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FULLY INDECOMPOSABLE AND NEARLY

DECOMPOSABLE GRAPHS

M. AAGHABALI, S. AKBARI, M. ARIANNEJAD, AND Z. TAJFIROUZ

Abstract. Let A be an n-square non-negative matrix. If A contains
no s × t zero submatrix, where s + t = n, then it is called fully inde-
composable. Moreover, a graph G is said to be fully indecomposable if
its adjacency matrix is fully indecomposable. In this paper we provide
some necessary and sufficient conditions for a graph to be fully indecom-
posable. Among other results we prove that a regular connected graph
is fully indecomposable if and only if it is not bipartite.

1. Introduction

Let G be a graph of order n with the vertex set V (G) = {v1, . . . , vn}.
The adjacency matrix of G is an n × n matrix A = [aij ] indexed by the
vertex set, where aij = 1, when there is an edge between vi and vj in G and
aij = 0, otherwise. By the permanent of any n× n matrix A = [aij ] over a
commutative ring we mean

per(A) =
∑
σ

a1σ(1)a2σ(2) . . . anσ(n),

where the summation is over all permutations over {1, . . . , n}. For a graph
G, i(G) denotes the number of isolated vertices of G and d(v) denotes the
degree of the vertex v ∈ V (G). For a vertex v we denote by N(v) the set of
all neighbors of vertex v in G; for a subset S ⊆ V (G) we denote by N(S)
the set of all neighbors of vertices of S in G. For an n× n square matrix
A and integers 1 ≤ i, j ≤ n, A(i|j) denotes the matrix obtained from A by
removing the i-th row and the j-th column. A subgraph H of G is called
spanning subgraph if V (H) = V (G). Furthermore, a spanning subgraph H of
G is called a {1, 2}-factor if every component of H is either a path of order
2 or a cycle. We denote by Kn the complete graph of order n that is a graph
with n pairwise adjacent vertices. A transversal in a matrix is a set D of its
entries containing exactly one entry of each row and each column. We say
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that D is non-zero if all of its elements are non-zero. It is not hard to check
that every {1, 2}-factor of a graph is equivalent to a non-zero transversal of
its adjacency matrix.

Recall that a matrix A of order n is called partly decomposable if it con-
tains an s × t zero submatrix, where s + t = n. In other words, a matrix
A is partly decomposable if there exist permutation matrices P and Q such
that

PAQ =

[
B C
0 D

]
,

where the zero block is of size s × (n − s). If a matrix contains no s × t
zero submatrix, where s + t = n, then it is called fully indecomposable.
We say that a graph G is partly decomposable (fully indecomposable) if its
adjacency matrix is partly decomposable (fully indecomposable). Finally,
a graph G is said to be nearly decomposable if it is a fully indecomposable
graph but the graph obtained from G by deleting every edge is a partly
decomposable graph. There is research on the fully indecomposable and the
nearly decomposable non-negative matrices. Naturally, when we restrict our
attention to some special kind of matrices, we may find further properties. In
this paper we consider the symmetric (0, 1)-matrices and provide sufficient
and necessary conditions for this kind of matrices to be fully indecomposable.

As an observation we have the following:

Remark 1.1. A graph G is partly decomposable if one of the following
holds:

(i) G is not connected;
(ii) G is a bipartite graph;

(iii) G has a pendant edge.

Assume that G is a fully indecomposable graph of order n with the adja-
cency matrix A. By the lower bound for the permanent given in [4, p.57],
we have per(A) ≥ max{r1, . . . , rn}, where ri =

∑n
j=1 aij , for i = 1, . . . , n;

thus we have per(A) ≥ 2. Therefore every graph with per(A) < 2 is a partly
decomposable graph. Now, let G be a fully indecomposable graph with the
adjacency matrix A and per(A) = 2. Then ri = 2 for i = 1, . . . , n, i.e., G
should be a cycle. It is easy to see that every even cycle is partly decom-
posable. Thus every fully indecomposable graph with per(A) = 2 is an odd
cycle, which is also a nearly decomposable graph.

Assume that G is a graph with the adjacency matrix A. It is well-known
that per(A) counts the number of {1, 2}-factors of G in which every {1, 2}-
factor containing r cycles is counted 2r times. Now, if G is a fully inde-
composable graph, then since per(A) ≥ 2, we obtain that G contains a
{1, 2}-factor.
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2. Fully Indecomposable Graphs

The main goal of this section is providing some necessary and sufficient
conditions for a graph to be fully indecomposable. We start this section by
recalling a theorem of this nature for a non-negative matrix:

Theorem 2.1 ([4, p.38]). Let A be a non-negative n× n matrix with n ≥ 2.
Then A is fully indecomposable if and only if per(A(i|j)) > 0 for all i and
j.

Before stating our first result we need to recall the following useful theo-
rem:

Theorem 2.2. [4, p.31] Let A be an n× n non-negative matrix. Then
per(A) = 0 if and only if A contains an s × t zero submatrix such that
s+ t = n+ 1.

Now we are in a position to prove the following theorem:

Theorem 2.3. Let G be a connected graph of order n with the adjacency
matrix A. Then for any i, j, with 1 ≤ i, j ≤ n, per(A(i|j)) > 0 if and only
if per(A(i|i)) > 0.

Proof. One direction is clear. For the other let per(A(i|i)) > 0, for i =
1, . . . , n, and assume there are two indices i and j such that per(A(i|j)) = 0.
By Theorem 2.2, A(i|j) has an s × t zero submatrix C such that s + t =
(n − 1) + 1. Assume that the rows and columns of C are indexed by X =
{i1, . . . , is} and Y = {j1, . . . , jt}, respectively. If i /∈ Y or j /∈ X, then by
Theorem 2.2, per(A(i|i)) = 0 or per(A(j|j)) = 0, a contradiction. So assume
that i ∈ Y and j ∈ X. Now, since G is connected we have X ∩ Y 6= ∅.
Therefore there exists an integer 1 ≤ k ≤ n such that k /∈ X ∪ Y . Thus
A(k|k) contains C as a zero submatrix which together with Theorem 2.2
imply that per(A(k|k)) = 0, a contradiction.This completes the proof of the
theorem. �

Remark 2.4. The condition of the connectivity in the previous theorem is
not superfluous, as this counterexample will show. Consider the graph G
obtained by the disjoint union of K3 and K4 and let A be the adjacency
matrix of G. It is not hard to verify that A satisfies per(A(i|i)) > 0, for
i = 1, . . . , 7. But by the first part of Remark 1.1, since G is not a connected
graph, A is a partly decomposable matrix.

Before stating our next result we need to recall two following theorems.
The first one is a celebrated theorem due to Tutte.

Theorem 2.5 ([5]). A graph G has a {1, 2}-factor if and only if i(G \S) ≤
|S| for every subset S ⊆ V (G).

Theorem 2.6 ([3, p.216] and [1, p.253]). Let G be a graph. Then |N(S)| ≥
|S| for all independent subset S ⊆ V (G) if and only if G has a {1, 2}-factor.
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The following theorem provides some necessary and sufficient conditions
for a connected graph to be fully indecomposable.

Theorem 2.7. Let G be a connected graph. Then the following statements
are equivalent

(i) G is a fully indecomposable graph;
(ii) i(G \ S) < |S| for all non-empty subset S of vertices;

(iii) The graph obtained from G by removing of any vertex contains a
{1, 2}-factor;

(iv) |N(S)| > |S| for all non-empty independent subset S ⊂ V (G).

Proof. (i)⇒ (ii): Assume that G is a fully indecomposable graph. Then G
contains some {1, 2}-factor, and by Theorem 2.5 we have i(G \ S) ≤ |S| for
every subset S ⊆ V (G). By the contrary suppose that there exists a non-
empty subset S ⊆ V (G) such that i(G \S) = |S| and let L denote the set of
all isolated vertices of G\S. Then the submatrix with rows corresponding to
the vertices of L and columns corresponding to V (G)\S is a zero submatrix
of size i(G \ S)× (n− |S|), which is a contradiction.

(ii) ⇒ (iii): Assume that i(G \ S) < |S| for all non-empty S ⊆ V (G).
We prove that for any vertex v ∈ V (G), G′ = G \ {v} contains a {1, 2}-
factor. Using Theorem 2.5, assume that S′ ⊆ V (G′) is arbitrary. Then by
assumption i(G′ \ S′) = i(G \ (S′ ∪ {v})) is less than |S′| + 1. This yields
the result.

(iii)⇒ (iv): See Lemma 6.2.1 in [3, p.217].
(iv) ⇒ (i): Assume that for every non-empty independent S ⊂ V (G),

|N(S)| > |S|. We will show that G is fully indecomposable. By the con-
trary assume that G is not fully indecomposable. Then one can find a zero
submatrix of size s × t, where s + t = n. Thus there exist two subsets
X = {x1, . . . , xs} and Y = {y1, . . . , yt} such that there is no edge between
X and Y. Since G is connected, S = X∩Y 6= ∅. Clearly S is an independent
subset in which N(S) ⊆ L = V (G) \ (X ∪Y ) and |L| = |S|, a contradiction.
This implies that G is fully indecomposable. �

Note that by Theorem 2.1 one can see that a (0, 1)-matrix A is fully in-
decomposable if and only if every 1 in A belongs to a non-zero transversal
and every 0 of A belongs to a transversal in which all other elements are
1. Therefore adding a new edge to a fully indecomposable graph strictly
increases the number of {1, 2}-factors of G and removing any edge from G
strictly decreases the number of {1, 2}-factors. Thus if G is a fully inde-
composable graph, then for any edge e of G there exists a {1, 2}-factor of G
containing e. The following result was proved by S. Zhou and H. Zhang:

Theorem 2.8 ([7]). Let G be a connected non-bipartite graph. Then every
edge of a graph G lies in a {1, 2}-factor if and only if i(G \ S) < |S|, for
every non-empty subset S ⊆ V (G).

By Remark 1.1, we know that every fully indecomposable graph is con-
nected and non-bipartite. Thus, after combining Theorem 2.7 with the
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previous result, we find the following consideration of fully indecomposable
graphs.

Theorem 2.9. Let G be a connected graph. Then G is fully indecomposable
if and only if G is non-bipartite and every edge of G lies in a {1, 2}-factor.

Moreover, we can deduce the following corollary due to Berge [2]:

Corollary 2.10. Let G be a connected graph. Then |N(S)| > |S| for all
non-empty S ⊂ V (G) if and only if G is non-bipartite and for each edge e
of G, there exists a {1, 2}-factor in G containing e.

The previous corollary is a generalization of the following result:

Theorem 2.11 ([1, p.20]). Let G be a bipartite graph with bipartition (A,B).
If |N(S)| > |S| for all S ⊂ V (G), then for each edge e of G, G has a perfect
matching containing e that saturates A.

The following theorem introduces a family of fully indecomposable graphs:

Theorem 2.12. Let k be a positive integer. Then a k-regular connected
graph G is fully indecomposable if and only if it is not bipartite.

Proof. One direction is clear, so we provide the other. By Theorem 2.7, G
is fully indecomposable if and only if for any vertex v ∈ V (G), the graph
G′ = G\{v} contains a {1, 2}-factor. Note that G′ is a graph of order n−1,
in which exactly k vertices have degree k − 1 and n − 1 − k vertices have
degree k. By Theorem 2.5, assume that S ⊆ V (G′) and S contains t vertices
of degree k − 1 and denote by L the set of all isolated vertices of G′ \ S.
Then |L| = i(G′ \ S). Let L contain r vertices of degree k − 1 in G′. It is
clear that 0 ≤ t, r ≤ k. Thus the number of incident edges with L in G′ is

(2.1) k|L| − r
and the number of incident edges with S in G′ is at most k|S| − t. Thus we
find that

k|L| − r ≤ k|S| − t,
or equivalently,

|L| ≤ |S|+ r − t
k

.

We claim that r − t < k. If not, then r = k, t = 0, and N(v) ⊆ L. Thus
we have |L| ≤ |S| + 1. Suppose now that |L| = |S| + 1. In this case, by
Equation (2.1) the number of incident edges with L in G′ is k|S|. Hence
S is an independent set. Now, since G is a connected graph, we conclude
that V (G) = S ∪ {v} ∪ L and so G is a bipartite graph with two parts:
(S ∪ {v}, L). This is a contradiction, and completes the proof. �

The following result provides some information about the size of some
independent set of vertices with certain degrees sequence in partly decom-
posable graphs:
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Theorem 2.13. Let G be a connected graph of order n. If G is partly
decomposable, then G contains an independent set S of size k, for some
integer 1 ≤ k ≤ n/2 satisfying k ≥ maxv∈S d(v).

Proof. Let A be the adjacency matrix of G. Then A contains an s× t zero
submatrix with s + t = n. Thus there are two subsets X = {x1, . . . , xs}
and Y = {y1, . . . , yt}, such that there is no edge between X and Y. Since
G is connected, S = X ∩ Y 6= ∅. Now suppose that S = {z1, . . . , zk}.
Clearly 1 ≤ k ≤ n/2 and S is an independent set of G. Furthermore,
N(S) ⊆ L = V (G) \ (X ∪ Y ) and |L| = k. This completes the proof. �

Let G be a graph with a fully indecomposable spanning subgraph H. Then
G should be a fully indecomposable graph , which gives us the following
remark.

Remark 2.14. If G is a graph of order 2n+ 1 with minimum degree δ such
that δ ≥ n + 1, then G is a fully indecomposable graph. To see this, note
that using Dirac’s Theorem [6, p.288] with δ ≥ n + 1 implies that G has
a Hamiltonian cycle. However, every odd cycle is a fully indecomposable
graph.

This fact does not hold for the graphs of order 2n and δ ≥ n. To show
this we introduce a graph of order 2n with minimum degree n that is partly
decomposable. Let {v1, . . . , vn} be the vertex set of Kn. Denote by G =
Kn ∨Kn the graph obtained from Kn by adding new vertices {w1, . . . , wn}
and edges {wi, vj} for i, j = 1, . . . , n. Consider the submatrix B of the
adjacency matrix of G whose rows and columns are indexed by the vertices
{w1, . . . , wn}. Since {w1, . . . , wn} is an independent set of vertices in G, B
is a zero submatrix of size n × n. Thus G is a partly decomposable graph
with minimum degree n.

3. Nearly Decomposable Graphs

We now study some properties of the nearly decomposable graphs. Zhou
and Zhang in [7] studied the graphs G whose every edge lies in a {1, 2}-
factor, with the further condition that for all edges e of G, the graph G− e
obtained from deleting the edge e of G does not have that every edge lies in a
{1, 2}-factor. The graphs with this property are called minimal 2-matching-
covered graphs. The following lemma describes the nearly decomposable
graphs in view of minimal 2-matching-covered graphs.

Lemma 3.1. Let G be a connected graph. Then G is nearly decomposable
if and only if G is a non-bipartite minimal 2-matching-covered graph.

Proof. Let G be a nearly decomposable graph. Hence by definition, G is
a fully indecomposable graph in which the graph obtained by removing of
every edge is partly decomposable. Combining Remark 1.1 and Theorem 2.9,
we find that G is a non-bipartite graph whose every edge lies in a {1, 2}-
factor. However, for all edges e of G, the graph G − e obtained from G by
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deleting the edge e does not satisfy this property. Thus G is a non-bipartite
minimal 2-matching-covered graph.

The converse is clear. This completes the proof. �

Hence, using the properties of minimal 2-matching-covered graphs and
the previous equivalence, we can obtain the following result:

Theorem 3.2. Let G be a nearly decomposable graph. Then:

(i) δ(G) = 2, except for G = K4;
(ii) Removing every perfect matching of an induced 4-cycle of G yields

an elementary bipartite graph.

Let F(n) denote the set of all fully indecomposable graphs of order n.
Clearly, every graph G ∈ F(n) with the minimum number of edges is a
nearly decomposable graph. Now consider

µ := min
G∈F(n)

per(AG) = per(AG∗),

where AG is the adjacency matrix of G.
The following theorem states that G∗ is a nearly decomposable graph:

Theorem 3.3. Let G∗ be a fully indecomposable graph with the adjacency
matrix AG∗. Assume that µ = per(AG∗), with µ given as above. Then G∗ is
a nearly decomposable graph.

Proof. First we show that every fully indecomposable graph contains a span-
ning nearly decomposable subgraph. Assume that G is a fully indecompos-
able graph of order n and denote by F(G) the set of all fully indecomposable
spanning subgraphs of G. Let G′ ∈ F(G) be a graph with the minimum
number of edges. Then G′ is a nearly decomposable spanning subgraph of
G.

Now assume that G is a fully indecomposable graph which is not nearly
decomposable. By the above argument we may find a nearly decomposable
spanning subgraph of G, say G′, whose number of edges is less than the
number of edges of G. But by Theorem 2.1, removing any edge of a fully
indecomposable graph strictly decreases the number of {1, 2}-factors. Thus
we find per(AG′) < per(AG). This completes the proof. �
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