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ON COMBINATORIAL EXTENSIONS OF
ROGERS-RAMANUJAN TYPE IDENTITIES

MEGHA GOYAL

ABSTRACT. In the present paper we use anti-hook differences of Agarwal
and Andrews as an elementary tool to provide new partition theoretic
meanings to two generalized basic series in terms of ordinary partitions
satisfying certain anti-hook difference conditions. Five particular cases
are also discussed. These particular cases yield new partition theoretic
versions of Gollnitz-Gordon identities and Gollnitz identity. Five g¢-
identities of Rogers and three g-identities of Slater are further explored.
These results extend the work of Goyal and Agarwal, Agarwal and Rana,
and Sareen and Rana.

1. INTRODUCTION AND DEFINITIONS

Several successful attempts have been made by several mathematicians
to connect partition identities with other combinatorial objects such as in
[3, 4, 5, 12, 13, 14]. In 1986, Agarwal and Andrews [1] introduced a new
combinatorial object which they named anti-hook differences. This tool has
the potential to shed new light on some fundamental classical partition iden-
tities for (n +t)-color partitions which have been introduced and studied by
Agarwal and Andrews [2]. In this paper a unified combinatorial approach
is made to link several colored partition identities with ordinary partitions
satisfying certain anti-hook difference conditions. The results are proved by
establishing bijections between appropriate classes of (n+t)-color partitions
and ordinary partitions with certain anti-hook difference conditions. Five
basic series identities have also been studied as the particular cases. Out
of these five identities, three identities yield new partition theoretic inter-
pretations of Gollnitz-Gordon identities and Gollnitz identity. Further, five
identities of Rogers and three identities of Slater are also explored using
the same technique. These new results are proved by establishing bijections
between two different classes of partitions. Now before stating our main
results we first recall some definitions.
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Definition 1.1 ([2]). A partition with “(n +t) copies of n”, t > 0, is a
partition in which a part of size n, n > 0, can come in (n + t) different
colors denoted by subscripts: ni,no,...,nuy1¢. Note that zeros are permitted
if and only if t is greater than or equal to one. Also, zeros are not permitted
to repeat in any partition.

Remark. We note that if we take ¢ = 0, then these are nothing but the
n~color partitions.

Definition 1.2. The weighted difference of two parts gx, hy (9 > h) is
defined by g — h — k — 1 and is denoted by ((gx — hy)).

Agarwal and Andrews [1] gave the following definition of anti-hook differ-
ences.

Definition 1.3. Let I1 be a partition whose Ferrers graph is embedded in
the fourth quadrant. Each node (x,y) of the fourth quadrant which is not
in the Ferrers graph of 11 is said to possess an anti-hook difference £ — ¢y
relative to 11, where &, is the number of nodes in the xth row of the fourth
quadrant to the left of node (x,y) that are not in the Ferrers graph of I1 and
Gy 15 the number of nodes in the yth column of the fourth quadrant that lie
above node (x,y) and are not in the Ferrers graph of II.

Definition 1.4. The nodes (x,y) of Il for which x —y = d are said to lie
on diagonal d.

Definition 1.5. The rank of a partition is defined as the largest part minus
the number of parts.

Definition 1.6. A right angle in the Ferrers graph of a partition is called
a hook and will be denoted by [u,v] if there are u nodes in the row and v
nodes in the column. Thus, for instance, [6,4] represents the hook

Definition 1.7 ([8]). A two-rowed array of nonnegative integers

<p1 p2 - pu>
a o@ o @)’
where p1 > py > -+ > p, >0, 1 > g2 > -+ > q > 0 is known as
a generalized Frobenius partition, or more simply an F-partition of p, if
prtp2t-tptatqtotqtrv=p

For example, p =28 =4+ (6+5+24+0)+ (5+3+2+1) and the
corresponding Frobenius symbol is

6 5 2 0
5 3 2 1)°
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The corresponding Ferrers graph is:

The associated anti-hook differences are given by:
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and the corresponding partition is: 7+7+5+4+4+1.

2. Two GENERALIZED BASIC SERIES

The following two generalized basic series

2 AOH=)(

q —q;:¢°)x

(2.1)
o (ghaa
— O AH=D(—g;¢2)) 0o
(4% 4°)a (22)
A=0 ’
where '
7 (1—ag)
o=\ "+~

for a positive integer [, had been interpreted as the generating functions of
some restricted n-color partitions by Goyal and Agarwal [14], and Agarwal
and Rana [6] respectively. They proved the following theorems, respectively:

Theorem 2.1. For a positive integer [, let Aj(u) denote the number of n-
color partitions of u such that (i) the parts are of the form (25—1)1 or (27)2,
if 1 is odd and of the form (2j — 1)o or (24)1, if | is even, (ii) if m; is the
smallest or the only part in the partition, then m =i+1—1 (mod 4), (i)
the weighted difference between any two consecutive parts is nonnegative and
is congruent to 0 (mod 4) and (iv) the parts are greater than or equal to l.
Then

2 POH-1)(
q

& e 42
%Al(u)q" =§]q o 4)(i,q by (2.3)
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Theorem 2.2. Given a positive integer 1, let By(u) denote the number of
n-color partitions of p such that (i) the parts are of the form (25 — 1)1 or
(27)2, if L is odd and of the form (25 — 1)2 or (27)1, if | is even, (ii) the
weighted difference between any two consecutive parts is monnegative and
even and (iii) the parts are greater than or equal to l. Then

o0 A(A+I-1)

ZBl( ”_Zq
n=0

Our objective in this section is to further extend these results using anti-
hook difference conditions. We will show that ordinary partitions with cer-
tain anti-hook difference conditions are also generated by the R.H.S. of (2.3)
and (2.4). This extends Theorems 2.1-2.2 to two new infinite classes of com-
binatorial identities.

QQ)

(2.4)

2.1. Main results.

Theorem 2.3. For a positive odd integer 1, let C;(u) denote the number of
partitions of p such that

(i) all anti-hook differences on diagonal 0 are equal to 0 or 1 and all
hooks have rank equal to 0 or 1;
(ii) if [u,v] and [z,y] are any two consecutive hooks then v > x + 1 and
are of opposite parity;
(iii) if [u,v] is the last hook, then v = (I +1)/2 (mod 2);
(iv) for each hook [u,v], u> (I —v —1).
Then
00 A(AH-1)

S A =S Gilue = Z 2
p=0 n=0

Theorem 2.4. For a positive even integer I, let Di(n) denote the number
of partitions of u such that

qq)
A

(2.5)

(i) all anti-hook differences on diagonal 0 are equal to 1 or 2 and all
hooks have rank equal to 1 or 2;
(ii) if [u,v] and [z,y] are any two consecutive hooks, then v > x and are
of same parity;
(iil) if [u,v] is the last hook, then v =1/2 (mod 2);
(iv) for each hook [u,v], u> (I —v —1).

Then
S A =Y Dt =3 2
n=0

pn=0 A=0

AA+I— 1) q7q )

A

(2.6)

Theorem 2.5. For a positive odd integer 1, let Ej() denote the number of
partitions of p such that

(i) all anti-hook differences on diagonal 0 are equal to 0 or 1 and all
hooks have rank equal to 0 or 1;
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(ii) of [u,v] and [x,y] are any two consecutive hooks, then v > x;
(iii) for each hook [u,v], u > (Il —v —1).

Then
O AA+I-1)

ZBZ qﬂ—ZEl =3 CLOh )

/\

Theorem 2.6. For a positive even integer l, let Fi(u) denote the number of
partitions of u such that

(i) all anti-hook differences on diagonal 0 are equal to 1 or 2 and all
hooks have rank equal to 1 or 2;
(ii) if [u,v] and [z,y] are any two consecutive hooks, then v > x;
(iii) for each hook [u,v], u > (Il —v —1).

Then
0 A(AHI— 1)

S Biwe' =3 Filu)e" —Zq
pu=0 u=0

As Theorems 2.3-2.6 have similar proofs, we will discuss the detailed proof
of Theorem 2.3 and provide an outline of the proofs of Theorems 2.4-2.6.

q7q)
/\

(2.8)

2.2. Proof of Theorem 2.3.
Proof. Let II be a partition enumerated by Cj(u). Let
<p1 p2 - pu>,
qaq q2 - Qv
where py >pa > --->p, >0, g1 >q > -->¢q >0,and p;1 +p2+--- +

pv+aq1+q+ -+ q + v =p, be the corresponding Frobenius symbol [2].
Then the anti-hook difference conditions of Theorem 2.3 are equivalent to

if pp —q; = d?2
L if pr %_Omm ) (2.9)
¢+1 ifps—q =1 (mod 2),
qt > pr+1 + 1, (2.10)
gt = pry1+ 1 (mod 2), (2.11)
[—1
Q= (2> (mod 2), (2.12)
and
pe=>l—q—1 (2.13)

We now establish a bijection between the ordinary partitions enumerated by
Cy(p) and the n-color partitions enumerated by A;(u), where [ is a positive
odd integer. We do this by mapping each column (%) of the Frobenius
symbol to a single part gi of an n-color partition. The mapping is

¢ (g) — P+ g+ 1)p—gt1, P> g (2.14)
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The inverse mapping ¢! is given by

((9 g/22)/2> if g is even,

(AR

Clearly (2.14) in view of (2.9) imply the condition (i) of Theorem 2.1. Also,
(2.14) along with (2.12) will imply the condition (ii) of Theorem 2.1.
Now for any two adjacent columns (4 %) in the Frobenius symbol with

& (5) =gk and ¢ () = Iy as defined in (2.14), we have

o gk — (2.15)

((gr—m)) = (p+q+1)—(p—q+1)—(r+s+1)—(r—s+1) = 2¢—2r—2 (2.16)

Clearly (2.10), (2.11), and (2.16) confirms the truth of condition (iii) of
Theorem 2.1. Further, (2.13) and (2.14) implies condition (iv) of Theorem
2.1. To see the reverse implication we note that (2.15) and condition (i)
of Theorem 2.1 imply (2.9). If g is the only or the least part, then ¢~ :
gr = (57, we see that (2.15) and condition (ii) of Theorem 2.1 imply (2.12).
Now, let gi, h; be any two consecutive parts in n-color partition enumerated
by A;(11) such that ¢=1: g, = () and ¢~1 : by = (%) then in view of (2.15),

q—r=
Woeh)) 41 ifg=0,h=1

( )
((gkighl))-i-l if g=1,h =0 (mod 2),
( )
(o) 41 it g=0,h=0 ( )

Now (2.17) and condition (iii) of Theorem 2.1 guarantee that ¢ > pi4q1 + 1
and ¢; = pi+1 + 1 (mod 2). Also, (2.14) and condition (iv) of Theorem 2.1
confirms that p; > [ —q; — 1. This completes the proof of A;(u) = Cy(p). O

2.3. Outline of the proof of Theorems 2.4-2.6. Now let us discuss the
essential steps to treat the proofs of Theorems 2.4-2.6.

Theorem 2.4. In this case, the anti-hook difference conditions are equivalent
to

@ +2 ifp—q =0 (mod 2),
T g+ 1 if pp —q =1 (mod 2),

@ > Pit1, ¢t = pey1 (mod 2),q, = (1 —2)/2 (mod 2) and py > 1 —¢q — 1.
The map ¢ is

¢:GQ—+@+q+lhﬂ,p>q+L
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The inverse mapping ¢! is given by

((g 3/22)/2) if g is even,

¢ gy —
(<9 + 1)/2> if g is odd.

(9—3)/2
Theorem 2.5. Here the anti-hook difference conditions are equivalent to

o qt lfpt—ntO (HlOd 2),
PE= Y @ +1 ifp—q =1 (mod 2),

qt > pr+1, and pp > 1 —q — 1.
The map ¢ is

¢ (5) = (P+ag+1)p_yg+1, p>4q.

The inverse mapping ¢! is given by

((9 3/22) /2) if g is even,

(Eg - Bg) if g is odd.

Theorem 2.6. Lastly, in this case, we observe that the anti-hook difference
conditions are equivalent to

_ qt+2 1fpt—qt50(mod2),
pe g+1 ifpp—q¢=1 (mod 2),

ot igr —

q > prr1and pp >0 —q — 1.
The map ¢ is

o: (];) - P+q+1)p—gpr>qg+1.

The inverse mapping ¢! is given by

((9 g/22)/2> if g is even,

(Eg * éi?;) if g is odd.

2.4. Five Particular Cases of Theorems 2.3—2.6. For some particular
values of [, Theorems 2.3-2.6 enable us to provide new partition theoretic
meanings to the following identities:

ot igr —

oe] 2
T N (—6)r (=507 0(6% ¢%) o (4% ¢%)oo (2.18)
1. 4 = 2. 2 ’ :
rr UL N (4% ¢%)oo
o0 2
(g | (—4:6%)0(@%6%) 0 (45 4% (6%5 4% (2.19)
(g% q*)x (4% ¢ ’

A=0



40 MEGHA GOYAL

Z 7" ! , (2.20)
A=0

D (6 0)o0(@5 %) oo(d5 60

2
o~ +2A(*q;q M _ 1 (2.21)
= (@5 (0% ¢%)o0 (0% ¢%) o0 (475 ¢%) oo
P g 1 (2.22)
= (5Pn (4% 6%)o0 (4% ¢%) o0 (475 ¢%)oc

Identity (2.18) is due to Slater [16, p.154, Eq.(25)], identity (2.19) was given
by Andrews [7, p.105], the partition theoretic meanings (using ordinary
partitions) of identities (2.20) and (2.21) are known as the Gollnitz—Gordon
identities [9, 11] and partition theoretic meaning of identity (2.22) was dis-
covered by Gollnitz independently [10]. Now an appeal to Theorems 2.1-2.6
give the following 3-way combinatorial interpretations of identities (2.18)—
(2.22), respectively:

Theorem 2.7. Let Xi(u) denote the number of partitions of u into parts
congruent to £2,4+3,6 (mod 12) and let Yi(u) denote the number of parti-
tions of u into parts congruent to £1,+2 (mod 6). Then

=Y A Xi(p—i) =Y Cr() X1 (p — i)
i=0 i=0

where Aq(p) is as defined in Theorem 2.1 for 1 =1 and Cy(p) is as defined
in Theorem 2.8 for | = 1.

To illustrate the constructed bijections we give an example for p = 8
shown in the following table.

TABLE 1. Number of partitions enumerated by A;(8) and C4(8)

Partitions enumerated by A;(8) Frobenius symbols Partitions enumerated by C1(8)

T+ 1 (g 8) 4424141
63 + 2 (3 é) 44341
Also,
8
Vi(8) =) Ai(i) X ZBl (i) X1(8 — 1) ch (i) X1(8 — i) = 13.
=0

Theorem 2.8. Let X3(u) denote the number of partztzons of p into parts
congruent to 2 (mod 4) and let Y3(u) denote the number of partitions of 1
into parts congruent to £2,3 (mod 6). Then

=" As(i)Xs(p—i) =Y Cs(i)X3(n— i)
i=0 =0
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where As(p) is as defined in Theorem 2.1 for | =3 and Cs(u) is as defined
in Theorem 2.3 for | = 3.

Theorem 2.9. Let Z1(u) denote the number of partitions of p into parts
congruent to 1,4, or 7 (mod 8). Then

Z1 (1) = Bi(p) = Ex(p) for all p,

where By(p) is as defined in Theorem 2.2 for 1 =1 and Ey(p) is as defined
in Theorem 2.5 for 1 = 1.

Theorem 2.10. Let Z3(u) denote the number of partitions of u into parts
congruent to 3,4, or 5 (mod 8). Then

Z3(p) = Bs(p) = E3(p) for all p,

where Bs(p) is as defined in Theorem 2.2 for | =3 and Es(p) is as defined
in Theorem 2.5 for | = 3.

Theorem 2.11. Let Zy(u) denote the number of partitions of u into parts
congruent to 2,3, or 7 (mod 8). Then

Za(p) = Ba(p) = Fa(p) for all ,

where Bo(p) is as defined in Theorem 2.2 for | =2 and Fy(u) is as defined
in Theorem 2.6 for | = 2.

3. FIVE ¢-IDENTITIES OF ROGERS

In [13], the following five identities of Rogers were interpreted combina-
torially using (n + t)-color partitions:

2
- ¢* I e A 3.1)
rer A VRN ST (@%4% ¢
s q3’\2*2’\ (=4, —¢°, =% ¢") oo
? Y ?
- , (3.2)
;) (¢:4*)a(g% ¢%) 5 (6% ¢"%)oc
2
i ¢ _ (=¢% ", —d" 4" (3.3)
rer A CEUR N U i PO U AN A Y B I
i qQ)\()\—l—l) (_q5 _q7 _qg.q14)OO
— ) ) ? , (3.4)
(@ aaha) s (044565 6% 0o
00 2A(A+1) 7 13, 14
- _ (445 -07¢ ) (3.5)

(G Phalet g (244 ¢ 0
These identities have their (n + t)-color partition theoretic meanings in the

form of following five theorems, respectively.
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Theorem 3.1. Let Gi(u) denote the number of n-color partitions of u
such that (i) even parts appear with even subscripts and odd with odd, all
subscripts are greater than 2, (ii) if m; is the smallest or the only part
in the partition, then m = i (mod 4) and (iii) the weighted difference of
any two consecutive parts is nonnegative and is congruent to 0 (mod 4).
Let Hi(p) = Yt o Ii(p — i) J1(2), where I, (p) is the number of partitions
of p into parts congruent to £4 (mod 10) and Ji(p) denotes the number
of partitions of p into distinct parts congruent to £3,5 (mod 10). Then
Gi1(p) = Hi(p), for all p, and

o 3\2

D Giwe =D Hiwe" =) ( d
pu=0 1=0

. q2 4. 44Y, "
= (@ @)t )

Theorem 3.2. Let Go(u) denote the number of n-color partitions of u such
that (i) even parts appear with even subscripts and odd with odd, (ii) if m; is
the smallest or the only part in the partition, then m =i (mod 4) and (iii)
the weighted difference of any two consecutive parts is greater than or equal
to 4 and is congruent to 0 (mod 4). Let Ho(p) = Y i Io(pn—1)J2(i), where
I>(p) is the number of partitions of p into parts congruent to £2 (mod 10)
and Jo(p) denotes the number of partitions of u into distinct parts congruent
to £1,5 (mod 10). Then Go(u) = Ho(u), for all p, and

oo 3A2—-2)

Y W

e CONUET DI

> Ga(wg* =Y Ha(p)g" =
pu=0 pu=0

Theorem 3.3. Let G3(u) denote the number of n-color partitions of . such
that (i) even parts appear with even subscripts and odd with odd greater
than 1, (i) if m; is the smallest or the only part in the partition, then
m =14 (mod 4) and (iii) the weighted difference of any two consecutive parts
is nonnegative and is congruent to 0 (mod 4). Let Hs(p) = >t Is(p —
i)J3(i), where I3(p) is the number of partitions of u into parts congruent
to £2,46 (mod 14) and Js3(u) denotes the number of partitions of u into
distinct parts congruent to £3,7 (mod 14). Then Gz(p) = H3z(u), for all p,
and
o0 2)\2

> Galwa" = 3 Hs(wa" =3 ¢ a
=0 u=0

= (a:0°)a(a% q%) )

Theorem 3.4. Let G4(1) denote the number of n-color partitions of j such
that (i) even parts appear with even subscripts and odd with odd, all sub-
scripts are greater than 3, (ii) if m; is the smallest or the only part in the par-
tition, then m =1 (mod 4) and (iii) the weighted difference of any two con-
secutive parts is greater than or equal to —4 and is congruent to 0 (mod 4).
Let Hy(p) = D1 o Lu(p — ) Ju (@), where Iy(p) is the number of partitions of
W into parts congruent to £4,4+6 (mod 14) and Jy(p) denotes the number
of partitions of w into distinct parts congruent to £5,7 (mod 14). Then
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Ga(p) = Hy(p) for all p, and
o0 2A(A+1)

> Galwa" = 3 Ha(wa" =3 ¢ 1
pn=0 n=0

= (a:0°)a(a% g%\

Theorem 3.5. Let G5(u) denote the number of partitions of p with “n + 2
copies of n” such that (i) the even parts appear with even subscripts and odd
with odd, all subscripts are greater than 1, (i) for some i, i;19 is a part and
(iii) the weighted difference of any two consecutive parts is nonnegative and
is congruent to 0 (mod 4). Let Hs(p) = > 1 Is(p— i) J5(2), where I5(p) is
the number of partitions of  into parts congruent to £2,+4 (mod 14) and
J5(p) denotes the number of partitions of p into distinct parts congruent to
+1,7 (mod 14). Then Gs(u) = Hs(p), for all p, and

> 2A(A+1)

N Ga(wa =Y Hs(gt =Y )
u=0 u=0

rer VISR UAT PN

Again with the aid of anti-hook difference conditions we extend these
results to 3-way combinatorial identities.

3.1. Main Results.

Theorem 3.6. Let Ki(u) denote the number of partitions of p such that
(i) there is no hook with rank less than 2;
(ii) if [u,v] and [x,y] are any two consecutive hooks such that w > x and
v >y, thenv > x+ 1 and are of opposite parity;
(iil) if [u,v] is the last hook then v is odd.

Then G1(u) = Hi(n) = Kq1(p) for all p.

Theorem 3.7. Let Ko(1) denote the number of partitions of p such that
(i) there is no hook with rank less than 0;
(ii) if [u,v] and [x,y] are any two consecutive hooks such that w > x and
v >y, then v > x + 3 and are of opposite parity;
(iii) if [u,v] is the last hook then v is odd.

Then Go(u) = Ho(pn) = Ko(p) for all p.

Theorem 3.8. Let K3(u) denote the number of partitions of p such that
(i) there is no hook with rank less than or equal to 0;
(ii) of [u,v] and [z,y] are any two consecutive hooks such that uw > x and
v >y, thenv > x+ 1 and are of opposite parity;
(iii) if [u,v] is the last hook then v is odd.

Then G3(u) = Hs(p) = Ks(u) for all pi.
Theorem 3.9. Let K4(u) denote the number of partitions of p such that

(i) there is no hook with rank less than 3;
(ii) of [u,v] and [z,y] are any two consecutive hooks such that v > x and
v >y, thenv > x — 1 and are of opposite parity;
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(iii) if [u,v] is the last hook then v is odd.
Then Ga(p) = Ha(p) = Ka(p) for all p.

Theorem 3.10. Let K5(u) denote the number of partitions of u such that

(i) there is no hook with rank greater than 1;
(ii) if [u,v] and [z,y] are any two consecutive hooks such that w > x and
v >y, then u > y+ 3 and are of opposite parity;
(iii) if [u,v] is the last hook then u is odd.

Then Gs(u) = Hs(p) = Ks(p) for all p.
3.2. Proof of Theorem 3.6.
Proof. Let II be a partition enumerated by K (u). Let
<p1 p2 - pu>’
a q2 - Q
where p1 >ps >--->p, 20,1 > ¢ >+ >¢q =20, and pr +p2+--- +

pv+q+ g+ -+ q + v = pu, be the corresponding Frobenius symbol [2].
Then the anti-hook difference conditions of Theorem 3.6 are equivalent to

Pt = G+ 2, (3.6)
q = pi+1 + 1, (3.7)
qt — pe+1 =1 (mod 2), (3.8)
and
¢, =0 (mod 2). (3.9)

We now establish a bijection between the ordinary partitions enumerated
by Ki(u) and the n-color partitions enumerated by G1(u). We do this by
mapping each column (1) of the Frobenius symbol to a single part g of an
n~-color partition. The mapping is

p P+a+1)gpr2 ifp<qg+2,
: N : 3.10
¢ <q> {(p+q+1)p—q+1 ifp>q+2. (3.10)

The inverse mapping ¢! is given by

(9—k+1)/2 if g # k (mod 2),
. (9+k—3)/2
O g — (3.11)
(98— 2)/2) it 0= & (mod 2)

(g —k)/2 '
Clearly (3.6) and (3.10) imply condition (i) of Theorem 3.1. Also, (3.9)

along with (3.10) will imply condition (ii) of Theorem 3.1.
Now for any two adjacent columns (4 %) in the Frobenius symbol with

& () =gr and ¢ (%) = hy as defined in (3.10), we have

2¢q—2r—2 ifp>qg+2,r>s+2,
2p—2r—3 ifp<qg+2,7r>s+2,
(g = hu)) = 2q—2s—3 ifp>q+2,r<s+2,
2p—2s—4 fp<qg+2,r<s+2.

(3.12)
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Now (3.6), (3.7), (3.8), and only the first line of (3.12) confirms that con-
dition (iii) of Theorem 3.1 is valid. To see the reverse implication we note
that by condition (i) of Theorem 2.1 ¢ = k, h =1 (mod 2) and so under

¢—1

p—r=5((g— b))+, (313)
g 5= glloe— ) +1 (3.14)

p—q=k—1, (3.15)
g—r= (e —h)+ 1. (3.16)

Now, (3.13) and (3.14) by condition (iii) of Theorem 3.1 guarantee that
pt > piy1 and ¢ > qer1. Further, (3.11) along with (3.15) and condition
(i) of Theorem 3.1 guarantee (3.6). If gy is the only or the least part, then
¢t g = (B), we see that second line of (3.10) and condition (ii) of
Theorem 2.1 imply (3.9). Also, (3.16) and condition (iii) of Theorem 3.1
confirms (3.7) and (3.8). This completes the proof of G1(u) = K1(p). O

3.3. Outline of the proofs of Theorems 3.7—3.10. Now let us discuss
the essential steps to treat the proofs of Theorems 3.7-3.10.

Theorem 3.7. In this case, the anti-hook difference conditions are equivalent
to

Pt > Qs Gt > P41 + 3, ¢ — P41 =1 (mod 2) and ¢, =0 (mod 2).
The map ¢ is

¢:<p)_>{(p+q+l)q—p if p <gq,
q P+a+1)pqn ifp=g

The inverse mapping ¢! is given by
(Eglz: Bg) it g%k (mod 2),
(“’&jf ;)3)2/2> if 9=k (mod 2).

Theorem 3.8. In this case, the anti-hook difference conditions are equivalent
to

ot g —

P> qr @ > pet1+ 1, ¢ —pey1 =1 (mod 2) and ¢, =0 (mod 2).
The map ¢ is

¢:<p)_>{ (p+q+1)gps2 ifp<gq,
q (P+q+1)p—qg+1 ifp>q
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The inverse mapping ¢! is given by
—-k+1)/2\ .
(Eg-ﬁ-k—?);;?) if g # k (mod 2),

((g(—;—ﬁ ;)3)2/2> if g=k (mod 2).

ot g —

Theorem 3.9. Here we observe that the anti-hook difference conditions are
equivalent to

Pt>q+3, ¢ >piv1—1, g¢ —pry1 =1 (mod 2) and ¢, =0 (mod 2).
The map ¢ is

¢:<p>_>{ (P+q+1)g—prs ifp<q+3,
q P+qg+1)p_qg1 ifp>qg+3.

The inverse mapping ¢! is given by
—k+5)/2\ .
(Ez . 7%2) if g £ k (mod 2),

((g(—;—f ;)3)2/2> if g=Fk (mod 2).

ot igr —

Theorem 3.10. Lastly, in this case, we observe that the anti-hook difference
conditions are equivalent to

pe<aq+1, pt>q+1+3, pt—q+1 =1 (mod 2) and p, =0 (mod 2).
The map ¢ is

s <p> _>{ (P+q+1)p—qifp>qg+1,
q (P+q+1)gprsifp<qg+1

and ¢! is given by

(9+k—1)/2) .
¢t <(g —k— 1)/2) HoF R fmod 2)
_)
9k (g—k+2)/2 if g =k (mod 2)
(g+k—4)/2) B9 5 TOED:

To illustrate the constructed bijections we give an example for © = 8 shown
in the following table.
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TABLE 2. Number of partitions enumerated by G1(8) and K;(8)
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Partitions enumerated by G1(8)

Frobenius symbols Partitions enumerated by K;(8)

88 g) 8

84 g) 6+1+1
T+ 1 8> 4424141
s+ 11 8) 6+2
62 + 22 (2 é) 4+3+1

4. THREE ¢-IDENTITIES OF SLATER

The following are the three basic series identities which appear in the
Slater’s compendium [16].

N P A OO0 T PO Ut e O G WESRY
= (¢ q)a (g ¢ (4% ¢%)oo
2
i ¢ _ (@0 a0 oo, 0 oo (00
= (0% 44)A(¢: ¢*)a (4% 4%)oo
i P (@400 )0 6 ) o (05 4P) (43)
— (4% ¢")(¢; ¢*)a+1 (4% 4%) oo
k
where (a1, a2, ak;2)oo = [ (45 2)00-
=1

The partition theoretic interpretations of basic series identities (4.1)—(4.3)
are given in [15] in the form of following theorems, respectively.

Theorem 4.1. Let Li(u) denote the number of n-color partitions of p into
parts such that (i) all parts are greater than or equal to 3, (ii) if m; is
the smallest or the only part in the partition, then m = i + 2 (mod 4)
and (iii) the weighted difference of any two consecutive parts is nonnegative
and is congruent to 0 (mod 4). Let Mi(n) = Yt Ri(p —1)S1(2), where
Ry (p) is the number of partitions of u into parts congruent to +2,+4, +10,
+12 (mod 28) and S1(u) denotes the number of partitions of p into distinct
parts congruent to £1,£5,7 (mod 14). Then Ly(p) = Mi(u) for all p, and

> Lie" =Y M =Y
©n=0 n=0

rerA AT NCDMN

A(A+2)

Theorem 4.2. Let Lo(p) denote the number of n-color partitions of p into
parts such that (i) if m; is the smallest or the only part in the partition, then
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m =14 (mod 4) and (ii) the weighted difference of any two consecutive parts
is nonnegative and is congruent to 0 (mod 4). Let Mao(pu) = >t o Ro(p —
1)S2(i), where Ro(p) is the number of partitions of p into parts congruent to
+4, 46,48, +£10 (mod 28) and Sa(u) denotes the number of partitions of u
into distinct parts congruent to £3,45,7 (mod 14). Then Lo(p) = Ma(p)
for all u, and

oo oo oo q)\Z
Lo(u)g" = )  Ma(p)g" = :
; ; AZ:;] (a*; a")a(g; a®)x

Theorem 4.3. Let L3(n) denote the number of partitions of p with “(n+2)
copies of n” into parts such that (i) for some i, i;42 is a part and (ii) the
weighted difference of any two consecutive parts is nonnegative and is con-
gruent to 0 (mod 4). Let M3(p) = > 1 Rs(p — 1)S5(i), where Rg(p) is the
number of partitions of u into parts congruent to +2,+£6,+8, £12 (mod 28)
and S3(u) denotes the number of partitions of u into distinct parts congruent
to £1,+3,7 (mod 14). Then L3(u) = Ms(u), for all p, and

00 A(A+2)

> it

e CEUONUT DI

D La(u)g" = Ma(u)g" =
u=0 pu=0

Again we shall extend these results by means of anti-hook differences.

4.1. Main Results.

Theorem 4.4. Let Ni(p) denote the number of partitions of u such that

(i) there is no hook with rank greater than 0,
(ii) if [u,v] and [x,y] are any two consecutive hooks such that w > x and
v >y, then u >y and are of opposite parity;
(iii) if [u,v] is the last hook then u is even.

Then Ly(pn) = Mi(pn) = Ni(p) for all .

Theorem 4.5. Let No(p) denote the number of partitions of p such that

(i) there is no hook with rank greater than 0;
(ii) of [u,v] and [z,y] are any two consecutive hooks such that v > x and
v >y, then u >y and are of opposite parity;
(iii) if [u,v] is the last hook then u is odd.

Then Lo(p) = Ma(p) = Na(p) for all p.

Theorem 4.6. Let N3(u) denote the number of partitions of p such that

(i) there is no hook with rank greater than 2;
(ii) if [u,v] and [z,y] are any two consecutive hooks such that w > x and
v >y, then u >y + 2 and are of opposite parity;
(iii) if [u,v] is the last hook then u = 1.

Then Ls(pu) = Ms(u) = N3(u) for all .
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4.2. Proof of Theorem 4.4.
Proof. Let II be a partition enumerated by Nj(u). Let
(pl p2 - pu>’
@ q2 - Qu
where pr >pa >--->p, 20,1 >q2>--->¢q, 20, and p1 +p2+--- +

pv+q+ g+ -+ q + v = pu, be the corresponding Frobenius symbol [2].
Then the anti-hook difference conditions of Theorem 4.4 are equivalent to

bt S qt, (44)
Dt > qi+1, (4.5)
Pt — qi+1 =1 (mod 2), (4.6)
and
py =1 (mod 2). (4.7)

Now, to establish a bijection between the ordinary partitions enumerated by
Ni(p) and the n-color partitions enumerated by Lj(u), we map each column
(1) of the Frobenius symbol to a single part gj of an n-color partition. The

mapping is
p (P+a+1)py ifp>gq,
‘\g) : 4.8
(b <q> { (p +q+ 1)q7p+1 if p<gq. ( )
The inverse mapping ¢! is given by

<(9+k_1)/2> if g k (mod 2),

o g — <9(— k ;;)2/2 »
9- L
((g+k—2)/2> if g=k (mod 2).

Clearly (4.4) in view of (4.8) imply condition (i) of Theorem 4.1. Also, (4.4)
and (4.7) along with (4.8) guarantee condition (ii) of Theorem 4.1.
For any two adjacent columns (4 %) in the Frobenius symbol with ¢ (§) =

gr and ¢ () = hy as defined in (4.4), we have
2p—2s—2 ifp<gq,r<s,
) 2¢—2s5s—1 ifp>gq,r<s,
(ge =) =9 95 9r 1 itp<qr>s
2q — 2r if p>q,r>s.
Now, (4.5), (4.6) and the first line of (4.10) imply condition (iii) of Theorem
4.1. To see the reverse implication we note that condition (ii) and (iii) of

Theorem 4.1 imply g = k,h =1 (mod 2) and so under ¢,

(4.10)

g—p=k—-1, (4.11)
s—r=10-1, (4.12)
pr=5(lge— ) +1 (413)
g5 = =((gr — b)) +F, (4.14)

2



50 MEGHA GOYAL

p—s=5((g b))+ 1. (115)

Now (4.11) and (4.12) imply (4.4). Also, (4.13), (4.14), (4.15), and condition
(iii) of Theorem 4.1 guarantee that condition (ii) of Theorem 4.4 is valid. If
gr is the only or the least part, then ¢! : g5 = (h), we see that the second
line of (4.9) and condition (ii) of Theorem 4.1 imply (4.7). This completes
the proof of Ly () = Ni(u). O

4.3. Outline of the proofs of Theorems 4.5—4.6. Now let us discuss
the essential steps to treat the proofs of Theorems 4.5-4.6.

Theorem 4.5. In this case, the anti-hook difference conditions are equivalent
to

Pt < qt, Pt > Gey1,0t — Ge+1 = 1 (mod 2) and p, =0 (mod 2).
The map ¢ is

qb:<p>%{(p+q+1>p—q ifp>q,
q (pta+1)gpr ifp<q

The inverse mapping ¢~ is given by

<(9+k_1)/2> if g k (mod 2),

ptog ) ok
' (9 —k)/2 o
((g%g-k‘—2)/2> if g=k (mod 2).

Theorem 4.6. In this case, the anti-hook difference conditions are equivalent
to

pe<aq+2, pt>qr1+2, pr—qi1 =1 (mod 2) and p, = 0.
The map ¢ is

¢<p>_> (p+Q+1)q—p+3 if p<q+2,
q P+qg+1)p—g—2 ifp>qg+2.

and ¢! is given by

=y (Ezjf;;@ if g #k+2 (mod2),
¢ gk — <(g_k+2)/2> if g=k+2 (mod2),9#k
(g+k-4)/2) "9~ R

5. CONCLUSION

A fine connection between different combinatorial objects is observed in
this paper. It would be of interest if these basic series identities can be
extended further combinatorially using other combinatorial objects by es-
tablishing bijections with anti-hook differences.
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