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A CHARACTERIZATION OF WELL-FOUNDED

ALGEBRAIC LATTICES

ILHAM CHAKIR AND MAURICE POUZET

Abstract. We characterize well-founded algebraic lattices by means of
forbidden subsemilattices of the join-semilattice made of their compact
elements. More specifically, we show that an algebraic lattice L is well-
founded if and only if K(L), the join-semilattice of compact elements
of L, is well-founded and contains neither [ω]<ω, nor Ω(ω∗) as a join-
subsemilattice. As an immediate corollary, we get that an algebraic
modular lattice L is well-founded if and only if K(L) is well-founded and
contains no infinite independent set. If K(L) is a join-subsemilattice of
I<ω(Q), the set of finitely generated initial segments of a well-founded
poset Q, then L is well-founded if and only if K(L) is well-quasi-ordered.

1. Introduction and synopsis of results

Algebraic lattices and join-semilattices (with a 0) are two aspects of the
same thing, as expressed in the following basic result ([13], see also [11]).

Theorem 1.1. The collection J(P ) of ideals of a join-semilattice P , once
ordered by inclusion, is an algebraic lattice and the subposet K(J(P )) of
its compact elements is isomorphic to P . Conversely, the subposet K(L) of
compact elements of an algebraic lattice L is a join-semilattice with a 0 and
J(K(L)) is isomorphic to L.

In this paper, we characterize well-founded algebraic lattices by means of
forbidden join-subsemilattices of the join-semilattice made of their compact
elements. In the sequel ω denotes the chain of non-negative integers, and
when this causes no confusion, the first infinite cardinal as well as the first
infinite ordinal . We denote ω∗ the chain of negative integers. We recall that
a poset P is well-founded provided that every nonempty subset of P has a
minimal element. With the axiom of dependent choices, this amounts to
the fact that P contains no subset isomorphic to ω∗. Let Ω(ω∗) be the set

Received by the editors April 5, 2017, and in revised form April 5, 2017.
2000 Mathematics Subject Classification. Partially ordered sets and lattices (06A12,

06B35).
Key words and phrases. Posets, algebraic lattices, join-semilattices, well-founded

posets, well-quasi-ordered sets.
Research done under the auspices of INTAS project Universal Algebra and Lattice

Theory.

©2018 University of Calgary

35



36 I.CHAKIR AND M. POUZET

Figure 1. Ω(ω∗)

[ω]2 of two-element subsets of ω, identified to pairs (i, j), i < j < ω, ordered
so that (i, j) ≤ (i′, j′) if and only if i′ ≤ i and j ≤ j′ with respect to the
natural order on ω. Let Ω(ω∗) ∶= Ω(ω∗)∪{∅} be obtained by adding a least
element. Note that Ω(ω∗) is isomorphic to the set of bounded intervals of ω
(or ω∗) ordered by inclusion. Moreover Ω(ω∗) is a join-semilattice (the join
of two elements is given by (i, j)∨(i′, j′) = (i∧i′, j∨j′)). The join-semilattice
Ω(ω∗) embeds in Ω(ω∗) as a join-semilattice; the advantage of Ω(ω∗) with
respect to our discussion is to have a zero. Let κ be a cardinal number, e.g.
κ ∶= ω; denote [κ]<ω (resp. ℘(κ)) the set, ordered by inclusion, consisting of
finite (resp. arbitrary) subsets of κ. The posets Ω(ω∗) and [κ]<ω are well-
founded lattices, whereas the algebraic lattices J(Ω(ω∗)) and J([κ]<ω) (κ
infinite) are not well-founded (and we may note that J([κ]<ω) is isomorphic
to ℘(κ)). As a poset Ω(ω∗) is isomorphic to a subset of [ω]<ω, but not as a
join-subsemilattice. This is our first result.

Proposition 1.2. As a join-subsemilattice, Ω(ω∗) does not embed in [ω]<ω;
more generally, if Q is a well-founded poset then Ω(ω∗) does not embed
as a join-subsemilattice into I<ω(Q), the join-semilattice made of finitely
generated initial segments of Q.

Our next result expresses that Ω(ω∗) and [ω]<ω are unavoidable examples
of well-founded join-semilattices whose set of ideals is not well-founded.

Theorem 1.3. An algebraic lattice L is well-founded if and only if K(L)
is well-founded and contains no join-subsemilattice isomorphic to Ω(ω∗) or
to [ω]<ω.

The fact that a join-semilattice P contains a join-subsemilattice isomor-
phic to [ω]<ω amounts to the existence of an infinite independent set. Let us
recall that a subset X of a join-semilattice P is independent if x /≤ ⋁F for ev-
ery x ∈X and every nonempty finite subset F of X ∖{x}. Conditions which
may ensure the existence of an infinite independent set or consequences of
the inexistence of such sets have been considered within the framework of
the structure of closure systems (cf. the research on the “free-subset prob-
lem” of Hajnal [22] or on the cofinality of posets [10, 17]). A basic result is
the following.
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Figure 2. L(ω∗)

Theorem 1.4 ([6, 15]). Let κ be a cardinal number; for a join-semilattice
P the following properties are equivalent:

(i) P contains an independent set of size κ;
(ii) P contains a join-subsemilattice isomorphic to [κ]<ω;

(iii) P contains a subposet isomorphic to [κ]<ω;
(iv) J(P ) contains a subposet isomorphic to ℘(κ);
(v) ℘(κ) embeds in J(P ) via a map preserving arbitrary joins.

Let L(α) ∶= 1+(1⊕J(α))+1 be the lattice made of the direct sum of the
one-element chain 1 and the chain J(α), (α finite or equal to ω∗), with the
top and bottom added.

Clearly J(Ω(ω∗)) contains a sublattice isomorphic to L(ω∗). Since a
modular lattice contains no sublattice isomorphic to L(2), we get as a corol-
lary of Theorem 1.3:

Theorem 1.5. An algebraic modular lattice L is well-founded if and only
if K(L) is well-founded and contains no infinite independent set.

Another consequence is this:

Theorem 1.6. For a join-semilattice P , the following properties are equiv-
alent:

(i) P is well-founded with no infinite antichain ;
(ii) P contains no infinite independent set and embeds as a join-semilattice

into a join-semilattice of the form I<ω(Q) where Q is some well-founded
poset.

Posets which are well-founded and have no infinite antichain are called
well-partially-ordered or well-quasi-ordered, wqo for short. They play an
important role in several areas (see [9]). If P is a wqo join-semilattice
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then J(P ), the poset of ideals of P , is well-founded and one may assign to
every J ∈ J(P ) an ordinal, its height, denoted by h(J, J(P )). This ordinal
is defined by induction, setting h(J, J(P )) ∶= Sup({h(J ′, J(P )) + 1 ∶ J ′ ∈
J(P ), J ′ ⊂ J}) and h(J ′, J(P )) ∶= 0 if J ′ is minimal in J(P ). The ordinal
h(J(P )) ∶= h(P,J(P ))+1 is the height of J(P ). If P ∶= I<ω(Q), with Q wqo,
then J(P ) contains a chain of order type h(J(P )). This is an equivalent
form of the famous result of de Jongh and Parikh [7] asserting that among
the linear extensions of a wqo, one has a maximum order type.

Problem 1.7. Let P be a wqo join-semilattice; does J(P ) contain a chain
of order type h(J(P ))?

An immediate corollary of Theorem 1.6 is:

Corollary 1.8. A join-semilattice P of [ω]<ω contains either [ω]<ω as a
join-semilattice or is wqo.

Let us compare join-subsemilattices of [ω]<ω. Set P ≤ P ′ for two such
join-subsemilattices if P embeds in P ′ as a join-semilattice. This gives a
quasi-order and, according to Corollary 1.8, the poset corresponding to this
quasi-order has a largest element (namely [ω]<ω), and all other members
come from wqo join-semilattices. Basic examples of join-subsemilattices of
[ω]<ω are the I<ω(Q)’s where Q is a countable poset such that no element
is above infinitely many elements. These posets Q are exactly those which
are embeddable in the poset [ω]<ω ordered by inclusion. An interesting
subclass is made of posets of the form Q = (N,≤) where the order ≤ is the
intersection of the natural order N on N and of a linear order L on N, (that
is x ≤ y if x ≤ y w.r.t. N and x ≤ y w.r.t. L). If α is the type of the linear
order, a poset of this form is a sierpinskisation of α. The corresponding join-
semilattices are wqo provided that the posets Q have no infinite antichain;
in the particular case of a sierpinskisation of α this amounts to the fact that
α is well-ordered.

As shown in [20], sierpinskisations given by a bijective map ψ ∶ ωα → ω
which is order-preserving on each component ω ⋅{i} of ωα are all embeddable
in each other, and for this reason denoted by the same symbol Ω(α). Among
the representatives of Ω(α), some are join-semilattices, and among them,
join-subsemilattices of the direct product ω×α (this is notably the case of the
poset Ω(ω∗) we previously defined). We extend the first part of Proposition
1.2, showing that except for α ≤ ω, the representatives of Ω(α) which are
join-semilattices never embed in [ω]<ω as join-semilattices, whereas they
embed as posets (see Corollary 4.11 and Example 4.15). From this result,
it follows that the posets Ω(α) and I<ω(Ω(α)) do not embed in each other
as join-semilattices.

These two posets provide examples of a join-semilattice P such that P
contains no chain of type α while J(P ) contains a chain of type J(α).
However, if α is not well ordered then I<ω(Ω(α)) and [ω]<ω embed in each
other as join-semilattices.
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Problem 1.9. Let α be a countable ordinal. Is there a minimum member
among the join-subsemilattices P of [ω]<ω such that J(P ) contains a chain
of type α+1? Is it true that this minimum is I<ω(Ω(α)) if α is indecompos-
able?

Theorem 1.1 is a particular instance of the duality between compact zero-
dimensional semilattices and discrete semilattices developped in [13] (e.g.
Theorem 3.9, p. 19). The following was suggested to us:

Problem 1.10. Is it possible to derive our results or simplify the proofs by
making use of this duality?

A version of this paper was posted on ArXiv (arXiv:0812.2300). The

results are included in Chapter 1 of the Thèse d’État defended by the first
author [4]. Part of these results have been presented at the International
Conference on Discrete Mathematics and Computer Science (DIMACOS’11)
organized by A. Boussäıri, M. Kabil, and A. Taik in Mohammedia (Morocco)
May, 5–8, 2011. We thank the organizers for their help.

2. Definitions and basic results

Our definitions and notations are standard and agree with [11] except on
minor points that we will mention. We adopt the same terminology as in
[6]. We recall only few things. Let P be a poset. A subset I of P is an
initial segment of P if x ∈ P , y ∈ I, and x ≤ y imply x ∈ I. If A is a subset
of P , then ↓ A = {x ∈ P ∶ x ≤ y for some y ∈ A} denotes the least initial
segment containing A. If I =↓ A we say that I is generated by A or A is
cofinal in I. If A = {a} then I is a principal initial segment and we write ↓ a
instead of ↓ {a}. We denote down(P ) the set of principal initial segments
of P . A final segment of P is any initial segment of P ∗, the dual of P .
We denote by ↑ A the final segment generated by A. If A = {a} we write
↑ a instead of ↑ {a}. A subset I of P is directed if every finite subset of I
has an upper bound in I (that is I is nonempty and every pair of elements
of I has an upper bound). An ideal is a directed initial segment of P (in
particular it is nonempty; but note that in some other texts, the empty set is
an ideal). We denote I(P ) (resp. I<ω(P ), J(P )) the set of initial segments
(resp. finitely generated initial segments, ideals of P ) ordered by inclusion
and we set J∗(P ) ∶= J(P ) ∪ {∅}, I0(P ) ∶= I<ω(P ) ∖ {∅}. Others authors use
down set for initial segment. Note that down(P ) is not to be confused with
I(P ). If P is a join-semilattice with a 0, an element x ∈ P is join-irreducible
if it is distinct from 0, and if x = a ∨ b implies x = a or x = b (this is a slight
variation from [11]). We denote Jirr(P ) the set of join-irreducibles of P .
An element a in a lattice L is compact if for every A ⊆ L, a ≤ ⋁A implies
a ≤ ⋁A′ for some finite subset A′ of A. The lattice L is compactly generated
if every element is a supremum of compact elements. A lattice is algebraic
if it is complete and compactly generated.
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We note that I<ω(P ) is the set of compact elements of I(P ), hence
J(I<ω(P )) ≅ I(P ). Moreover I<ω(P ) is a lattice, and in fact a distribu-
tive lattice, if and only if P is ↓-closed , that is, the intersection of two
principal initial segments of P is a finite union, possibly empty, of princi-
pal initial segments. We also note that J(P ) is the set of join-irreducible
elements of I(P ); moreover, I<ω(J(P )) ≅ I(P ) whenever P has no infinite
antichain.

Notably for the proof of Theorem 4.16, we will need the following results.

Theorem 2.1. Let P be a poset.

(i) I<ω(P ) is well-founded if and only if P is well-founded (see [1]);
(ii) I<ω(P ) is wqo if and only if P is wqo if and only if I(P ) is well-founded

(see [12]);
(iii) if P is a well-founded join-semilattice with a 0, then every member of

P is a finite join of join-irreducible elements of P (see [1]);
(iv) a join-semilattice P with a zero is wqo if and only if every member of

P is a finite join of join-irreducible elements of P and the set Jirr(P )
of these join-irreducible elements is wqo (follows from (ii) and (iii)).

A poset P is scattered if it does not contain a copy of η, the chain of
rational numbers. A topological space T is scattered if every nonempty closed
set contains some isolated point. The power set of a set, once equipped with
the product topology, is a compact space. The set J(P ) of ideals of a join-
semilattice P with a 0 is a closed subspace of ℘(P ), hence it is a compact
space too. Consequently, an algebraic lattice L can be viewed as a poset
and a topological space as well. It is easy to see that if L is topologically
scattered then it is order scattered. It is a more significant fact, due to
M. Mislove [18], that the converse holds if L is distributive.

3. Separating chains of ideals and proofs of Proposition 1.2
and Theorem 1.3

Let P be a join-semilattice. If x ∈ P and J ∈ J(P ), then ↓ x and J have
a join ↓ x⋁J in J(P ) and ↓ x⋁J =↓ {x ∨ y ∶ y ∈ J}. Instead of ↓ x⋁J
we also use the notation {x}⋁J . Note that {x}⋁J is the least member of
J(P ) containing {x} ∪ J . We say that a nonempty chain I of ideals of P is
separating if for every I ∈ I ∖ {∪I} and every x ∈ ∪I ∖ I, there is some J ∈ I
such that I /⊆ {x}⋁J .
If I is separating then I has a least element implies it is a singleton set.
In P ∶= [ω]<ω, the chain I ∶= {In ∶ n < ω} where In consists of the finite
subsets of {m ∶ n ≤m} is separating. In P ∶= ω∗, the chain I ∶= {↓ x ∶ x ∈ P}
is nonseparating, as well as all of its infinite subchains. In P ∶= Ω(ω∗) the
chain I ∶= {In ∶ n < ω} where In ∶= {(i, j) ∶ n ≤ i < j < ω} has the same
property.

We may observe that a join-preserving embedding from a join-semilattice
P into a join-semilattice Q transforms every separating (resp. nonseparat-
ing) chain of ideals of P into a separating (resp. nonseparating) chain of
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ideals of Q (If I is a separating chain of ideals of P , then J = {↓ f(I) ∶ I ∈ I}
is a separating chain of ideals of Q). Hence the containment of [ω]<ω (resp.
of ω∗ or of Ω(ω∗)), as a join-subsemilattice, provides a chain of ideals which
is separating (resp. nonseparating, as are all its infinite subchains, as well).
We show in the next two lemmas that the converse holds.

Lemma 3.1. A join-semilattice P contains an infinite independent set if
and only if it contains an infinite separating chain of ideals.

Proof. Let X = {xn ∶ n < ω} be an infinite independent set. Let In be
the ideal generated by X ∖ {xi ∶ 0 ≤ i ≤ n}. The chain I = {In ∶ n < ω} is
separating. Let I be an infinite separating chain of ideals. Define inductively
an infinite sequence x0, I0, . . . , xn, In, . . . such that I0 ∈ I ∖{∪I}, x0 ∈ ∪I ∖ I0

and such that:

an) In ∈ I;
bn) In ⊂ In−1;
cn) xn ∈ In−1 ∖ ({x0 ∨ . . . ∨ xn−1}⋁ In) for every n ≥ 1.

The construction is immediate. Indeed, since I is infinite then I ∖{∪I} ≠ ∅.
Choose arbitrary I0 ∈ I ∖ {∪I} and x0 ∈ ∪I ∖ I0. Let n ≥ 1. Suppose xk,
Ik defined and satisfying ak), bk), ck) for all k ≤ n − 1. Set I ∶= In−1 and
x ∶= x0 ∨ . . . ∨ xn−1. Since I ∈ I and x ∈ ∪I ∖ I, there is some J ∈ I such
that I /⊆ {x}⋁J . Let z ∈ I ∖ ({x}⋁J). Set xn ∶= z, In ∶= J . The set
X ∶= {xn ∶ n < ω} is independent. Indeed if x ∈X then since x = xn for some
n, n < ω, condition cn) asserts that there is some ideal containing X ∖ {x}
and excluding x. �

Lemma 3.2. A join-semilattice P contains either ω∗ or Ω(ω∗) as a join-
subsemilattice if and only if it contains an ω∗-chain I of ideals such that all
infinite subchains are nonseparating.

Proof. Let I be an ω∗-chain of ideals and let A be its largest element (that
is A = ∪I). Let E denote the set {x ∶ x ∈ A and I ⊆↓ x for some I ∈ I}.
Case i : For every I ∈ I, I ∩E /= ∅.

We can build an infinite strictly decreasing sequence x0, . . . , xn, . . . of
elements of P . Indeed, let us choose x0 ∈ E ∩ (∪I) and I0 such that
I0 ⊂↓ x0. Suppose x0, . . . , xn and I0, . . . , In defined such that Ii ⊂↓ xi for
all i = 0, . . . , n. As E ∩ In /= ∅ we can select xn ∈ E ∩ In and by definition
of E, we can select some In+1 ∈ I such that In+1 ⊂↓ xn+1. Thus ω∗ ≤ P .

Case ii : There is some I ∈ I such that I ∩E = ∅.
In particular all members of I included in I are unbounded in I.

Since all infinite subchains of I are nonseparating then, with no loss of
generality, we may suppose that I = A (hence E = ∅). We set I−1 ∶= A
and define a sequence x0, I0, . . . , xn, In, . . . such that In ∈ I, xn ∈ In−1∖In
and In ⊆ {xn}⋁ I for all I ∈ I, all n < ω. Members of this sequence being
defined for all n′, n′ < n, observe that the set In ∶= {I ∈ I ∶ I ⊆ In−1}
being infinite is nonseparating, hence there are I ∈ In and x ∈ In−1 ∖ I
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such that I ⊆ {x}⋁J for all J ∈ In. Set In ∶= I and xn ∶= x. Next, we
define a sequence y0 ∶= x0, . . . , yn, . . . such that for every n ≥ 1:

an) xn ≤ yn ∈ In−1;
bn) yn /≤ y0 ∨ yn−1;
cn) yj ≤ yi ∨ yn for every i ≤ j ≤ n.

Suppose y0, . . . , yn−1 defined for some n, n ≥ 1. Since In−1 is unbounded,
we may select z ∈ In−1 such that z /≤ y0 ∨ . . . ∨ yn−1. If n = 1, we set
y1 ∶= x1 ∨ z. Suppose n ≥ 2. Let 0 ≤ j ≤ n− 2. Since yj+1 ∨ . . .∨ yn−1 ∈ Ij ⊆
{xj}⋁ In−1 we may select tj ∈ In−1 such that yj+1 ∨ . . . ∨ yn−1 ≤ xj ∨ tj .

Set t ∶= t0 ∨ . . .∨ tn−2 and yn ∶= xn ∨z ∨ t. Let f ∶ Ω(ω∗) → P be defined
by f(i, j) ∶= yi ∨ yj for all (i, j), i < j < ω. Condition cn) ensures that
f is join-preserving. Indeed, let (i, j), (i′, j′) ∈ Ω(ω∗). We have (i, j) ∨
(i′, j′) = (i∧i′, j∨j′) hence f((i, j)∨(i′, j′)) = f(i∧i′, j∨j′) = yi∧i′∨yj∨j′ . If
F is a finite subset of ω with minimum a and maximum b then condition
cn) forces ⋁{yn ∶ n ∈ F} = ya ∨yb. If F ∶= {i, j, i′, j′} then, taking account
of i < j and i′ < j′, we have f(i, j)∨f(i′, j′) = yi∨yj∨yi′∨yj′ = yi∧i′∨yj∨j′ .
Hence f((i, j) ∨ (i′, j′)) = f(i, j) ∨ f(i′, j′), proving our claim.

Next, f is one-to-one. Let (i, j), (i′, j′) ∈ Ω(ω∗) such that f(i, j) =
f(i′, j′), that is yi ∨ yj = yi′ ∨ yj′ (1). Suppose j < j′. Since 0 ≤ i < j,
condition cj) implies yi ≤ y0 ∨ yj . On the other hand, since 0 ≤ j ≤ j′ − 1,
condition cj′−1) implies yj ≤ y0 ∨ yj′−1. Hence yi ∨ yj ≤ y0 ∨ yj′−1. From
(1) we get yj′ ≤ y0 ∨ yj′−1, contradicting condition bj′). Hence j′ ≤ j.
Exchanging the roles of j, j′ gives j′ ≤ j thus j = j′. If i < i′ then,
conditions ai′) and aj′) assure yi′ ∈ Ii′−1 and yj′ ∈ Ij′−1. Since Ij′−1 ⊆ Ii′−1

we have yi′ ∨ yj′ ∈ Ii′−1. On the other hand xi /∈ Ii and xi ≤ yi ∨ yj thus
yi ∨ yj /∈ Ii. From Ii′−1 ⊆ Ii, we have yi ∨ yj /∈ Ii′−1, hence yi ∨ yj /= yi′ ∨ yj′
and i′ ≤ i. Similarly we get i ≤ i′. Consequently i = i′.

�

3.1. Proof of Proposition 1.2. If Ω(ω∗) embeds in [ω]<ω then [ω]<ω con-
tains a nonseparating ω∗-chain of ideals. This is impossible: a nonseparating
chain of ideals of [ω]<ω has necessarily a least element. Indeed, if the pair
x, I (x ∈ [ω]<ω, I ∈ I) witnesses the fact that the chain I is nonseparating
then there are at most ∣ x ∣ +1 ideals belonging to I which are included in I
(note that the set {∪I ∖ ∪J ∶ J ⊆ I, J ∈ I} is a chain of subsets of x). The
proof of the general case requires more care. If Ω(ω∗) embeds in I<ω(Q)
as a join-semilattice then we may find a sequence x0, I0, . . . , xn, In, . . . such
that In ⊂ In−1 ∈ J(I<ω(Q)), xn ∈ In−1 ∖ In and In ⊆ {xn}⋁ Im for every
n < ω and every m < ω. Set Iω ∶= ⋂{In ∶ n < ω}, In ∶= ∪In for every n ≤ ω,
Q′ ∶= Q ∖ Iω and yn ∶= xn ∖ Iω for every n < ω. We claim that y0, . . . , yn, . . .
form a strictly descending sequence in I<ω(Q′). According to property (i)
stated in Theorem 2.1, Q′, thus Q, is not well-founded.

First, yn ∈ I<ω(Q′). Indeed, if an ∈ [Q]<ω generates xn ∈ I<ω(Q) then,
since Iω ∈ I(Q), an ∖ Iω generates xn ∖ Iω ∈ I(Q′). Next, yn+1 ⊂ yn. It
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suffices to prove that the following inclusions hold:

xn+1 ∪ Iω ⊆ In ⊂ xn ∪ Iω.
Indeed, substracting Iω, from the sets figuring above, we get:

yn+1 = (xn+1 ∪ Iω) ∖ Iω ⊂ (xn ∪ Iω) ∖ Iω = yn.
The first inclusion is obvious. For the second note that, since J(I<ω(Q)) is
isomorphic to I(Q), complete distributivity holds, hence with the hypothe-
ses on the sequence x0, I0, . . . , xn, In, . . . we have In ⊆ ⋂{{xn}⋁ Im ∶ m <
ω} = {xn}⋁⋂{Im ∶m < ω} = {xn}⋁ Iω, thus In ⊂ xn ∪ Iω. �

Remark. One can deduce the fact that Ω(ω∗) does not embed as a join-
semilattice in [ω]<ω from the fact that it contains a strictly descending chain
of completely meet-irreducible ideals (namely the chain I ∶= {In ∶ n < ω}
where In ∶= {(i, j) ∶ n ≤ i < j < ω}) (see Proposition 4.10) but this fact by
itself does not prevent the existence of some well-founded poset Q such that
Ω(ω∗) embeds as a join semilattice in I<ω(Q).

3.2. Proof of Theorem 1.3. In terms of join-semilattices and ideals, the
result becomes this: let P be a join-semilattice, then J(P ) is well-founded if
and only if P is well-founded and contains no join-subsemilattice isomorphic
to Ω(ω∗) or to [ω]<ω.

The proof goes as follows. Suppose that J(P ) is not well-founded. If some
ω∗-chain in J(P ) is separating then, according to Lemma 3.1, P contains an
infinite independent set. From Theorem 1.4, it contains a join-subsemilattice
isomorphic to [ω]<ω. If no ω∗-chain in J(P ) is separating, then all the
infinite subchains of an arbitrary ω∗-chain are nonseparating. From Lemma
3.2, either ω∗ or Ω(ω∗) embed in P as a join-semilattice. The converse is
obvious. �

4. Join-subsemilattices of I<ω(Q) and proof of Theorem 1.6

In this section, we consider join-semilattices which embed in join-semi-
lattices of the form I<ω(Q). These are easy to characterize internally (see
Proposition 4.4). This is also the case if the posets Q are antichains (see
Proposition 4.10) but does not go so well if the posets Q are well-founded
(see Lemma 4.8).

Let us recall that if P is a join-semilattice, an element x ∈ P is join-prime
(or prime if there is no confusion), if it is distinct from the least element
0, if any, and if x ≤ a ∨ b implies x ≤ a or x ≤ b. This amounts to the fact
that P∖ ↑ x is an ideal. We denote Jpri(P ), the set of join-prime members
of P . We recall that Jpri(P ) ⊆ Jirr(P ); the equality holds provided that P
is a distributive lattice. It also holds if P = I<ω(Q). Indeed:

Fact 4.1. For an arbitrary poset Q, we have:

(4.1) Jirr(I<ω(Q)) = Jpri(I<ω(Q)) = down(Q)
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Fact 4.2. For a poset P , the following properties are equivalent:

● P is isomorphic to I<ω(Q) for some poset Q;
● P is a join-semilattice with a least element in which every element

is a finite join of primes.

Proof. Observe that the primes in I<ω(Q) are the ↓ x, x ∈ Q. Let I ∈ I<ω(Q)
and F ∈ [Q]<ω generating I, we have I = ∪{↓ x ∶ x ∈ F}. Conversely, let P be
a join-semilattice with a 0. If every element in P is a finite join of primes,
then P ≅ I<ω(Q) where Q ∶= Jpri(P ). �

Let L be a complete lattice. For x ∈ L, set x+ ∶= ⋀{y ∈ L ∶ x < y}. We
recall that x ∈ L is completely meet-irreducible if x = ⋀X implies x ∈ X, or
equivalently x ≠ x+. We denote △(L) the set of completely meet-irreducible
members of L. We recall the following Lemma.

Lemma 4.3. Let P be a join-semilattice, I ∈ J(P ) and x ∈ P . Then x ∈
I+ ∖ I if and only if I is a maximal ideal of P∖ ↑ x.

Proposition 4.4. Let P be a join-semilattice. The following properties are
equivalent:

(i) P embeds in I<ω(Q), as a join-semilattice, for some poset Q;
(ii) P embeds in I<ω(J(P )) as a join-semilattice;

(iii) P embeds in I<ω(△(J(P ))) as a join-semilattice;
(iv) For every x ∈ P , P∖ ↑ x is a finite union of ideals.

Proof. (i) ⇒ (iv). Let ϕ be an embedding from P in P ′ ∶= I<ω(Q). We may
suppose that P has a least element 0 and that ϕ(0) = ∅ (if P has no least
element, add one, say 0, and set ϕ(0) ∶= ∅; if P has a least element, say
a, and ϕ(a) /= ∅, add to P an element 0 below a and set ϕ(0) ∶= ∅). For
J ′ ∈ ℘(P ′), let ϕ−1(J ′) ∶= {x ∈ P ∶ ϕ(x) ∈ J ′}. Since ϕ is order-preserving,
ϕ−1(J ′) ∈ I(P ) whenever J ′ ∈ I(P ′); moreover, since ϕ is join-preserving,
ϕ−1(J ′) ∈ J(P ) whenever J ′ ∈ J(P ′). Now, let x ∈ P . We have ϕ−1(P ′ ∖
ϕ(x)) ∶= P∖ ↑ x. Since ϕ(x) is a finite join of primes, P ′∖ ↑ ϕ(x) is a finite
union of ideals. Since their inverse images are ideals, P∖ ↑ x is a finite union
of ideals too.

(iv) ⇒ (iii). We use the well-known method for representing a poset by
a family of sets.

Fact 4.5. Let P be a poset and Q ⊆ I(P ). For x ∈ P set ϕQ(x) ∶= {J ∈ Q ∶
x /∈ J}. Then:

(i) ϕQ(x) ∈ I(Q);
(ii) ϕQ ∶ P → I(Q) is an order-preserving map;

(iii) ϕQ is an order-embedding if and only if for every x, y ∈ P such that
x /≤ y there is some J ∈ Q such that x /∈ J and y ∈ J .

Applying this to Q ∶= △(J(P )) we get immediately that ϕQ is join-
preserving. Moreover, ϕQ(x) ∈ I<ω(Q) if and only if P∖ ↑ x is a finite
union of ideals. Indeed, we have P∖ ↑ x = ∪ϕQ(x), proving that P∖ ↑ x is
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a finite union of ideals provided that ϕQ(x) ∈ I<ω(Q). Conversely, if P∖ ↑ x
is a finite union of ideals, say I0, . . . , In, then since ideals are prime mem-
bers of I(P ), every ideal included in I is included in some Ii, proving that
ϕQ(x) ∈ I<ω(Q). To conclude, note that if P is a join-semilattice then ϕQ is
join-preserving.

(iii) ⇒ (ii). Trivial.
(ii) ⇒ (i). Trivial. �

Corollary 4.6. If a join-semilattice P has no infinite antichain, it embeds
in I<ω(J(P )) as a join-subsemilattice.

Proof. As is well known, if a poset has no infinite antichain then every initial
segment is a finite union of ideals (cf. [8], see also [9] 4.7.3 p. 125). Thus
Proposition 4.4 applies. �

Another corollary of Proposition 4.4 is the following.

Corollary 4.7. Let P be a join-semilattice. If for every x ∈ P , P∖ ↑ x is
a finite union of ideals and △(J(P )) is well-founded then P embeds as a
join-subsemilattice in I<ω(Q), for some well-founded poset Q.

The converse does not hold:

Example 4.8. There is a bipartite poset Q such that I<ω(Q) contains a
join-semilattice P for which △(J(P )) is not well-founded.

Proof. Let 2 ∶= {0,1} and Q ∶= N × 2. Order Q in such a way that (m, i) <
(n, j) if m > n in N and i < j in 2.

Let P be the set of subsets X of Q of the form X ∶= F ×{0}∪G×{1} such
that F is a nonempty final segment of N, G is a nonempty finite subset of
N and

(4.2) min(F ) − 1 ≤ min(G) ≤ min(F )
where min(F ) and min(G) denote the least element of F and G with respect
to the natural order on N. For each n ∈ N, let In ∶= {X ∈ P ∶ (n,0) /∈X}.

Claim.

1. Q is bipartite and P is a join-subsemilattice of I<ω(Q).
2. The In’s form a strictly descending sequence of members of △(J(P )).

Proof of the Claim. 1. The poset Q is decomposed into two antichains, na-
mely N × {0} and N × {1} and for this reason it is called bipartite. Next,
P is a subset of I<ω(Q). Indeed, Let X ∈ P . Let F,G such that X =
F × {0} ∪ G × {1}. Set G′ ∶= G × {1}. If min(G) = min(F ) − 1, then
X =↓ G′ whereas if min(G) = min(F ) then X =↓ G′∪{(min(F ),0)}. In both
cases X ∈ I<ω(Q). Finally, P is a join-semilattice. Indeed, let X,X ′ ∈ P
with X ∶= F × {0} ∪ G × {1} and X ′ ∶= F ′ × {0} ∪ G′ × {1}. Obviously
X ∪ X ′ = (F ∪ F ′) × {0} ∪ (G ∪ G′) × {1}. Since X,X ′ ∈ P , F ∪ F ′ is a
nonempty final segment of N and G∪G′ is a nonempty finite subset of N. We
have min(G ∪G′) = min({min(G),min(G′)}) ≤ min({min(F ),min(F ′)}) =
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min(F ∪ F ′) and similarly min(F ∪ F ′) − 1 = min{min(F ),min(F ′)} − 1 =
min{min(F )−1,min(F ′)−1} ≤ min{min(G),min(G′)} = min(G∪G′), prov-
ing that inequalities as in (4.2) hold. Thus X ∪X ′ ∈ I<ω(Q).

2. Due to its definition, In is a nonempty initial segment of P which is
closed under finite unions, hence In ∈ J(P ). Let Xn ∶= {(n,1), (m,0) ∶ m ≥
n + 1} and Yn ∶= Xn ∪ {(n,0)}. Clearly, Xn ∈ In and Yn ∈ P . We claim
that I+n = In⋁{Yn}. Indeed, let J be an ideal containing strictly In. Let
Y ∶= {m ∈ N ∶ m ≥ p} × {0} ∪G × {1} ∈ J ∖ In. Since Y /∈ In, we have p ≤ n
hence Yn ⊆ Y ∪Xn ∈ J . It follows that Yn ∈ J , thus I+n ⊆ J , proving our
claim.

Since I+n /= In, In ∈ △(J(P )). Since, trivially, I+n ⊆ In−1 we have In ⊂ In−1,
proving that the In’s form a strictly descending sequence. �

Let E be a set and F be a subset of ℘(E), the power set of E. For x ∈ E,
set F¬x ∶= {F ∈ F ∶ x /∈ F} and for X ⊂ F , set X ∶= ⋃X. Let F<ω (resp.
F∪) be the collection of finite (resp. arbitrary) unions of members of F .
Ordered by inclusion, F∪ is a complete lattice, the least element and the
largest element being the empty set and ⋃F , respectively.

Lemma 4.9. Let Q be a poset, F be a subset of I<ω(Q) and P ∶= F<ω
ordered by inclusion.

(i) The map X → X is an isomorphism from J(P ) onto F∪ ordered by
inclusion.

(ii) If I ∈ △(J(P )) then there is some x ∈ Q such that I = P¬x.
(iii) If ↓ q is finite for every q ∈ Q then I+ ∖ I is finite for every I ∈ J(P )

and the set ϕ△(X) ∶= {I ∈ △(J(P )) ∶X /∈ I} is finite for every X ∈ P .

Proof. (i) Let I and J be two ideals of P . Then J contains I if and only if
J contains I. Indeed, if I ⊆ J then, clearly I ⊆ J . Conversely, suppose I ⊆ J .
If X ∈ I, then X ⊆ I, thus X ⊆ J . Since X ∈ I<ω(Q), and X ⊆ J , there are
X1, . . . ,Xn ∈ J such that X ⊆ Y = X1 ∪ . . . ∪Xn. Since J is an ideal Y ∈ J ,
it follows that X ∈ J .

(ii) Let I ∈ △(J(P )). From (a), we have I ⊂ I+. Let x ∈ I+ ∖ I. Clearly
P¬x is an ideal containing I. Since x /∈ P¬x, P¬x is distinct from I+. Hence
P¬x = I. Note that the converse of assertion (ii) does not hold in general.

(iii) Let I ∈ △(J(P )) and X ∈ I+ ∖ I. We have {X}⋁ I = I+, hence from

(i) {X}⋁ I = I+. Since {X}⋁ I = X ∪ I we have I+ ∖ I ⊆ X. From our
hypothesis on P , X is finite, hence I+ ∖ I is finite. Let X ∈ P . If I ∈ ϕ△(X)
then according to (ii) there is some x ∈ Q such that I = P¬x. Necessarily
x ∈X. Since X is finite, the number of these Is is finite. �

Proposition 4.10. Let P be a join-semilattice. The following properties
are equivalent:

(i) P embeds in [E]<ω as a join-subsemilattice for some set E;
(ii) for every x ∈ P , ϕ△(x) is finite.
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Proof. (i) ⇒ (ii). Let ϕ be an embedding from P in [E]<ω which preserves
joins. Set F ∶= ϕ(P ). Apply part (iii) of Lemma 4.9.

(ii) ⇒ (i). Set E ∶= △(J(P )). We have ϕ△(x) ∈ [E]<ω. According
to Fact 4.5 and Lemma 4.3, the map ϕ△ ∶ P → [E]<ω is an embedding
preserving joins. �

Corollary 4.11. Let β be a countable order type. If a proper initial segment
contains infinitely many nonprincipal initial segments then no sierpinskisa-
tion P of β with ω can embed in [ω]<ω as a join-semilattice (whereas it
embeds as a poset).

Proof. According to Proposition 4.10 it suffices to prove that P contains
some x for which ϕ∆(x) is infinite.

Let P be a sierpinskisation of β and ω. It is obtained as the intersection
of two linear orders L, L′ on the same set and having respectively order
type β and ω. We may suppose that the ground set is N and L′ the natural
order.

Claim 4.12. A nonempty subset I is a nonprincipal ideal of P if and only
if this is a nonprincipal initial segment of L.

Proof of Claim 4.12. Suppose that I is a nonprincipal initial segment of
L. Then, clearly, I is an initial segment of P . Let us check that I is up-
directed. Let x, y ∈ I; since I is nonprincipal in L, the set A ∶= I∩ ↑L x∩ ↑L y
of upper-bounds of x and y with respect to L which belong to I is infinite;
since B ∶=↓L′ x∪ ↓L′ y is finite, A ∖ B is nonempty. An arbitrary element
z ∈ A∖B is an upper bound of x, y in I with respect to the poset P proving
that I is up-directed. Since I is infinite, I cannot have a largest element
in P , hence I is a nonprincipal ideal of P . Conversely, suppose that I is a
nonprincipal ideal of P . Let us check that I is an initial segment of L. Let
x ≤L y with y ∈ I. Since I nonprincipal in P , A ∶=↑P y ∩ I is infinite; since
B ∶=↓L′ x∪ ↓L′ y is finite, A∖B is nonempty. An arbitrary element of A∖B
is an upper bound of x and y in I with respect to P . It follows that x ∈ I.
If I has a largest element with respect to L then such an element must be
maximal in I with respect to P , and since I is an ideal, I is a principal ideal,
a contradiction.

Claim 4.13. Let x ∈ N. If there is a nonprincipal ideal of L which does
not contain x, there is a maximal one, say Ix. If P is a join-semilattice,
Ix ∈ ∆(P ).

Proof of Claim 4.13. The first part follows from Zorn’s Lemma. The second
part follows from Claim 4.12 and Lemma 4.3.

Claim 4.14. If an initial segment I of β contains infinitely many nonprin-
cipal initial segments then there is an infinite sequence (xn)n<ω of elements
of I such that the Ixn’s are all distinct.

Proof of Claim 4.14. With Ramsey’s theorem, obtain a sequence (In)n<ω
of nonprincipal initial segments which is either strictly increasing or strictly
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decreasing. Separate two successive members by some element xn and apply
the first part of Claim 4.13.

If we pick x ∈ N ∖ I then it follows from Claim 4.14 and the second part
of Claim 4.12 that ϕ∆(x) is infinite. �

Example 4.15. If α is a countably infinite order type distinct from ω, Ω(α)
is not embeddable in [ω]<ω as a join-semilattice.

Indeed, Ω(α) is a sierpinskisation of ωα and ω. If α is distinct from ω, α
contains some element which majorizes infinitely many others. Thus β ∶= ωα
satisfies the hypothesis of Corollary 4.11.

Note that on an other hand, for every ordinal α ≤ ω, there are represen-
tatives of Ω(α) which are embeddable in [ω]<ω as join-semilattices.

Theorem 4.16. Let Q be a well-founded poset and let F ⊆ I<ω(Q). The
following properties are equivalent:

1) F has no infinite antichain;
2) F<ω is wqo;
3) J(F<ω) is topologically scattered;
4) F∪ is order-scattered;
5) ℘(ω) does not embed in F∪;
6) [ω]<ω does not embed in F<ω;
7) F∪ is well-founded.

Proof. We prove the following chain of implications:

1) Ô⇒ 2) Ô⇒ 3) Ô⇒ 4) Ô⇒ 5) Ô⇒ 6) Ô⇒ 7) Ô⇒ 1).
1) Ô⇒ 2). Since Q is well-founded then, as mentioned in (i) of Theorem
2.1, I<ω(Q) is well-founded. It follows first that F<ω is well-founded, hence
from property (iii) of Theorem 2.1, every member of F<ω is a finite join of
join-irreducibles. Next, as a subset of F<ω, F is well-founded, hence wqo
according to our hypothesis. The set of join-irreducible members of F<ω is
wqo as a subset of F . From property (iv) of Theorem 2.1, F<ω is wqo.
2) Ô⇒ 3). If F<ω is wqo then I(F<ω) is well-founded (cf. property (ii) of
Theorem 2.1). If follows that I(F<ω) is topologically scattered (cf. [18]);
hence all its subsets are topologically scattered, in particular J(F<ω).
3) Ô⇒ 4). Suppose that F∪ is not ordered scatered. Let f ∶ η → F∪ be an
embedding. For r ∈ η set f̌(r) = ⋃{f(r′) ∶ r′ < r}. Let X ∶= {f̌(r) ∶ r < η}.
Clearly X ⊆ F∪. Furthermore X contains no isolated point (Indeed, since
f̌(r) = ⋃{f̌(r′) ∶ r′ < r}, f̌(r) belongs to the topological closure of {f̌(r′) ∶
r′ < r}). Hence F∪ is not topologically scattered.
4) Ô⇒ 5). Suppose that ℘(ω) embeds in F∪. Since η ≤ ℘(ω), we have
η ≤ F∪.
5) Ô⇒ 6). Suppose that [ω]<ω embeds in F<ω, then J([ω]<ω) embeds in
J(F<ω). Lemma 4.9 ensures that J(F<ω) is isomorphic to F∪. On the other
hand J([ω]<ω) is isomorphic to ℘(ω). Hence ℘(ω) embeds in F∪.
6) Ô⇒ 7). Suppose F∪ not well-founded. Since Q is well-founded, (i) of
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Theorem 2.1 assures I<ω(Q) well-founded, but F<ω ⊆ I<ω(Q), hence F<ω is
well-founded. Furthermore, since I<ω(Q) is closed under finite unions, we
have F<ω ⊆ I<ω(Q), Proposition 1.2 implies that Ω(ω∗) does not embed in
F<ω. From Theorem 1.3, we have F<ω not well-founded.
7) Ô⇒ 1). Clearly, F is well-founded. If F0, . . . , Fn, . . . is an infinite an-
tichain of members of F , define f(i, j) ∶ [ω]2 → Q, choosing f(i, j) arbitrary
in max(Fi) ∖ Fj . Divide [ω]3 into R1 ∶= {(i, j, k) ∈ [ω]3 ∶ f(i, j) = f(i, k)}
and R2 ∶= [ω]3 ∖R1. From Ramsey’s theorem, cf. [21], there is some infinite
subset X of ω such that [X]3 is included in R1 or in R2. The inclusion in
R2 is impossible since {f(i, j) ∶ j < ω}, being included in max(Fi), is finite
for every i. For each i ∈ X, set Gi ∶= ⋃{Fj ∶ i ≤ j ∈ X}. This defines an
ω∗-chain in F∪. �

Remark. If F<ω is closed under finite intersections then equivalence be-
tween 3) and 4) follows from Mislove’s Theorem mentioned in [18].

Theorem 4.16 above was obtained by the second author and M. Sobrani
in the special case where Q is an antichain [19, 23].

Corollary 4.17. If P is a join-subsemilattice of a join-semilattice of the
form [ω]<ω, or more generally of the form I<ω(Q) where Q is some well-
founded poset, then J(P ) is well-founded if and only if P has no infinite
antichain.

Remark. If, in Theorem 4.16 above, we suppose that F is well-founded
instead of Q, all implications in the above chain hold, except 6) ⇒ 7). A
counterexample is provided by Q ∶= ω ⊕ ω∗, the direct sum of the chains ω
and ω∗, and F , the image of Ω(ω∗) via a natural embedding.

4.1. Proof of Theorem 1.6. (i) ⇒ (ii). Suppose that (i) holds. Set
Q ∶= J(P ). Since P contains no infinite antichain, P embeds as a join-
subsemilattice in I<ω(Q) (Corollary 4.6). From (ii) of Theorem 2.1 Q is well-
founded. Since P has no infinite antichain, it has no infinite independent
set.
(ii) ⇒ (i). Suppose that (ii) holds. Since Q is well-founded, then from
(i) of Theorem 2.1, I<ω(Q) is well-founded. Since P embeds in I<ω(Q), P
is well-founded. From our hypothesis, P contains no infinite independent
set. According to implication (iii) ⇒ (i) of Theorem 1.4, it does not em-
bed [ω]<ω. From implication 6) ⇒ 1) of Theorem 4.16, it has no infinite
antichain.
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