1 0 0
0 0 1
0 0 0

 .

Theorem 3.3. Let L2(µ) denote the number of BKµ-matrices X such that,
in the standard factorization of X, the order difference between any two
consecutive units Ug,h and Uk,l is nonnegative and is congruent to 0 (mod 4)
where if Ui,j is the only or least unit, then j ≡ 3 (mod 4). Then

G2(µ) = H2(µ) = I2(µ) = J2(µ) = K2(µ) = L2(µ)

for all µ.

We will discuss the proof of Theorem 3.1 in detail, and since the proof of
Theorem 3.3 is similar, we will give an outline of its proof.

Proof of Theorem 3.1. We shall prove that ifX is aBKµ-matrix enumerated
by L1(µ), then the n-color partition χ(X) is enumerated by G1(µ). Here
the mapping is given by

χ : Ug,h 7→ (g + h− 1)g

and the inverse mapping is

χ−1 : mi 7→ Ui,m−i+1.

Conversely, if π is an n-color partition enumerated by G1(µ), then the BKµ-
matrix χ−1(π) is enumerated by L1(µ).

Let X = a1,1U1,1 +a1,2U1,2 + · · ·+a2,1U2,1 +a2,2U2,2 · · · be a BKµ-matrix
enumerated by L1(µ), where ai,j are nonnegative integers which denote the
multiplicities of Ui,j . Now in view of the condition on ordered difference,
i.e., the order difference is nonnegative, the entries in X can’t exceed 1, i.e.
each ai,j = 1 or 0.

Let Ug,h, Uk,l (g + h ≥ k + l) be two consecutive units of a BKµ-matrix
X enumerated by L1(µ) which correspond to two consecutive n-color parts
mi, nj of χ(X). Then mi = (g + h − 1)g and nj = (k + l − 1)k since
g + h ≥ k + l implies m ≥ n and

((mi − nj)) = (g + h− 1)− g − (k + l − 1)− k = h− l − 2k

= [[Ug,h − Uk,l]] ≡ 0 (mod 4) .

This shows that in χ(X), the weighted difference between any two consecu-
tive parts is congruent to 0 (mod 4) and is nonnegative.

Furthermore, if Ug,h is the only or the least unit of X then χ(Ug,h) = mi

will be the only, or the least, part of χ(X), and since in Ug,h, h ≡ 1 (mod 4),
we see that mi = χ(Ug,h) = (g+h−1)g = (g+4t)g for some positive integer
t. This implies m − i = (g + 4t) − g = 4t ≡ 0 (mod 4). Thus χ(X) is
enumerated by G1(µ).
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To see the reverse implication, let π be an n-color partition of µ enumer-
ated by G1(µ). We shall prove that the BKµ-matrix χ−1(π) is enumerated
by L1(µ).

Letmi, nj , m ≥ n be two consecutive parts of π such that χ−1(mi) = Ug,h
and χ−1(nj) = Uk,l. Then Ug,h = Ui,m−i+1 and Uk,l = Uj,n−j+1. Since
m ≥ n, we have g+h = m+1 ≥ n+1 = k+ l, which implies (g+h) ≥ (k+ l)
and

[[Ug,h − Uk,l]] = [[Ui,m−i+1 − Uj,n−j+1]] = (m− i+ 1)− (n− j + 1)− 2j

= m− n− i− j = ((mi − nj)) ≡ 0 (mod 4) ,

which is nonnegative.
Now, if mi is the only, or the least, part of π then χ−1(π) = Ug,h will be

the only, or the least, unit in χ−1(π). Moreover, since m−i ≡ 0 (mod 4), we
have χ−1(mi) = Ui,m−i+1 = Ui,4t+1 for some positive integer t. This implies
h = 4t+ 1 ≡ 1 (mod 4) and completes the proof of Theorem 3.1. �

Outline of the Proof of Theorem 3.3 An appeal to Theorem 1.16,
with the condition m−i ≡ 2 (mod 4), causes j to be congruent to 3 (mod 4).

4. Conclusion

A fine connection between different combinatorial objects is observed in
this paper. Theorems 2.1-2.4, in conjunction with Theorems 1.15-1.17, yield
three new 5-way combinatorial identities in terms of five different combinato-
rial objects viz. ordinary partitions, (n+ t)-color partitions, weighted lattice
paths, F -partitions, and associated lattice paths. Each of these 5-way com-
binatorial identities yield ten identities in the usual sense. Out of these ten
combinatorial identities four are totally new. Theorems 3.1-3.3, along with
Theorems 1.15 and 1.16 produce two new 6-way combinatorial identities in
terms of six different combinatorial objects viz. ordinary partitions, n-color
partitions, weighted lattice paths, F -partitions, associated lattice paths, and
Bender–Knuth matrices. Each of these 6-way combinatorial identities yield
fifteen identities in the usual sense. Out of these fifteen combinatorial iden-
tities, five are entirely new. It would be of interest if more basic series
identities can be interpreted combinatorially using associated lattice paths
and Bender–Knuth matrices.
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