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DEGREE ASSOCIATED RECONSTRUCTION

PARAMETERS OF TOTAL GRAPHS

P. ANUSHA DEVI AND S. MONIKANDAN

Abstract. A card (ecard) of a graph G is a subgraph formed by delet-
ing a vertex (an edge). A dacard (da-ecard) specifies the degree of the
deleted vertex (edge) along with the card (ecard). The degree associated
reconstruction number (degree associated edge reconstruction number)
of a graph G, drn(G) (dern(G)), is the minimum number of dacards
(da-ecards) that uniquely determines G. In this paper, we investigate
these two parameters for the total graph of certain standard graphs.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For
graph theoretic terms which are not defined here, see [3]. For brevity, a
vertex of degree m is called an m-vertex and a neighbour of degree n of a
vertex v is called an n-neighbour of v. A vertex adjacent to all other vertices
is called a complete vertex. A complete subgraph of a graph G is called a
clique of G; a clique on n vertices is an n-clique. The total graph of a graph
G, denoted by T (G), is the graph whose vertex set is the union of V (G),
whose elements will be called special vertices, with the vertices of the line
graph L(G), whose elements will be called nonspecial vertices. The edge set
of T (G) contains the edges of G, the edges of L(G), and the following edges
connecting G and L(G) : a special vertex x and a nonspecial vertex y are
joined by an edge if and only if in L(G) y represents an edge of G that is
incident with x in G. The corona G1 ◦ G2 of two graphs G1 and G2 is the
graph obtained by taking one copy of G1 of order p1 and p1 copies of G2, and
then joining the ith vertex of G1 to every vertex in the ith copy of G2. The
double star Dm,n is the tree with m + n + 2 vertices whose central vertices
have m and n leaf neighbours, respectively. By S(G), we mean the graph
obtained from G by subdividing every edge exactly once.

A vertex deleted subgraph or a card G − v of a graph G is the unlabeled
graph obtained from G by deleting a vertex v and all edges incident with v.
The ordered pair (d(v), G− v) is called a degree associated card (or dacard)
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of the graph G, where d(v) is the degree of v in G. The deck (dadeck) of
a graph G is the collection of all its cards (dacards). Following the formu-
lation in [4], a graph G is reconstructible if it can be uniquely determined
from its deck. For a reconstructible graph G, Harary and Plantholt [4] de-
fined the reconstruction number, rn(G), to be the minimum number of cards
which can only belong to its deck and not to the deck of any other graph
H, H � G, thus uniquely identifying G. For a reconstructible graph G from
its dadeck, Ramachandran [8, 9] has defined and studied the degree associ-
ated reconstruction number of a graph G, drn(G), which is the size of the
smallest subcollection of the dadeck of G that is not contained in the dadeck
of any other graph H, H � G. The degree of an edge e, denoted by d(e),
is the number of edges adjacent to e. The edge reconstruction number, the
degree associated edge card (or da-ecard), the degree associated edge deck (or
da-edeck), and the degree associated edge reconstruction number (or dern)
of a graph are defined analogously with edge deletions instead of vertex
deletions. For further reading, see [2, 5, 6, 7, 8, 9] for some articles on this
topic.

The following weakening of the reconstruction problem has also been con-
sidered by Harary and Plantholt [4]. A graph G in a given class of graphs
C is called class-reconstructible if whenever H ∈ C has the same deck as G,
then G ∼= H. The class reconstruction number, Crn(G), of a graph G is the
minimum number of cards which can only belong to its deck and not to the
deck of any other graph H ∈ C , H � G, thus uniquely identifying G within
the class C . If a graph is degree associated reconstructible then it is class-
reconstructible, and vice versa, where the class is the class of graphs with a
given number m of edges. Bange et al. [1] have proved that if the class is the
family of all total graphs G, then Crn(G) is one. Here, we shall prove that
if the class is the family of graphs with a specified number of edges, then
drn cannot be one in general. In this paper, we show that drn and dern is
1 or 2 for the total graphs of a path, complete bipartite, bidegreed double
star, subdivision of a star, Cn ◦K1 and Pn ◦K1.

An s-blocking set of G is a family F of graphs not isomorphic to G such
that every collection of s dacards (da-ecards) of G will appear in the dadeck
(da-edeck) of some graph of F and every graph in F will have s dacards
(da-ecards) in common with G. Table 1 shows drn for the total graphs of all
connected graphs G on at most four vertices and the dark vertex of graphs
denotes the vertex whose removal results in a dacard in common with T (G).
The total graph of a connected graph on at most four vertices except P4 and
K4 − e have dern one and dern(P4) = dern(K4 − e) = 2.

2. Total Graph of Standard Graphs

An extension of a dacard (d(v), G − v) of G is a graph obtained from
the dacard by adding a new vertex x and joining it to d(v) vertices of the
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dacard and it is denoted by H(d(v), G− v) (or simply by H). Throughout
this paper, H and x are used in the sense of this definition.

Barrus and West [2] proved that drn(Pn) = 2; Monikandan and Sundar
Raj [6] proved that dern(Pn) = 1. We shall determine drn and dern for the
total graph of paths. Since T (P2) and T (P3) contain a complete vertex,
drn(T (Pn)) = 1 for n = 2, 3.

|V (G)| G T (G) (drn(T (G))− 1)-blocking set drn(T (G))

2 K2 - 1

3 P3 - 1

3 3

4 K1,3 - 1

4 C4 3

4 P4
b b b 2

4 b b b b b 2

4 b b b

2

4 K4 3

1

Table 1. The drn of total graphs of all connected graphs on
at most four vertices.

Theorem 2.1. For n > 3, drn(T (Pn)) = 2.

Proof. Let G = T (Pn), n > 3.
Upper bound. Consider the two dacards (2, G − v1) and (4, G − v2), where
v1 and v2 are special vertices and all neighbours of v2 are of degree 4 (when
n = 5) or v2 is a nonspecial vertex having a 3-neighbour (when n 6= 5).
Let G′ be a graph having these two dacards in its dadeck. Then G′ can
be constructed from (2, G− v1) by adding a new vertex x and joining it to
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two vertices in G − v1. In (2, G − v1), if we join x to two adjacent vertices
of degree 2 and 3, then the resulting extension is isomorphic to G. For all
other possibilities, the resulting extension has no 4-vertex (when n = 4) or
the removal of any 4-vertex from the resulting extension results in a dacard
with at least one of the following structures.

(i) A 1-vertex or a 5-vertex.
(ii) One or two vertices of degree two (when n 6= 5).
(iii) Three 2-vertices (when n = 5).
(iv) Four 2-vertices.
(v) Three independent 2-vertices.
(vi) Two adjacent 2-vertices with no common neighbour.

(vii) Two nonadjacent 2-vertices with a common neighbour.
(vii) Two nonadjacent vertices of degree 3 and 4 having a common 2-

neighbour.

However, the dacard (4, G − v2) has none of the above structures. Hence
the resulting extension does not contain the dacard (4, G−v2) in its dadeck.
Hence G′ ∼= G and drn(G) ≤ 2.
Lower bound. Consider the extension H1(2, G−v1) (obtained by joining the
new vertex to two 2-vertices), H2(3, G − v2) (obtained by joining the new
vertex to the neighbours of a 3-vertex) and the extensions of the dacards
with associated degree 4 (obtained by joining the new vertex to a 3-vertex
and its neighbours). Then the set of all above extensions forms a 1-blocking
set of G. Hence drn(G) ≥ 2. �

For an edge e = uv of a graph G, (degG u,degG v) is called the degree
pair of e and is denoted by dep(e).

Theorem 2.2. For n = 2, 3, dern(T (Pn)) = 1, while for n > 3, dern(T
(Pn)) = 2.

Proof. Let G = T (Pn), n > 1. For n = 2, dern(G) = 1, since G is regular.
Consider the two da-ecards (3, G−e1) and (6, G−e2), where dep(e1) = (2, 3)
and dep(e2) = (4, 4) and these two 4-vertices (ends of e2) have a common 3-
neighbour. For n = 3, in (3, G− e1), the only possibility to get an extension
H(3, G− e1) is to join the unique 1-vertex to a 2-vertex (since otherwise the
degree sum of the two vertices to be joined would be greater than 3). Hence
H(3, G− e1) ∼= G and dern(G) = 1.

Now we shall consider the case when n > 3. Consider the two da-ecards
(3, G− e1) and (6, G− e2).
Upper bound. Let G′ be a graph having these two da-ecards in its dadeck.
Then G′ can be constructed from (3, G− e1) by adding a new edge joining
the unique 1-vertex and a 2-vertex in G−e1. In (3, G−e1), if we add the edge
joining the unique 1-vertex and a 2-vertex having a common 4-neighbour,
then G′ ∼= G. For the remaining possibility, the resulting extension does not
have the dacard (6, G − e2) in its dadeck, since the removal of any edge
of degree 6 results in a dacard having two nonadjacent 2-vertices with a
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common neighbour. Hence G′ is the unique extension and so it is isomorphic
to G. Therefore dern(G) ≤ 2.
Lower bound. Consider the extensions H1(3, G− e1) (obtained by adding a
new edge joining the 1-vertex and a 2-vertex having no common neighbour),
H2(4, G − e2) (obtained by adding a new edge joining the 1-vertex and a
3-vertex having no common neighbour), the extensions of the da-ecards with
associated edge degree 5 (obtained by adding a new edge joining a 2-vertex
and a 3-vertex having no common neighbour) and the extensions of the
da-ecards with associated edge degree 6 (obtained by adding a new edge
joining two 3-vertices having no common neighbour). The set of all above
extensions forms a 1-blocking set of G. Hence dern(G) ≥ 2. �

It is clear that drn(T (K1,n)) = dern(T (K1,n)) = 1. We shall determine drn
and dern for the total graph of double stars Dn,n. For n = 1, drn(T (Dn,n)) =
2 by Theorem 2.1.

Theorem 2.3. For n > 1, drn(T (Dn,n)) = 2.

Proof. Let G = T (Dn,n), n > 1 (Figure 1). The dacards of G are (2, G −
v1), (n+ 2, G− v2), (2n+ 2, G− v3), and (2n+ 2, G− v4), where v1 and v4
are special vertices, v2 and v3 are nonspecial vertices.

Consider the case when n = 2.

Figure 1. T (Dn,n)

1

Figure 1. T (Dn,n)

Upper bound. Consider the two dacards (2, G − v1) and (4, G − v2). Let
G′ be a graph having these two dacards in its dadeck. Then G′ can be
constructed from (2, G− v1) by adding a new vertex x and joining it to two
vertices in G − v1. In (2, G − v1), if we join x to the unique 3-vertex and
the unique 5-vertex, then the resulting extension is isomorphic to G. For all
other possibilities, the removal of any 4-vertex from the resulting extension
results in a dacard having at least one of the following structures.

(i) No vertex of degree 1.
(ii) Exactly one or two vertices of degree 2.
(iii) Exactly four 2-vertices and two vertices of degree 6.
(iv) A 1-vertex adjacent to a 4-vertex.
(v) A 2-vertex adjacent to a 3-vertex and a 4-vertex.
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(vi) Two 2-vertices with a common neighbour of degree 4 or 5.
(vii) No two 2-vertices having a common neighbour.

But it is clear that the dacard (4, G− v2) has none of the above structures.
Hence the resulting extension does not contain the dacard (4, G− v2) in its
dadeck. Therefore the only possibility is G′ must be isomorphic to G and
hence drn(G) ≤ 2.
Lower bound. Consider the extensions H1(2, G − v1) (obtained by joining
the new vertex to two 2-vertices), H2(4, G − v2) (obtained by joining the
new vertex to three 2-vertices and a 1-vertex), H3(6, G − v3) where v3 is a
special vertex in G (obtained by joining the new vertex to two 2-vertices,
two 4-vertices and two 5-vertices), and H4(6, G−v4) where v4 is a nonspecial
vertex in G (obtained by joining the new vertex to two 2-vertices, two 3-
vertices and two 5-vertices). Then the set {H1, H2, H3, H4} clearly forms a
1-blocking set of G. Hence drn(G) ≥ 2.

Now we shall consider the case when n > 2.

(a) H1(2, G− v1)

Figure 2.

(b) H2(n + 2, G− v2)

(d) H4(2n + 2, G− v4)(c) H3(2n + 2, G− v3)

1

Figure 2

Upper bound. Consider the two dacards (2, G − v1) and (2n + 2, G − v3).
Let G′ be a graph having these two dacards in its dadeck. Then G′ can be
constructed from (2, G− v1) by adding a new vertex x and joining it to two
vertices in G − v1. In (2, G − v1), if we join x to the unique (n + 1)-vertex
and the unique (2n + 1)-vertex, then the resulting extension is isomorphic
to G. For all other possibilities, the resulting extension does not have the
dacard (2n+2, G−v3) in its dadeck, since the removal of any (2n+2)-vertex
results in a dacard having a 1-vertex, 2n− 2 or 2n− 1 vertices of degree 2,
an (n + 2)-vertex or (2n + 2)-vertex. Hence G′ ∼= G and drn(G) ≤ 2.
Lower bound. Consider the extensions H1(2, G−v1) (obtained by joining the
new vertex to two 2-vertices) (Figure 2(a)), H2(n + 2, G− v2) (obtained by
joining the new vertex to n+ 2 vertices of degree 2) (Figure 2(b)), H3(2n+
2, G−v3) where v3 is a nonspecial vertex (obtained by joining the new vertex
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to n vertices of degree 2, n vertices of degree n+1 and two vertices of degree
2n + 1) (Figure 2(c)), and H4(2n + 2, G − v4) where v4 is a special vertex
(obtained by joining the new vertex to n vertices of degree 2, n vertices of
degree n + 2 and two vertices of degree 2n + 1) (Figure 2(d)). Then the set
{H1, H2, H3, H4} clearly forms a 1-blocking set of G. Hence drn(G) ≥ 2. �

Theorem 2.4. The degree associated edge reconstruction number of T (D1,1)
equals 2 while for n > 1, dern(T (Dn,n)) = 1.

Proof. Let G = T (Dn,n), n ≥ 1. For n = 1, G = T (P4) and hence dern(G) =
2 by Theorem 2.2.

We now consider the case when n > 1. Consider the da-ecard (4n+2, G−
e), where dep(e) = (2n + 2, 2n + 2) and these two 2n + 2 vertices have a
2-neighbour. In (4n + 2, G − e), if we join add a new edge joining the two
(2n+1)-vertices, then the resulting extension H(4n+2, G−e) is isomorphic
to G. To get an extension not isomorphic to G, at least one of the two
vertices to be joined must be different from these two vertices. But then the
degree sum of the two vertices to be joined would be 4, n+4, 2n+3, 2n+4
or 3n + 3. Hence dern(G) = 1. �

Theorem 2.5. For n > 1, drn(T (S(K1,n))) = 2.

Proof. Let G = T (S(K1,n)), n > 1 (Figure 3(a)). The dacards of G are
(2, G− v1), (3, G− v2), (4, G− v3), (n+ 2, G− v4), and (2n,G− v5), where
v1, v3, and v5 are special vertices, v2 and v4 are nonspecial vertices. For
n = 2, G = T (P5) and hence drn(G) = 2 by Theorem 2.1. Assume that
n > 2 and consider the dacards (2, G − v1) and (2n,G − v5), where v1 and
v5 are special vertices.

(d) H3(4, G− v3)

(c) H2(3, G− v2)(a) T (S(K1,n)) (b) H1(2, G− v1)

Figure 3.

(e) H4(n + 2, G− v4) (f) H5(2n,G− v5)

1

Figure 3

Upper bound. Let G′ be a graph having these two dacards in its dadeck.
Then G′ can be constructed from (2, G− v1) by adding a new vertex x and
joining it to two vertices in G − v1. The dacard (2n,G − v5) forces every
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extension to have exactly one vertex of maximum degree 2n and the next
maximum degree to be either n + 1 or n + 2. Hence in (2, G− v1), the new
vertex x cannot be adjacent to a vertex of degree 2n or n+ 2. In (2, G− v1),
if we join the newly added vertex x to two adjacent vertices of degree 2 and
3 having a common neighbour of degree n + 2, then the resulting extension
is isomorphic to G. For all other possibilities, the resulting extension does
not have the dacard (2n,G− v5) in its dadeck, since the removal of any 2n-
vertex results in a dacard having two 2-vertices with a common neighbour.
Hence G′ ∼= G and drn(G) ≤ 2.
Lower bound. Consider the extensions H1(2, G−v1) (obtained by joining the
new vertex to two 2-vertices), H2(3, G−v2) (obtained by joining the new ver-
tex to two 2-vertices and a 3-vertex), H3(4, G− v3) (obtained by joining the
new vertex to two 2-vertices and two 3-vertices), H4(n+2, G−v4) (obtained
by joining the new vertex to n vertices of degree 2 and two vertices of degree
3), and H5(2n,G− v5) (obtained by joining the new vertex to n vertices of
degree 2 and n vertices of degree 3). Then the set {H1, H2, H3, H4, H5}
(Figure 3) clearly forms a 1-blocking set of G. Hence drn(G) ≥ 2. �

Theorem 2.6. For n = 2, 3, dern(T (S(K1,n))) = 2, while for n > 3,
dern(T (S(K1,n))) = 1.

Proof. Let G = T (S(K1,n)), n > 1. The da-ecards of G are (3, G−e1), (4, G−
e2), (5, G−e3), (n+3, G−e4), (n+4, G−e5), (3n,G−e6), (2n+2, G−e7)
and (2n + 2, G− e8), where dep(e7) = (n + 2, n + 2), and dep(e8) = (4, 2n).
For n = 2, G = T (P5) and hence dern(G) = 2 by Theorem 2.2. For n = 3,
consider the da-ecards (3, G− e1) and (8, G− e7).
Upper bound. We use these two da-ecards to reconstruct G. The da-ecard
(8, G − e7) forces every extension to have n vertices of degree 2 such that
no two of them have a common neighbour. Hence G must be obtained from
(3, G− e1), by adding an edge joining the unique 1-vertex and the 2-vertex
having a common 4-vertex. Therefore dern(G) ≤ 2.
Lower bound. Consider the extensions H1(3, G − e1) (obtained by adding
a new edge joining a 1-vertex and a 2-vertex having no common neigh-
bour) (Figure 4(a)), H2(4, G − e2) (obtained by adding a new edge join-
ing two 2-vertices) (Figure 4(b)), H3(5, G− e3) (obtained by adding a new
edge joining a 3-vertex and a 2-vertex having no common neighbour) (Fig-
ure 4(c)), H4(6, G − e4) (obtained by adding a new edge joining two 3-
vertices) (Figure 4(d)), H5(7, G− e5) (obtained by adding a new edge join-
ing a 3-vertex and a 4-vertex having no common neighbour) (Figure 4(e)),
H6(9, G − e6) (obtained by adding a new edge joining a 5-vertex and a
4-vertex adjacent to a vertex of degree 2) (Figure 4(f)), H7(8, G − v7),
and H8(8, G − v8) (each of which is obtained by adding a new edge join-
ing two 4-vertices each adjacent to a 2-vertex) (Figures 4(g) and 4(h)).
The set {H1, H2, H3, H4, H5, H6, H7, H8} forms a 1-blocking set of G. Hence
dern(G) ≥ 2.

Now we shall consider the case when n > 3. Consider the da-ecard (3n,G−
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(d) H4(6, G− e4)

(e) H5(7, G− e5) (f) H6(9, G− e6)

(a) H1(3, G− e1) (b) H2(4, G− e2) (c) H3(5, G− e3)

(g) H7(8, G− e7) (h) H8(8, G− e8)

1

Figure 4

e6). In (3n,G − e6), the only possibility to get an extension H(3n,G − e6)
is to join the (2n − 1)-vertex to the (n + 1)-vertex (since otherwise the de-
gree sum of the two vertices to be joined will be less than 3n). Clearly
H(3n,G− e6) ∼= G and hence dern(G) = 1. �

Ramachandran [9] proved that drn(Kn,m) = 2 for 2 ≤ n < m and in [6]
it is proved that dern(Kn,m) = 1, 2, or 3 for 1 ≤ n ≤ m. Next we shall
determine drn and dern of the total graph of complete bipartite graphs with
partite sets of different size.

Theorem 2.7. For 1 < n < m, drn(T (Kn,m)) = 2.

Proof. Let G = T (Kn,m), 1 < n < m (Figure. 5). The non-isomorphic
dacards of G are (2n,G− v1), (n + m,G− v2) and (2m,G− v3), where v1
and v3 are special vertices, and v2 is a nonspecial vertex. Consider the two
dacards (2n,G− v1) and (2m,G− v3).
Upper bound. Let G′ be a graph having these two dacards in its dadeck.
Then G′ can be constructed from (2n,G−v1) by adding a new vertex x and
joining it to some set of 2n vertices in G− v1. These two dacards force ev-
ery extension to have maximum degree 2m, minimum degree 2n and hence
(2m,G− v3) forces every extension to have m independent 2n-vertices with
n independent common 2m-neighbours. Hence in (2n,G− v1), the vertex x
must be adjacent to n independent (2m− 1)-vertices having m− 1 common
2n-neighbours but it cannot be adjacent to these 2n-vertices. If the remain-
ing neighbours of x are (n + m− 1)-vertices, then the resulting extension is
isomorphic to G. For all other possibilities, the resulting extension does not
have the dacard (2m,G − v3) in its dadeck, since the removal of any 2m-
vertex results in a dacard having an (m + n− 2)-vertex (when m > n + 1),
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two vertices of degree 2n − 1 (when m = n + 1), three vertices of degree
2n− 1 (when m = n + 1 and n > 2), n + 2 vertices of degree 2n− 1 (when
m = n+1), or no m-clique formed by vertices of degree m+n. Hence G′ ∼= G
and drn(G) ≤ 2.
Lower bound. Consider the extensions H1(2n,G − v1) (obtained by joining
the new vertex to n vertices of degree 2n and to n vertices of degree 2m−1),
H2(n + m,G− v2) (obtained by joining the new vertex to m− 1 vertices of
degree 2n, n − 1 vertices of degree 2m, two vertices of degree n + m − 1),
and H3(2m,G − v3) (obtained by joining the new vertex to m vertices of
degree 2n− 1 and m vertices of degree n + m). Then the set {H1, H2, H3}
clearly forms a 1-blocking set of G. Hence drn(G) ≥ 2. �

Theorem 2.8. For 1 < n < m, dern(T (Kn,m)) = 1 or 2.

Proof. Let G = T (Kn,m), 1 < n < m. First we shall consider the case when
m = n + 1. Consider the da-ecards (4n − 1, G − e1) and (4n + 1, G − e2),
where dep(e1) = (2n, 2n + 1) and dep(e2) = (2n + 1, 2n + 2). The da-ecard
(4n + 1, G − e2) has n + 1 independent 2n-vertices having n − 1 common
(2n + 2)-neighbours and a common (2n + 1)-neighbour.
Upper bound. Let G′ be a graph having these two da-ecard in its dadeck.
Then G′ can be constructed from (4n−1, G−e1) by adding a new edge joining
the unique (2n−1)-vertex and a 2n-vertex in G−e1. In (4n−1, G−e1), if we
add the new edge joining the unique (2n−1)-vertex and a 2n-vertex adjacent
to exactly one (2n + 2)-vertex, then G′ ∼= G. For all other possibilities, the
resulting extension does not have the second dacard, since the removal of any
edge of degree 4n+ 1, results in a da-ecard having no n+ 1 independent 2n-
vertices having a common (2n+1)-neighbour (when n = 2) or n−1 common
(2n + 2)-neighbours (when n > 2). Hence G′ is the unique extension and is
isomorphic to G. Therefore dern(G) ≤ 2.
Lower bound. Consider the extensions H1(4n−1, G−e1) (obtained by adding
a new edge joining the (2n− 1)-vertex and a 2n-vertex having n neighbours
of degree 2n+2), H2(4n+1, G−e2) (obtained by adding a new edge joining
a (2n+ 1)-vertex and a 2n-vertex having n−1 neighbours of degree 2n+ 2),
and the extensions of the da-ecards with associated edge degree 4n (obtained
by adding a new edge joining two vertices of degree 2n having n common
(2n+ 2)-neighbours). The set of all above extensions forms a 1-blocking set
of G. Hence dern(G) ≥ 2.

For m = n + 2, consider the da-ecards (4n,G− e1) and (4n + 4, G− e2),
where dep(e1) = (2n, 2n + 2) and dep(e2) = (2n + 2, 2n + 4).
Upper bound. We use these two da-ecards to reconstruct G. The da-ecard
(4n + 4, G − e2) forces every extension to have minimum degree 2n. Hence
in (4n,G − e1), the unique (2n − 1)-vertex must be joined to the unique
(2n + 1)-vertex and so G is the only extension. Therefore dern(G) ≤ 2.
Lower bound. Consider the extensions H1(4n,G − e1) (obtained by adding
a new edge joining two 2n-vertex), H2(4n+4, G−e2) (obtained by adding a
new edge joining two (2n+ 2)-vertices), and the extensions of the da-ecards
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with associated edge degree 4n (obtained by adding a new edge joining a
2n-vertex and a (2n + 2)-vertex). The set of all above extensions forms a
1-blocking set of G. Hence dern(G) ≥ 2.

For m > n+ 2, consider the da-ecard (3n+m− 2, G− e), where dep(e) =
(2n, n + m). In (3n + m− 2, G− e), the only possibility to get an extension
H(3n+m−2, G−e) is to join unique (2n−1)-vertex to the unique (n+m−1)-
vertex, since otherwise the degree sum of the two vertices to be joined will
be 4n− 1, 4n, 3n+m− 1, 3n+m, 2n+ 2m− 1, 2n+ 2m, n+ 3m− 1, or
n + 3m. Clearly H(3n + m− 2, G− e) ∼= G and hence dern(G) = 1. �

3. Corona Product

In [5], it is proved that dern(Cn ◦K1) = 2 and dern(Pn ◦K1) = 1 or 2. In
this section, we shall determine the drn and dern for their total graphs.

Theorem 3.1. For n > 2, drn(T (Cn ◦K1)) = 2.

Proof. Let G = T (Cn ◦K1), n > 2.
Upper bound. Consider the two dacards (2, G − v1) and (6, G − v2), where
v1 is a special vertex and v2 is a nonspecial vertex. Let G′ be a graph
having these two dacards in its dadeck. Then G′ can be constructed from
(2, G−v1) by adding a new vertex x and joining it to two vertices in G−v1.
In (2, G−v1), if we join x to the unique 3-vertex and to the unique 5-vertex,
then the resulting extension is isomorphic to G. For all other possibilities,
the removal of any 6-vertex from the resulting extension results in a dacard
with at least one of the following structures.

(i) A 1-vertex or a 7-vertex.
(ii) (n− 1) or (n− 2) vertices of degree 2.
(iii) Two adjacent 2-vertices.
(iv) A 2-vertex adjacent to two vertices of degree 6.
(v) A 6-vertex adjacent to a 3-vertex.
(vi) Two 2-vertices having a common neighbour.
(vii) A 2-vertex adjacent to vertices of degree 3 and 6, or 4 and 5.

However, the dacard (6, G − v2) has none of the above structures. Hence
the dadeck of the resulting extension does not contain the dacard (6, G−v2)
in its dadeck. Hence the only possibility is that G′ ∼= G and therefore
drn(G) ≤ 2.
Lower bound. Consider the extensions H1(2, G − v1) (obtained by joining
the new vertex to two 2-vertices), H2(4, G − v2) (obtained by joining the
new vertex to two 2-vertices and two 4-vertices), H3(6, G−v3) where v3 is a
special vertex (obtained by joining the new vertex to two 2-vertices, two 4-
vertices and two 5-vertices), and H4(6, G−v4) where v4 is a nonspecial vertex
(obtained by joining the new vertex to two 2-vertices, two 3-vertices and two
5-vertices). Then the set {H1, H2, H3, H4} clearly forms a 1-blocking set of
G. Hence drn(G) ≥ 2. �

Theorem 3.2. For n > 2, dern(T (Cn ◦K1)) = 2.
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H1(2, G− v1) H2(4, G− v2)

H3(6, G− v3) H4(6, G− v4)

1

Figure 5

Proof. Let G = T (Cn ◦K1), n > 2.
Upper bound. Consider the two da-ecards (4, G−e1) and (10, G−e2), where
dep(e1) = (2, 4) and dep(e2) = (6, 6) and these two 6-vertices are not ad-
jacent to any 2-vertex. We use these two da-ecards to reconstruct G. The
da-ecard (10, G − e2) forces every extension to have n vertices of degree 2.
Hence in (4, G − e1), the unique 1-vertex must be joined to the unique 3-
vertex and therefore G is the only extension and dern(G) ≤ 2.
Lower bound. Consider the extensions H1(4, G− e1) (obtained by adding a
new edge joining the two 2-vertices), H2(6, G − e2) (obtained by adding a
new edge joining a 2-vertex and a 4-vertex), the extensions of the da-ecards
with associated edge degree 8 (obtained by adding a new edge joining a 2-
vertex and a 6-vertex), and the extensions of the da-ecards with associated
edge degree 10 (obtained by joining a 4-vertex and a 6-vertex). The set of
all above extensions forms a 1-blocking set of G. Hence dern(G) ≥ 2. �

Theorem 3.3. For n > 1, drn(T (Pn ◦K1)) = 2.

Proof. Let G = T (Pn ◦ K1), n > 1. For n = 2, G = T (P4) and hence
drn(G) = 2 by Theorem 2.1. Consider the case when n > 2.
Upper bound. Consider the dacards (2, G − v1) and (6, G − v2), where v1
and v2 are special vertices, v1 has no 6-neighbour and v2 has a 5-neighbour.
Let G′ be a graph having these two dacards in its dadeck. Then G′ can be
constructed from (2, G− v1) by adding a new vertex x and joining it to two
vertices in G−v1. In (2, G−v1), if we join x to a 2-vertex and its 3-neighbour
adjacent to a 6-vertex, then the resulting extension is isomorphic to G. For
n = 3, in (2, G−v1), if we join x to a 6-vertex and a vertex of degree 2, 3, or
4, then the resulting extension has no 6-vertex and for all other possibilities,
the resulting extension has the dacard (2, G − v1) but does not have the
dacard (4, G− v2) in its dadeck, since the removal of any 4-vertex from that
extension results in a dacard having exactly one 2-vertex, a 5-vertex, a 6-
vertex, a 2-vertex adjacent to a 4-vertex, or no 1-vertex. Hence G′ ∼= G.
When n > 3, for the remaining possibilities, the removal of any 6-vertex
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from the resulting extension results in a dacard having at least one of the
following structures.

(i) No 1-vertex.
(ii) A 7-vertex.
(iii) (2n− 7) or (2n− 6) vertices of degree 6.
(iv) At least four vertices of degree 5.
(v) A 1-vertex adjacent to a 4-vertex.
(vi) Two 2-vertices with a common neighbour.
(vii) n− 2 vertices of degree 2.

However, the dacard (6, G−v2) has none of the above structures. Hence the
resulting extension contains the dacard (2, G− v1) but does not contain the
dacard (6, G− v2) in its dadeck. Hence G′ ∼= G and drn(G) ≤ 2.
Lower bound. Consider the extension of the dacards with associated degree
2 (obtained joining the new vertex to two 2-vertices), the extensions of
the dacards with associated degree 4 (obtained by joining the new vertex
to two 2-vertices and two 4-vertices), the extensions of the dacards with
associated degree 3 (obtained by joining the new vertex to two 2-vertices
and a 6-vertex), and the extensions of the dacards with associated degree
6 (obtained by joining the new vertex to two 5-vertices, two 3-vertices and
two 2-vertices). Then set of all above extensions clearly forms a 1-blocking
set of G. Hence drn(G) ≥ 2. �

Theorem 3.4. For n > 1, dern(T (Pn ◦K1)) = 2.

Proof. Let G = T (Pn ◦ K1), n > 1. For n = 2, G = T (P4) and hence
dern(G) = 2 by Theorem 2.2.
Upper bound. Consider the two da-ecards (3, G− e1) and (8, G− e2), where
dep(e1) = (2, 3) and dep(e2) = (4, 6), and the 4-vertex is adjacent to a
3-vertex and the 6-vertex is adjacent to a 4-vertex. Let G′ be a graph hav-
ing these two da-ecard in its dadeck. Then G′ can be constructed from
(3, G − e1) by adding a new edge joining the 1-vertex and a 2-vertex in
G − e1. In (3, G − e1), if we add the new edge joining the unique 1-vertex
and a 2-vertex having a common neighbour with the 1-vertex, then G′ ∼= G.
For all other possibilities, the resulting extension does not have the dacard
(8, G− e2) in its dadeck, since the removal of any edge of degree 8 results in
a dacard having two 2-vertices with a common neighbour. Hence G′ is the
unique extension and is isomorphic to G. Therefore dern(G) ≤ 2.
Lower bound. Consider the extension H1(3, G − e1) (obtained by adding
a new edge joining the 1-vertex and a 2-vertex having no common neigh-
bours), H2(4, G−e2) (obtained by adding a new edge joining a 1-vertex and
a 3-vertex having no common neighbour), H3(5, G−e3) (obtained by adding
a new edge joining a 3-vertex and a 2-vertex adjacent to a 4-vertex), the ex-
tensions of the da-ecards with associated edge degree 7 (obtained by joining
a 2-vertex and a 5-vertex), the extensions of the da-ecards with associated
edge degree 8 (obtained by adding a new edge joining a two 4-vertices each
adjacent to a 2-vertex), the extensions of the da-ecards with associated edge
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degree 9 (obtained by adding a new edge joining a 4-vertex adjacent to a
2-vertex and a 5-vertex), and the extensions of the da-ecards with associ-
ated edge degree 10 (when n > 3) (obtained by adding a new edge joining
a 4-vertex and a 6-vertex). Clearly the set of all above extensions forms a
1-blocking set of G. Hence dern(G) ≥ 2. �
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