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UNIFORMLY RESOLVABLE (C4,K1,3)-DESIGNS

OF INDEX 2

MARIO GIONFRIDDO, SELDA KÜÇÜKÇİFÇİ, SALVATORE MILICI,
AND E. ŞULE YAZICI

Abstract. In this paper we consider the uniformly resolvable decompo-
sitions of the complete graph λKv into subgraphs where each resolution
class contains only blocks isomorphic to the same graph. We consider
the cases in which all the resolution classes are either C4 or K1,3. We
prove that this type of system does not exist for λ odd and determine
completely the spectrum for λ = 2.

1. Introduction

Given a collection of simple graphsH, anH-decomposition of the complete
graph λKv is a decomposition of the edges of λKv into isomorphic copies of
graphs in H. The copies of H ∈ H in the decomposition are called blocks.
When H = {G} such a decomposition is also called a G-design of order
v and index λ. Such a decomposition is called resolvable if it is possible
to partition the blocks into classes Pi such that every point of Kv appears
exactly once in some block of each Pi [12].

A resolvable H-decomposition of λKv is sometimes also referred to as an
H-factorization of λKv and a resolution class is called an H-factor of λKv.
The case where H is a single edge (K2) is known as a 1-factorization of
λKv and it is well known to exist if and only if v is even. A single class
of a 1-factorization, a pairing of all points, is also known as a 1-factor or a
perfect matching.

In many cases we wish to impose further constraints on the resolution
classes of an H-decomposition. For example, a resolution class is called
uniform if every block of the resolution class is isomorphic to the same graph
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in H. Uniformly resolvable decompositions of Kv have also been studied in
[1], [2], [4], [5], [6], [8]–[10], [13]–[30].

In this paper we study the existence of a uniformly resolvable decompo-
sition of λKv having the following type: r resolution classes containing only
copies of 4-cycles and s resolution classes containing only copies of 3-stars.

We prove that, for such a system to exist, the index λ is necessarily always
even. Therefore, we consider the case λ = 2, the minimum possible value for
the existence. We will use the notation (C4,K1,3)-URD(v, 2; r, s) for such a
uniformly resolvable decomposition of 2Kv. Let

J(2Kv;C4,K1,3) = {(r, s) : there exists a uniformly resolv-
able decomposition of 2Kv into r resolution classes consisting
of C4’s and s resolution classes consisting of K1,3’s}.

For v ≡ 0 (mod 4), define I(v) as in Table 1 below:

v I(v)

0 (mod 12) {(v − 1− 3x, 4x), x = 0, 1, . . . , v−3
3 }

4 (mod 12) {(v − 1− 3x, 4x), x = 0, 1, . . . , v−1
3 }

8 (mod 12) {(v − 1− 3x, 4x), x = 0, 1, . . . , v−2
3 }

Table 1. The set I(v).

In this paper we completely solve the spectrum problem for such systems;
that is, characterize the existence of uniformly resolvable decompositions of
2Kv into r resolution classes of 4-cycles and s resolution classes of 3-stars,
by proving the following result:

Main Theorem. For every integer v ≥ 4, divisible by 4, the set J(2Kv;C4,
K1,3) is identical to the set I(v) given in Table 1.

Now let us introduce some useful definitions, notations, and results then
discuss constructions we will use in proving the main theorem. For missing
terms or results that are not explicitly explained in the paper, the reader is
referred to [7] and its online updates.

For any four vertices a1, a2, a3, a4, let the 3-star , K1,3, be the simple
graph with the vertex set {a1, a2, a3, a4} and the edge set {{a1, a2}, {a1,
a3}, {a1, a4}} and the 4-cycle C4 be the simple graph with the vertex set
{a1, a2, a3, a4} and the edge set {{a1, a2}, {a2, a3}, {a3, a4}, {a4, a1}}. In
what follows, we will denote a 3-star by (a1; a2, a3, a4) and a 4-cycle by
(a1, a2, a3, a4), (a4, a3, a2, a1) or any cyclic shift of these.

A resolvable H-decomposition of the complete multipartite graph with u
parts each of size g is known as a resolvable group divisible design H-RGDD
of type gu, the parts of size g are called the groups of the design. When
H = Kn we will call it an n-RGDD.

A (C4,K1,3)-URGDD (2; r, s) of type gu is a uniformly resolvable decom-
position of the complete multipartite graph of index 2 with u parts each
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of size g into r resolution classes containing only copies of 4-cycles and s
resolution classes containing only copies of 3-stars.

If the blocks of an H-GDD of type gu can be partitioned into partial
resolution classes, each of which contain all points except those of one group,
we refer to the decomposition as a frame. When H = Kn we will call it an
n-frame and it can be deduced that the number of partial resolution classes
missing a specified group G is |G|/(n− 1).

An incomplete resolvable (C4,K1,3)-decomposition of 2Kv with a hole
of size h is a (C4,K1,3)-decomposition of 2Kv+h − 2Kh in which there are
two types of resolution classes, full resolution classes and partial resolu-
tion classes which cover every point except those in the hole (the points
of 2Kh are referred to as the hole). Specifically a (C4,K1,3)-IURD(2Kv+h−
2Kh; [r, s], [r̄, s̄]) is a uniformly resolvable (C4,K1,3)-decomposition of 2Kv+h

−2Kh with r partial resolution classes of 4-cycles which cover only the points
not in the hole, s partial resolution classes of 3-stars which cover only the
points not in the hole, r̄ full resolution classes of 4-cycles which cover ev-
ery point of 2Kv+h and s̄ full resolution classes of 3-stars which cover every
point of 2Kv+h.

We also need the following definitions. Let (s1, t1) and (s2, t2) be two
pairs of nonnegative integers. Define (s1, t1) + (s2, t2) = (s1 + s2, t1 + t2). If
X and Y are two sets of pairs of nonnegative integers, then X + Y denotes
the set {(s1, t1) + (s2, t2) : (s1, t1) ∈ X, (s2, t2) ∈ Y }. If X is a set of pairs of
nonnegative integers and h is a positive integer, then h ∗X denotes the set
of all pairs of nonnegative integers which can be obtained by adding any h
elements of X together (repetitions of elements of X are allowed).

The following results can be proven in a similar manner to [18].

Lemma 1.1. If there exists a (C4,K1,3)-URD(v, 2; r, s) of 2Kv with r > 0
and s > 0 then v ≡ 0 (mod 4) and (r, s) ∈ I(v).

The following lemma will be very useful in proving the main results of
this paper.

Lemma 1.2. Let v, g, and u be nonnegative integers such that v = gu. If
there exists

(1) a 4-RGDD of type gu;
(2) a (C4,K1,3)-URD(4, 2; r1, s1) with (r1, s1) ∈ J1 = {(3, 0), (0, 4)};
(3) a (C4,K1,3)-URD(2Kg; r2, s2), with (r2, s2) ∈ J2,

where J2 = {(r2, s2) : there exists a (C4,K1,3)-URD(2Kg; r2, s2)};

then there exists a (C4,K1,3)-URD(2Kv; r, s) for each (r, s) ∈ J2 + t ∗ J1,
where t = g(u− 1)/3 is the number of resolution classes of the 4-RGDD of
type gu .
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2. Nonexistence for λ odd

In this section we prove that (C4,K1,3)-URD(λKv; r, s) exists only for λ
even. In what follows, we consider balanced and strongly balanced G-designs.
We recall the definitions in [3],[11], and [12].

Let G be a graph and let A1, A2, ..., Ah be the orbits of the automorphism
group of G on its vertex set. If Σ = (X,B) is a G-design, the degree dAi(x)
of a vertex x ∈ X is the number of blocks of Σ containing x as an element of
Ai. We say that Σ = (X,B) is strongly balanced if, for every i = 1, 2, ..., h,
there exists a constant Ci such that dAi(x) = Ci, for every x ∈ X.

Clearly, since for each vertex x ∈ X the relation d(x) =
∑h

i=1 dAi(x)
holds, we have that all the vertices of Σ have the same degree, that is to say
they are contained in the same number of blocks. This means that strongly
balanced designs are always balanced.

In the case of C4, since the cycle C4 admits exactly one automorphism
class, all C4-designs are balanced and also strongly balanced. In the case of
K1,3, the automorphism group admits two orbits A1 and A2, respectively
formed by the centers and by the pendant edges of the stars K1,3. This
implies that all balanced K1,3-designs are strongly balanced ([12], pp. 134–
135).

Theorem 2.1. There does not exist a (C4,K1,3)-URD(λKv; r, s) where λ is
odd.

Proof. Let Σ = (X,B) be a (C4,K1,3)-URD(λKv; r, s) and suppose λ odd.
Necessarily v = 4k. Further, if Π is a uniform resolution of Σ, Π can be
partitioned into C = {C1, ..., Cr}, a collection of all the resolution classes
containing only cycles C4, and D = {D1, ..., Ds}, a collection of all the
resolution classes containing only stars K1,3. Observe that:

(1) since v ≡ 0 (mod 4), necessarily s > 0;
(2) |C1| = |C2| = ... = |Cr| = |D1| = |D2| = ... = |Ds| = k;
(3) in all the resolution classes of C every vertex x is incident to two

edges: this implies that there are 2r pairs containing x in the blocks
C4 and λ(v − 1)− 2r pairs containing x in the blocks K1,3 of D;

(4) if Γ indicates the partial K1,3-design generated by D, then we can
verify that Γ is strongly balanced : indeed, from (2), every vertex x
in D is contained in exactly λ(v − 1)− 2r edges shared in exactly s
blocks K1,3, in which x can have degree three or one.

At this point, we see that s is necessarily multiple of 4. Indeed, if h
indicates the number of blocks K1,3 containing any vertex x in the center,
then the number of blocks in D, which is ks, is also equal to vh for the
reason that Γ is strongly balanced. It follows that ks = vh, from which
s = vh/k = 4h. This means that the number of pairs containing a fixed
vertex x, λ(v − 1), can be calculated as follows:

λ(v − 1) = 2r + 3h+ (s− h) = 2r + 6h,
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which is a contradiction, for λ odd and v = 4k. �

Following the result of Theorem 2.1, we will examine the spectrum of
(C4,K1,3)-URD(λKv; r, s)s, for λ = 2, which is the minimum index for which
their existence is possible.

3. Small cases

Lemma 3.1. J(2K4;C4,K1,3) = {(3, 0), (0, 4)}.

Proof. Let V (K4)=Z4.

• (3, 0)
The three resolution classes of 4-cycles are: {(0, 1, 2, 3)}, {(0, 2, 3, 1)}

and
{(0, 2, 1, 3)}.
• (0, 4)

The four resolution classes of 3-stars can be obtained from the
base block {{0; 1, 2, 3}}.

�

Lemma 3.2. J(2K8;C4,K1,3) = {(7, 0), (4, 4), (1, 8)}.

Proof. Let V (K8)=Z8.

• (7, 0), (4, 4)
Take a (C4,K1,3)-URGDD(2; 4, 0) of type 42 [8] and replace each

group of size 4 with the same (C4,K1,3)-URD(2K4; r, s), with (r, s)
∈ {(3, 0), (0, 4)} which exists by Lemma 3.1.
• (1, 8)

Eight resolution classes of 3-stars and one resolution class of 4-
cycles are

{(0; 2, 4, 6), (1; 3, 5, 7)}, {(2; 4, 1, 6), (3; 5, 0, 7)}, {(5; 2, 0, 7), (4; 1, 3, 6)},
{(0; 2, 1, 3), (4; 6, 5, 7)}, {(2; 4, 1, 3), (6; 5, 0, 7)}, {(5; 2, 0, 7), (1; 4, 3, 6)},
{(7; 0, 1, 2), (3; 4, 5, 6)}, {(7; 2, 0, 4), (6; 1, 3, 5)}, {(1, 5, 4, 0), (2, 6, 7, 3)}.

�

Lemma 3.3. J(2K12;C4,K1,3) = {(11, 0), (8, 4), (5, 8), (2, 12)}.

Proof. Let V (K12)=Z12.

• (11, 0), (8, 4)
Take a (C4,K1,3)-URGDD(2; 8, 0) of type 43 [8] and replace each

group of size 4 with the same (C4,K1,3)-URD(2K4; r, s), with (r, s)
∈ {(3, 0), (0, 4)}, which exists by Lemma 3.1.
• (5, 8)
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Five resolution classes of 4-cycles and eight resolution classes of
3-stars are:

{(0, 1, 4, 7), (2, 3, 6, 5), (8, 11, 9, 10)}, {(0, 11, 10, 3), (1, 2, 9, 8), (4, 6, 7, 5)},
{(3, 1, 4, 8), (2, 0, 6, 10), (7, 11, 9, 5)}, {(3, 11, 5, 0), (1, 2, 9, 7), (4, 6, 8, 10)},
{(1, 3, 2, 0), (4, 8, 11, 7), (6, 10, 9, 5)},
{(0; 4, 5, 6), (7; 8, 9, 10), (11; 1, 2, 3)}, {(1; 5, 6, 7), (4; 9, 10, 11), (8; 0, 2, 3)},
{(2; 4, 6, 7), (5; 8, 10, 11), (9; 0, 1, 3)}, {(3; 4, 5, 7), (6; 8, 9, 11), (10; 0, 1, 2)},
{(3; 4, 10, 6), (8; 7, 9, 5), (11; 1, 2, 0)}, {(1; 10, 6, 8), (4; 9, 5, 11), (7; 0, 2, 3)},
{(2; 4, 6, 8), (10; 7, 5, 11), (9; 0, 1, 3)}, {(0; 4, 10, 8), (6; 7, 9, 11), (5; 3, 1, 2)}.

• (2, 12)
Two resolution classes of 4-cycles are:

{(0, 5, 6, 1), (2, 7, 8, 3), (4, 9, 10, 11)}, {(0, 7, 6, 11), (1, 8, 9, 2) and
(3, 4, 5, 10)}. Twelve resolution classes of 3-stars can be obtained
from the base blocks: {(4; 10, 1, 6), (9; 2, 5, 7), (11; 3, 8, 0)}.

�

Lemma 3.4. There exists a (C4,K1,3)-URGDD(2; r, s) of type 122 with
(r, s) ∈ {(12, 0), (6, 8), (0, 16)}.

Proof. Take the groups to be {a1, a2 . . . , a12} and {b1, b2, . . . , b12}.
• The case (12, 0) is given in [8].
• (0, 16)

Sixteen resolution classes of 3-stars are obtained by considering
i = 1, 4, 7, 10 in the blocks listed below:
{(ai; bi, bi+1, bi+2), (ai+1; bi+3, bi+4, bi+5),
(ai+2; bi+6, bi+7, bi+8),(bi+9; ai+3, ai+4, ai+5),
(bi+10; ai+6, ai+7, ai+8), (bi+11; ai+9, ai+10, ai+11)},
{(ai; bi+3, bi+4, bi+5), (ai+1; bi+6, bi+7, bi+8),
(ai+2; bi+9, bi+10, bi+11), (bi; ai+3, ai+4, ai+5),
(bi+1; ai+6, ai+7, ai+8), (bi+2; ai+9, ai+10, ai+11)},
{(ai; bi+6, bi+7, bi+8), (ai+1; bi+9, bi+10, bi+11),
(ai+2; bi, bi+1, bi+2), (bi+3; ai+3, ai+4, ai+5),
(bi+4; ai+6, ai+7, ai+8), (bi+5; ai+9, ai+10, ai+11)},
{(ai; bi+9, bi+10, bi+11), (ai+1; bi, bi+1, bi+2),
(ai+2; bi+3, bi+4, bi+5), (bi+6; ai+3, ai+4, ai+5),
(bi+7; ai+6, ai+7, ai+8), (bi+8; ai+9, ai+10, ai+11)}.

• (6, 8)
Six resolution classes of 4-cycles are:

{(a12, b12, a5, b1), (a1, b2, a7, b3), (a2, b4, a8, b5), (a3, b7, a4, b8),
(a6, b9, a9, b10), (a10, b6, a11, b11)}
{(a12, b2, a8, b3), (a1, b4, a3, b5), (a2, b6, a11, b7), (a4, b8, a6, b11),
(a5, b9, a7, b10), (a9, b12, a10, b1)}
{(a12, b2, a2, b7), (a1, b4, a9, b6), (a3, b5, a4, b9), (a5, b12, a7, b10),
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(a6, b8, a8, b11), (a10, b1, a11, b3)}
{(a12, b4, a10, b5), (a1, b6, a6, b7), (a2, b9, a4, b10), (a3, b3, a11, b8),
(a5, b2, a9, b11), (a7, b12, a8, b1)}
{(a12, b4, a11, b5), (a1, b7, a5, b9), (a2, b8, a7, b11), (a3, b12, a4, b6),
(a6, b1, a8, b10), (a9, b2, a10, b3)}
{(a12, b6, a2, b9), (a1, b5, a5, b8), (a3, b7, a4, b10), (a6, b12, a8, b3),
(a7, b1, a9, b11), (a10, b2, a11, b4)}.
Eight resolution classes of 3-stars are the last eight resolution classes
of the case (0, 16).

�

Lemma 3.5. J(24, 2;C4,K1,3) = I(24).

Proof. Take a (C4,K1,3)-URGDD(2; r, s) of type 122 and index 2 with (r, s) ∈
{(12, 0), (0, 16)} which exists by Lemma 3.4. Replace each group of size 12
with the same (C4,K1,3)-URD(2K12; r, s), where (r, s) ∈ {(11, 0), (8, 4), (5, 8),
(2, 12)} which exists by Lemma 3.3. �

Lemma 3.6. J(36, 2;C4,K1,3) = I(36).

Proof. Take a (C4,K1,3)-URGDD(12, 0) of type 123 and index 1 which is
given in [8] and a (C4,K1,3)-URGDD(0, 16) of type 123 and index 1 with
is given in [19]. Combine the two above designs to obtain a (C4,K1,3)-
URGDD(2; r, s) of type 123 and index 2 with (r, s) ∈ {(24, 0), (12, 16), (0, 32)}.
Replace each group of size 12 with the same (C4,K1,3)-URD(2K12; r, s),
where (r, s) ∈ {(11, 0), (8, 4), (5, 8), (2, 12)} which exists by Lemma 3.3. �

Lemma 3.7. There exists a (C4,K1,3)-IURD(2K20− 2K8; [r, s], [r̄, s̄]) with
(r, s) ∈ {(7, 0), (4, 4), (1, 8)} and (r̄, s̄) ∈ {(12, 0), (9, 4), (6, 8), (3, 12), (0, 16)}.

Proof. Let the point set of K20 be Z20 and the point set {0, 1, . . . , 7} be the
hole. The following partial resolution classes (7, 0), (4, 4), (1, 8) cover the
same edges on the point set K20 −K8.

• (7, 0)
Seven partial resolution classes of 4-cycles are:
{(8, 9, 11, 10), (12, 13, 15, 14), (16, 17, 19, 18)},
{(8, 11, 15, 12), (9, 10, 19, 16), (13, 14, 18, 17)},
{(8, 13, 10, 15), (9, 18, 11, 19), (12, 16, 14, 17)},
{(8, 14, 16, 10), (12, 18, 15, 9), (11, 17, 19, 13)},
{(8, 16, 15, 12), (14, 10, 19, 11), (18, 9, 13, 17)},
{(8, 18, 10, 15), (14, 13, 16, 19), (12, 11, 9, 17)},
{(8, 9, 15, 14), (10, 11, 17, 16), (12, 13, 19, 18)}.
• (4, 4)

Four partial resolution classes of 4-cycles are the last four resolution
classes of the case (7, 0) above. Four partial resolution classes of
3-stars are:
{(8; 9, 10, 11), (14; 12, 13, 15), (19; 16, 17, 18)},
{(9; 10, 11, 19), (15; 8, 12, 13), (17; 14, 16, 18)},
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{(10; 11, 15, 19), (12; 8, 13, 17), (18; 9, 14, 16)},
{(11; 15, 18, 19), (13; 8, 10, 17), (16; 9, 12, 14)}.
• (1, 8)

One partial resolution class of 4-cycles is the last resolution class of
the case (7, 0) above. Eight partial resolution classes of 3-stars are:
{(8; 9, 10, 11), (12; 13, 14, 15), (16; 17, 18, 19)},
{(8; 10, 12, 13), (9; 11, 15, 16), (14; 17, 18, 19)},
{(9; 10, 11, 12), (13; 14, 17, 19), (15; 8, 16, 18)},
{(10; 11, 13, 19), (14; 8, 15, 16), (17; 9, 12, 18)},
{(10; 14, 15, 16), (17; 11, 12, 13), (18; 8, 9, 19)},
{(11; 12, 14, 18), (15; 8, 10, 13), (19; 9, 16, 17)},
{(11; 13, 15, 19), (16; 8, 12, 14), (18; 9, 10, 17)},
{(12; 8, 15, 18), (13; 9, 14, 16), (19; 10, 11, 17)}.

Now all the edges that are not covered in the above partial resolution
classes on the point set K20 −K8 will be covered by the following full reso-
lution classes on the point set K20.

• (12, 0)
Twelve full resolution classes of 4-cycles are:
{(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13), (6, 14, 18, 16), (7, 17, 15, 19)},
{(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13), (6, 16, 7, 18), (14, 17, 15, 19)},
{(0, 10, 1, 11), (2, 8, 3, 9), (4, 14, 12, 16), (5, 15, 13, 18), (6, 17, 7, 19)},
{(0, 10, 1, 11), (2, 8, 3, 9), (4, 17, 5, 19), (6, 12, 7, 14), (13, 16, 15, 18)},
{(0, 12, 1, 13), (2, 14, 3, 15), (4, 8, 16, 9), (5, 17, 6, 19), (7, 10, 18, 11)},
{(0, 12, 1, 13), (2, 14, 11, 16), (3, 15, 4, 17), (5, 8, 19, 9), (6, 10, 7, 18)},
{(0, 14, 1, 15), (2, 18, 3, 19), (4, 9, 7, 16), (5, 8, 17, 10), (6, 12, 11, 13)},
{(0, 14, 1, 15), (2, 13, 8, 17), (3, 16, 5, 18), (4, 10, 12, 19), (6, 9, 7, 11)},
{(0, 16, 1, 17), (2, 15, 4, 18), (3, 13, 10, 14), (5, 9, 6, 11), (7, 8, 19, 12)},
{(0, 16, 1, 17), (2, 12, 3, 19), (4, 11, 8, 18), (5, 10, 9, 14), (6, 13, 7, 15)},
{(0, 18, 1, 19), (2, 13, 3, 16), (4, 11, 5, 14), (6, 8, 7, 15), (9, 12, 10, 17)},
{(0, 18, 1, 19), (2, 12, 3, 17), (4, 8, 6, 10), (5, 15, 11, 16), (7, 13, 9, 14)}.
• (9, 4)

Nine full resolution classes of 4-cycles are:
C1 = {(0, 10, 1, 11), (2, 8, 3, 9), (4, 17, 5, 19), (6, 12, 7, 14), (13, 16, 15, 18)},
C2 = {(0, 12, 1, 13), (2, 14, 3, 15), (4, 8, 16, 9), (5, 17, 6, 19), (7, 10, 18, 11)},
C3 = {(0, 14, 1, 15), (2, 12, 11, 16), (3, 13, 6, 18), (4, 17, 8, 19), (5, 9, 7, 10)},
C4 = {(0, 10, 1, 11), (2, 8, 3, 9), (4, 14, 12, 16), (5, 15, 13, 18), (6, 17, 7, 19)},
C5 = {(0, 18, 1, 19), (2, 13, 3, 17), (4, 8, 11, 16), (5, 10, 6, 15), (7, 12, 9, 14)}
C6 = {(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13), (6, 14, 18, 16), (7, 17, 15, 19)},
C7 = {(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13), (6, 16, 7, 18), (14, 17, 15, 19)},
C8 = {(0, 12, 1, 13), (2, 14, 3, 15), (4, 10, 6, 11), (5, 16, 7, 18), (8, 17, 9, 19)},
C9 = {(0, 14, 4, 18), (1, 16, 2, 19), (3, 12, 10, 17), (5, 8, 13, 11), (6, 9, 7, 15)}.
Four full resolution classes of 3-stars are:
S1 = {(0; 15, 16, 17), (7; 8, 11, 13), (12; 6, 10, 19), (14; 1, 5, 9), (18; 2, 3, 4)},
S2 = {(1; 16, 17, 18), (4; 9, 10, 15), (5; 8, 11, 14), (13; 2, 6, 7), (19; 0, 3, 12)},
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S3 = {(2; 12, 18, 19), (6; 8, 9, 11), (10; 13, 14, 17), (15; 1, 4, 7), (16; 0, 3, 5)},
S4 = {(3; 12, 16, 19), (8; 6, 7, 18), (9; 5, 10, 13), (11; 4, 14, 15), (17; 0, 1, 2)}.
• (6, 8)

Six full resolution classes of 4-cycles are C1, C2, C3, C4, C5 of the
case (9, 4) above together with the following full resolution class of
4-cycles:
{(0, 8, 17, 9), (1, 12, 4, 13), (2, 10, 6, 11), (3, 14, 19, 15), (5, 16, 7, 18)}.
Eight full resolution classes of 3-stars are S1, S2, S3, S4 of the case
(9, 4) above together with the following four resolution classes of 3-
stars:
S5 = {(0; 9, 14, 18), (5; 11, 12, 13), (10; 3, 4, 17), (16; 1, 2, 6), (19; 7, 8, 15)},
S6 = {(1; 8, 9, 19), (7; 15, 16, 18), (11; 2, 3, 13), (12; 0, 5, 10), (14; 4, 6, 17)},
S7 = {(2; 10, 14, 19), (4; 11, 12, 13), (6; 9, 16, 18), (8; 0, 1, 5), (17; 3, 7, 15)},
S8 = {(3; 10, 11, 12), (9; 1, 7, 19), (13; 0, 5, 8), (15; 2, 6, 17), (18; 4, 14, 16)}.
• (3, 12)

Three full resolution classes of 4-cycles are C1, C2, C3 of the case
(9, 4).
Twelve full resolution classes of 3-stars are S1, S2, S3, S4 of the case
(9, 4), S5, S6, S7, S8 of the case (6, 8) above together with the follow-
ing four resolution classes of 3-stars:
S9 = {(0; 9, 10, 18), (1; 11, 12, 13), (4; 8, 14, 16), (15; 3, 5, 19), (17; 2, 6, 7)},
S10 = {(2; 9, 10, 11), (3; 8, 13, 17), (5; 15, 16, 18), (12; 4, 7, 14), (19; 0, 1, 6)},
S11 = {(6; 10, 11, 15), (8; 0, 2, 17), (14; 3, 9, 19), (16; 4, 7, 12), (18; 1, 5, 13)},
S12 = {(7; 14, 18, 19), (9; 3, 12, 17), (10; 1, 5, 6), (11; 0, 8, 16), (13; 2, 4, 15)}.
• (0, 16)

Sixteen full resolution classes of 3-stars are Si, i = 2, 3, ..., 12 above
together with the following five resolution classes of 3-stars:
{(0; 10, 11, 17), (2; 8, 12, 15), (13; 7, 16, 18), (14; 1, 3, 9), (19; 4, 5, 6)},
{(0; 13, 15, 16), (5; 14, 17, 19), (7; 8, 9, 10), (12; 1, 6, 11), (18; 2, 3, 4)},
{(1; 10, 13, 14), (12; 0, 7, 19), (16; 2, 8, 9), (17; 4, 5, 6), (18; 3, 11, 15)},
{(3; 8, 13, 15), (4; 9, 17, 19), (10; 5, 12, 18), (11; 1, 7, 16), (14; 0, 2, 6)},
{(6; 12, 13, 18), (7; 10, 11, 14), (8; 4, 17, 19), (9; 2, 3, 5), (15; 0, 1, 16)}.

�

Lemma 3.8. J(2K20;C4,K1,3) = I(20).

Proof. Replace the hole of size 8 in Lemma 3.7 by a (C4,K1,3)-URD(2K8; r, s),
with (r, s) ∈ {(7, 0), (4, 4), (1, 8)} which exists by Lemma 3.2. �

4. Main results

Lemma 4.1. For every v ≡ 0 (mod 12), I(v) ⊆ J(2Kv;C4,K1,3).

Proof. For v = 12, 24, 36 the conclusion follows from Lemmas 3.3, 3.5
and 3.6, respectively. For v ≥ 48 start with a 4-RGDD of type 12

v
12 [7]

and apply Lemma 1.2 with g = 12, u = v/12 and t = (v − 12)/3 (The
input designs are a (C4,K1,3)-URD(2K4; r, s), with (r, s) ∈ {(3, 0), (0, 4)},
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which exists by Lemma 3.1 and a (C4,K1,3)-URD(2K12; r, s), with (r, s) ∈
{(11, 0), (8, 4), (5, 8), (2, 12)}, which exists by Lemma 3.3). This implies

J(2Kv;C4,K1,3) ⊇ {{(11, 0), (8, 4), (5, 8), (2, 12)}+(v − 12)

3
∗{(3, 0), (0, 4)}}.

Since

v − 12

3
∗ {(3, 0), (0, 4)} =

{
(v − 12− 3x, 4x), x = 0, . . . ,

v − 12

3

}
,

it is easy to see that

{{(11, 0), (8, 4), (5, 8), (2, 12)}+
(v − 12)

3
∗ {(3, 0), (0, 4)}} = I(v).

This completes the proof. �

Lemma 4.2. For every v ≡ 8 (mod 24), I(v) ⊆ J(2Kv;C4,K1,3).

Proof. For v = 8 the result follows by Lemma 3.2. For v ≥ 32, start with a
4-RGDD of type 8

v
8 [7] and apply Lemma 1.2 with g = 8, u = v/8 and t =

(v − 8)/3 (The input designs are a (C4,K1,3)-URD(2K4; r, s), with (r, s) ∈
{(3, 0), (0, 4)}, which exists by Lemma 3.1 and a (C4,K1,3)-URD(2K8; r, s),
with (r, s) ∈ {(7, 0), (4, 4), (1, 8)}, which exists by Lemma 3.2). Proceeding
as in Lemma 4.1 the result follows. �

Lemma 4.3. For every v ≡ 4 (mod 12), I(v) ⊆ J(2Kv;C4,K1,3).

Proof. For v = 4 the result follows by Lemma 3.1. For v ≥ 16, start with
a 4-RGDD of type 4

v
4 [7] and apply Lemma 1.2 with g = 4, u = v/4 and

t = (v − 4)/3 (The input design is a (C4,K1,3)-URD(2K4; r, s), with (r, s) ∈
{(3, 0), (0, 4)}, which exists by Lemma 3.1). Proceeding as in Lemma 4.1
the result follows. �

Lemma 4.4. For every v ≡ 20 (mod 24), I(v) ⊆ J(2Kv;C4,K1,3).

Proof. The case v = 20 follows by Lemma 3.8. For v ≥ 44 start from a

2-frame F of type 1
v−8
12 with groups Gi, i = 1, 2, . . . , (v − 8)/12 [7]. Then

expand each point by 12 points and add a set H = {a1, a2, . . . , a8}. For
i = 1, 2, . . . , (v − 8)/12, let Pi be the partial factor which misses the group
Gi.

Replace each block b ∈ Pi by a (C4,K1,3)-URGDD(2; r1, s1) of type 122

and index 2, say Db
i on the vertex set of b × {1, 2, ..., 12} with (r1, s1) ∈

{(12, 0), (6, 8), (0, 16)}, which exists by Lemma 3.4.
For i = 1, 2, . . . , (v − 8)/12 place on H ∪ (Gi × {1, 2, . . . , 12}) a copy of a

(C4,K1,3)-IURD(2K20 − 2K8; [x1, y1], [x, y]), say Di with (x1, y1) ∈ {(7, 0),
(4, 4), (1, 8)} and (x, y) ∈ {(12, 0), (6, 8), (0, 16)}, which exists by Lemma
3.7. Combine the resolution classes of Db

i with the full resolution classes of
Di so to obtain r2 resolution classes of C4 and s2 resolution classes of K1,3

with (r2, s2) ∈ {((v − 8)/12) ∗ {(12, 0), (6, 8), (0, 16)}}.
Fill the hole H with a copy of a (C4,K1,3)-URD(2K8; r, s) say D with

(r4, s4) ∈ {(7, 0), (4, 4), (1, 8)}, which exists by Lemma 3.2. Combine the
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resolution classes of D with the partial of Di to obtain r4 resolution classes
of C4 and s4 resolution classes of K1,3 with (r4, s4) ∈ {(7, 0), (4, 4), (1, 8)}.

This gives a (C4,K1,3)-URD(2Kv; r, s), with (r, s) ∈ {{(7, 0), (4, 4), (1, 8)}
+((v − 8)/12) ∗ {(12, 0), (6, 8), (0, 16)}}. Proceeding as in Lemma 4.1 we
obtain the result. �

Combining Lemmas 4.1, 4.2, 4.3, and 4.4 we obtain the main theorem of
this article.

Theorem 4.5. For each v ≡ 0 (mod 4), we have J(2Kv;C4,K1,3)=I(v).
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Italy

E-mail address: gionfriddo@dmi.unict.it

Department of Mathematics, Koç University, Istanbul, Turkey
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