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SPLIT (n+ t)–COLOR PARTITIONS AND 2–COLOR

F–PARTITIONS

M. RANA AND J. K. SAREEN

Abstract. Andrews [Generalized Frobenius partitions. Memoirs of
the American Math. Soc., 301:1–44, 1984] defined the two classes of
generalized F–partitions: F–partitions and k–color F–partitions. For
many q–series and Rogers–Ramanujan type identities, the bijections
are established between F–partitions and (n + t)–color partitions. Re-
cently (n + t)–color partitions have been extended to split (n + t)–
color partitions by Agarwal and Sood [Split (n+ t)–color partitions and
Gordon–McIntosh eight order mock theta functions. Electron. J. Comb.,
21(2):#P2.46, 2014]. The purpose of this paper is to study the k–color
F–partitions as a combinatorial tool. The paper includes combinatorial
proofs and bijections between split (n + t)–color partitions and 2–color
F–partitions for some generalized q–series. Our results further give rise
to infinite three way combinatorial identities in conjunction with some
Rogers–Ramanujan type identities for some particular cases.

1. Introduction

The theory of partitions is a significant branch of additive number theory
and combinatorics. It seems that Liebniz was the first to raise a question
to Bernoulli about finding the count in which a given positive integer can
be written as sum of more than one positive integers. It leads to defining
a partition of a positive integer ν as ‘a nonincreasing sequence of positive
integers, whose sum is ν’. Euler in 1748, established the generating function
for the partitions and some properties of the partition function. Using the
generating function for the ordinary partitions, given in [10], Ramanujan
[16] proved the following congruence relations for the partition function.

p(5n+ 4) ≡ 0 (mod 5) ,

p(7n+ 5) ≡ 0 (mod 7) ,

p(11n+ 6) ≡ 0 (mod 11) .

Received by the editors July 3, 2016, and in revised form December 18, 2016.
2000 Mathematics Subject Classification. 05A17, 19, 11P81, 83, 84.
Key words and phrases. Rogers–Ramanujan type identities, split (n + t)–color parti-

tions, k–color F–partitions.

c©2017 University of Calgary

115



116 M. RANA AND J. K. SAREEN

In 1900, Frobenius [11] introduced the following representation for the ordi-
nary partitions as a two rowed array,(

a1 a2 · · · ar
b1 b2 · · · br

)
of nonnegative integers such that parts in each row of the array are distinct
and arranged in decreasing order, is known as a Frobenius representation or
symbol of an ordinary partition of ν if ν = r +

∑r
i=1 ai +

∑r
i=1 bi.

Example. If ν = 20 = 4 + (5 + 3 + 1 + 0) + (4 + 2 + 1 + 0), then the
corresponding Frobenius notation ( 5 3 1 0

4 2 1 0 ) is associated with the ordinary
partition 6 + 5 + 4 + 4 + 1 of ν.

Each ordinary partition of ν has a unique Frobenius symbol associated
with it. A one to one correspondence between ordinary partitions and their
Frobenius symbols is established in [11] with the help of Ferrers graphs. This
representation was used by Frobenius [11] himself while studying the group
representation theory.
More than eighty years later, Andrews [7] in 1984 generalized the concept
of the Frobenius symbol in two ways which he called Frobenius partitions or
simply F–partitions. Andrew’s two classes of F–partitions are given below:

The first class contains F–partitions in which parts appear at most k
times in any row. Let φk(ν) denote the number of all such F–partitions
of ν. Further, let Φk(q) =

∑∞
ν=0 φk(ν)qν denote the generating function of

φk(ν). Then

Φ2(q) = 1 + q + 3q2 + 5q3 + 9q4 + · · · ,
Φ3(q) = 1 + q + 3q2 + 6q3 + 11q4 + · · · .

Example. The F–partitions enumerated by φ2(2) are(
1
0

)
,

(
0
1

)
,

(
0 0
0 0

)
.

The second class contains colored F–partitions with k copies of the non-
negative integers

(ji : 0 ≤ j ≤ n− 1), 1 ≤ i ≤ k
where ji 6= j′i′ , unless j = j′ and i = i′. There is also a strict decrease
among the parts along the rows and the parts follow the order

01 < 02 < · · · < 11 < 12 < 13 < · · · < 21 <

22 < 23 < · · · < 31 < 32 < 33 < · · · .

Consider colored F–partitions of ν in which the parts in either row appear
from k copies and are distinct. Let cφk(ν) denote the number of all such par-
titions. Let cΦk(q) =

∑∞
ν=0 cφk(ν)qν be the generating function of cφk(ν).

Then

cΦ2(q) = 1 + 4q + 9q2 + 20q3 + 42q4 + · · · .
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In general, for a fixed k, the generating function for cφk(ν) is given by the
constant term (the z0 term) in the following expression given in Andrews’
AMS Memoir [7, Eq. (5.14)]:

∞∏
n=0

(1 + zqn+1)k(1 + z−1qn)k.

Example. F–partitions enumerated by cφ2(2) are

(
11
01

)
,

(
12
01

)
,

(
11
02

)
,

(
12
02

)
,

(
01
11

)
,(

01
12

)
,

(
02
11

)
,

(
02
12

)
,

(
02 01
02 01

)
.

Similar to the congruences established by Ramanujan [16], Andrews in his
book [7] established the following congruence properties for the two classes
of F–partitions.

φ2(5n+ 3) ≡ 0 (mod 5) ,

cφk(5n+ 3) ≡ 0
(
mod k2

)
.

The first class of F–partitions were used by many authors for interpreting
q–series or identities combinatorially and the direct bijections between F–
partitions and (n+ t)–colored partitions are established, see [2, 3, 17, 18, 21,
23]. The second class of F–partitions has never been used as a combinatorial
tool but some congruence relations have been established for the same, for
instance see [6, 8, 12, 14]. The relationship between certain generalized
colored F–partitions and ordinary partitions are shown by Kolitsch [15].

In 1987, Agarwal and Andrews [2] defined the (n + t)–color partitions,
(t ≥ 0) as given below:

Definition 1.1 ([2]). A partition with “(n + t)–copies of n”, t ≥ 0 is a
partition in which a part of size n, (n ≥ 0), can come in (n + t)–different
colors denoted by the subscripts, n1, n2, n3, · · · , nn+t. The parts follow the
order

11 < 12 < 13 < · · · < 21 < 22 < 23 < · · · < 31 < 32 < 33 < · · · .

Note that zeros are permitted if and only if t ≥ 1. Also zeros are not
permitted to repeat in any partition.

Definition 1.2. The weighted difference of two parts mi, nj , m ≥ n is
defined by m− n− i− j and denoted by ((mi − nj)).

Agarwal and Sood [5] have extended the (n+ t)–color partitions to ‘split
(n+ t)–color partitions’ as given below:
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Definition 1.3. Let mi be a part in an (n+ t)–color partition of a positive
integer ν. Split the color ‘i’ into two parts - ‘the green part’ and ‘the red
part’ and denote them by ‘g’ and ‘r’, respectively, such that 1 ≤ g ≤ i,
0 ≤ r ≤ i− 1, and i = g + r. An (n+ t)–color partition in which each part
splits in this manner is called a split (n+ t)–color partition.

Example. The split n–color partitions of 2 are

(1.1) 21, 22, 21+1, 11 + 11.

Note here that if red part is zero, it will not be written. Thus in the above
example 21+0 is written as 21.

The purpose of this paper is to introduce the Andrews’ second class of
F–partitions as an important combinatorial tool by providing combinatorial
interpretations of many generalized q–series. In this paper, we also explicitly
establish the bijections between 2–color F–partition functions enumerated

by cF
(k,j)
2 (ν) and split (n + t)–color partitions given by partition functions

Akj (ν), 1 ≤ k ≤ 3, in [5] and P kj (ν), 1 ≤ k ≤ 4, in [20].
The paper is organized as follows: In Section 2, we enumerate two Gordon–

McIntosh mock theta functions [13] by 2–color F–partitions combinatorially
by establishing the bijections between 2–color F–partitions and split (n+t)–
color partitions. In Section 3, we provide similar bijections for seven gen-
eralized q–series. In Section 4, direct proofs using 2–color F–partitions are
given for the generalized q–series. We conclude in Section 5.

Remark. In the main results, given in the following sections, we use only
those restricted k–color F–partitions in which the top and bottom row en-
tries of each column appear with same subscripts and we enumerate such
k–color F–partitions by cFk(ν). In this context the relevant 2–color F–
partitions are enumerated by cF2(ν).

Example. The relevant 2–color F–partitions corresponding to cF2(2) are(
11
01

)
,

(
12
02

)
,

(
01
11

)
,

(
02
12

)
,

(
02 01
02 01

)
.

2. Gordon–McIntosh mock theta functions and 2–color
F–partitions

The authors of the present paper in [19], interpreted the following two
Gordon–McIntosh mock theta functions V0(q) and V1(q), given in [13], using
signed partitions:

V0(q) = −1 + 2

∞∑
n=0

qn
2
(−q; q2)n

(q; q2)n
,

V1(q) =
∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)n+1

.

These mock theta functions were also interpreted combinatorially by Agar-
wal and Sood [4] using split (n + t)–color partitions. Using the colored
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F–partitions discussed in previous section, we interpret V0(q) and V1(q) by
establishing bijections between the 2–color F–partitions and split (n + t)–
color partitions. For more clarity, we here reproduce the results of Agarwal
and Sood [4], given in Theorems 2.1 and 2.2.

Theorem 2.1. For ν ≥ 1, let A1(ν) denote the number of ‘split n–color
partitions’ of ν such that

(4.a) the parts and their subscripts have the same parity,
(4.b) the red part of the subscripts cannot exceed 1,
(4.c) the least part is either kk (k ≥ 1) or k(k−1)+1 (k ≥ 2),
(4.d) the weighted difference of any two consecutive parts is 0.

Then

(2.1) V0(q) = 1 + 2
∞∑
ν=1

A1(ν)qν .

Remark. In conditions (4.a) and (4.d), the whole subscript i is considered,
not its parts g and r, separately.

Theorem 2.2. For ν ≥ 1, let A2(ν) denote the number of ‘split n–color
partitions’ of ν such that

(5.a) the parts and their subscripts have the same parity,
(5.b) the red part of the subscripts cannot exceed 1,
(5.c) the least part is kk (k ≥ 1),
(5.d) the weighted difference of any two consecutive parts is 0.

Then

(2.2) V1(q) =
∞∑
ν=1

A2(ν)qν .

Remark. As in Theorem 2.1, here also, in conditions (5.a) and (5.d) the
whole subscript i is considered, not its parts g and r, separately.

The following theorems give combinatorial interpretations of V0(q) and
V1(q) using 2–color F–partitions.

Theorem 2.3. Let cF 1
2 (ν) denote the number of 2–color F–partitions of ν

in which every column has the parts with same subscripts such that

(6.e) for each column ( phqh ), p ≤ q − h+ 1,
(6.f) h = 1 or 2,
(6.g) for the last column, ph = 0h,

(6.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p =

q′ + 1, ignoring the subscripts.

Then

(2.3) V0(q) =
∞∑
ν=1

A1(ν)qν =
∞∑
ν=1

cF 1
2 (ν)qν .
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Theorem 2.4. Let cF 2
2 (ν) denote the number of 2–color F–partitions of ν

in which every column has the parts with same subscripts such that

(7.e) for each column

(
ph
qh

)
, p ≤ q − h+ 1,

(7.f) h = 1 or 2,
(7.g) for the last column, ph = 01,

(7.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p =

q′ + 1, ignoring the subscripts.

Then

(2.4) V1(q) =

∞∑
ν=1

A2(ν)qν =

∞∑
ν=1

cF 2
2 (ν)qν .

Proof of Theorem 2.3. To prove the theorem, we establish a one to one cor-
respondence between the 2–color F–partitions enumerated by cF 1

2 (ν) and
the split n–color partitions enumerated by A1(ν). We do this by mapping
each column ( phqh ) of the 2–color F–partition to a single part mg+r of a split
n–color partition enumerated by A1(ν). The mapping φ is

(2.5) φ :

(
ph
qh

)
→ (p+ q + 1)(q−p−h+2)+(h−1), if p ≤ q − h+ 1

and the inverse mapping φ−1 is given by

(2.6) φ−1 : mg+r →


(
m−(g+r)

2

)
r+1(

m+(g+r)−2
2

)
r+1

 , if m ≡ g + r (mod 2).

Now suppose we have any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
in a

2–color F–partition enumerated by cF 1
2 (ν) with

φ :

(
ph
qh

)
= mg+r and φ :

(
p′k
q′k

)
= ng′+r′ .

Then since (
ph
qh

)
→ (p+ q + 1)(q−p−h+2)+(h−1) = mg+r

and (
p′k
q′k

)
→ (p′ + q′ + 1)(q′−p′−k+2)+(k−1) = ng′+r′ ,
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we have

((mg+r − ng+r)) = m− n− (g + r)− (g′ + r′)

= (p+ q + 1)− (p′ + q′ + 1)− (q − p− h+ 2 + (h− 1))

− (q′ − p′ − k + 2 + (k − 1))

= 2(p− q′ − 1).(2.7)

Clearly (2.7) and (6.h) imply (4.d).
Now using (2.5)

(2.8) m− (g + r) = (p+ q + 1)− (q − p− h+ 2 + (h− 1)) = 2p

which implies (m− (g+ r)) ≡ 0 (mod 2), hence (4.a) holds. Together, (6.f)
and (2.5) imply (4.b). Further, (6.f), (6.g), and (2.5) imply (4.c).

To see the reverse implication, we consider the inverse images of two
consecutive parts mg+r, ng′+r′ of a split n–color partition enumerated by
A1(ν),

(2.9) φ−1 : mg+r =

(
(m−(g+r)2 )r+1

(m+(g+r)−2
2 )r+1

)
and

(2.10) φ−1 : ng′+r′ =

(
(n−(g

′+r′)
2 )r+1

(n+(g′+r′)−2
2 )r+1

)
.

That is,

p =
m− (g + r)

2
,(2.11)

q =
m+ (g + r)− 2

2
,(2.12)

p′ =
n− (g′ + r′)

2
,(2.13)

q′ =
n+ (g′ + r′)− 2

2
(2.14)

and so

m− (g + r) =2p,(2.15)

n+ (g′ + r′) =2q′ + 2,(2.16)

2p− 2q′ − 2 =((mi − nj)).(2.17)

Together, (2.17) and (4.d) imply (6.h). Further, (2.15) and (4.c) implies
(6.g); also (6.f) is obvious from (2.6) and (4.b). Now from (2.6), (2.11), and
(2.12), we have

q − p− h+ 2 =
m+ (g + r)− 2

2
− m− (g + r)

2
− (r + 1) + 2

= g.(2.18)



122 M. RANA AND J. K. SAREEN

Since the green part of the subscript, g ≥ 1, therefore (2.18) implies (6.e).
This completes the proof of Theorem 2.3. �

Example 2.5. To illustrate the bijection we have constructed, an example
for ν = 7 is shown in the table below:

Split n–color partitions relevant
to A1(7)

2–color F–partitions relevant to
cF 1

2 (7)

77

(
01
61

)
76+1

(
02
62

)
6411

(
11 01
41 01

)
63+111

(
12 01
42 01

)
5122

(
21 01
21 11

)
5121+1

(
21 02
21 12

)

Hence

(2.19) A1(ν) = cF 1
2 (ν) = 6.

Sketch of proof of Theorem 2.4. In this theorem, the only difference is that
in (5.c) of Theorem 2.2, the least part is of the type kk, therefore in the
corresponding last column of 2–color F–partition, as = 01 and vice versa.

�

Example 2.6. To illustrate the bijection we have constructed, the example
for ν = 7 is shown in the table below:

Split n–color partitions relevant
to A2(7)

2–color F–partitions relevant to
cF 2

2 (7)

77

(
01
61

)
6411

(
11 01
41 01

)
63+111

(
12 01
42 01

)
5122

(
21 01
21 11

)
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Hence

(2.20) A2(ν) = cF 2
2 (ν) = 4.

3. Bijections between split (n+t)–color partitions and 2–color
F–partitions

Rana et. al. [20], interpreted the following four generalized q–series using
split (n+ t)–color partitions. Let S = {−1, 1, 3, 5, 7, . . .}. For |q| < 1, j ∈ S
and 1 ≤ k ≤ 4, define f (k,j)(q) by

f (1,j)(q) =
∞∑
n=0

(−q; q2)nqn[1+(n−1)(j+3)/2]

(q; q2)n(q4; q4)n
,(3.1)

f (2,j)(q) =
∞∑
n=0

(−q; q2)nqn[(n+1)(j+3)/2]

(q; q2)n+1(q4; q4)n
,(3.2)

f (3,j)(q) =
∞∑
n=0

(−q; q2)nqn[1+(n+1)(j+3)/2]

(q; q2)n+1(q4; q4)n
,(3.3)

f (4,j)(q) =
∞∑
n=0

(−q; q2)nqn[1+(n+1)(j+3)/2]

(q; q2)n(q4; q4)n
.(3.4)

We now interpret (3.1)–(3.4) using 2–color F–partitions by establishing bi-
jections between split (n + t)–color partitions and 2–color F–partitions in
the following theorems, respectively.

Theorem 3.1. For j ∈ S, let A(1,j)(ν) represent the number of split n–color
partitions of ν such that

(8.a) the parts and their subscripts have the same parity,
(8.b) the value of the red part can be 0 or 1,
(8.c) if mi is the least or only summand of partition, then m − i ≡

0 (mod 4),
(8.d) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Further, let cF
(1,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which the top and bottom row entries of each column appear with the same
subscripts such that

(8.e) for each column

(
ph
qh

)
, p ≤ q − h+ 1, ignoring the subscripts,

(8.f) h = 1 or 2,
(8.g) for the last column, p ≡ 0 (mod 2), ignoring the subscript,

(8.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 3)/2 and{
p ≡ q′ (mod 2) , j ≡ 1 (mod 4)
p 6≡ q′ (mod 2) , j ≡ 3 (mod 4)
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ignoring the subscripts.

Then
∞∑
ν=0

A(1,j)(ν)qν =
∞∑
ν=o

cF
(1,j)
2 (ν)qν .

Theorem 3.2. For j ∈ S, let A(2,j)(ν) represent the number of split (n+1)–
color partitions of ν such that

(9.a) the parts and their subscripts have the opposite parity,
(9.b) the value of the red part can be 0 or 1,
(9.c) the smallest summand is of the form ii+1,
(9.d) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Further, let cF
(2,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which top and bottom row entries of each column appear with same subscripts
such that

(9.e) for each column

(
ph
qh

)
, p ≤ q − h+ 2,

(9.f) h = 1 or 2,
(9.g) for the last column, either ph = 01 or p ≥ (j + 3)/2, ignoring the

subscript,

(9.h) for any two adjacent columns,

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 5)/2 and{
p ≡ q′ (mod 2) , j ≡ 3 (mod 4)
p 6≡ q′ (mod 2) , j ≡ 1 (mod 4)

ignoring the subscripts.

Then
∞∑
ν=0

A(2,j)(ν)qν =

∞∑
ν=0

cF
(2,j)
2 (ν)qν .

Theorem 3.3. For j ∈ S, let A(3,j)(ν) represent the number of split (n+2)–
color partitions of ν such that

(10.a) the parts and their subscripts have the same parity,
(10.b) the value of the red part can be 0 or 1,
(10.c) the smallest summand is of the form ii+2,
(10.d) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Further, let cF
(3,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which top and bottom row entries of each column appear with same subscripts
such that

(10.e) for each column

(
ph
qh

)
, p ≤ q − h+ 3,

(10.f) h = 1 or 2,
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(10.g) for the last column, either ph = 01 or p ≥ (j + 5)/2, ignoring the
subscript,

(10.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 7)/2 and{
p ≡ q′ (mod 2) , j ≡ 1 (mod 4)
p 6≡ q′ (mod 2) , j ≡ 3 (mod 4)

ignoring the subscripts.

Then
∞∑
ν=0

A(3,j)(ν)qν =

∞∑
ν=0

cF
(3,j)
2 (ν)qν .

Theorem 3.4. For j ∈ S, let A(4,j)(ν) represent the number of split n–color
partitions of ν such that

(11.a) the parts and their subscripts have the same parity,
(11.b) the value of the red part can be 0 or 1,
(11.c) if mi is the least or only summand of partition, then m ≥ (j + 4)

and m− i ≡ (j + 3) (mod 4),
(11.d) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Further, let cF
(4,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which the top and bottom row entries of each column appear with same
subscripts such that

(11.e) for each column

(
ph
qh

)
, p ≤ q − h+ 1,

(11.f) h = 1 or 2,

(11.g) for last column

(
ph
qh

)
, p + q − 3 ≥ j and p ≡ (j + 3)/2 (mod 2),

ignoring the subscripts,

(11.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 3)/2 and{
p ≡ q′ (mod 2) , j ≡ 1 (mod 4)
p 6≡ q′ (mod 2) , j ≡ 3 (mod 4)

ignoring the subscripts.

Then
∞∑
ν=0

A(4,j)(ν)qν =
∞∑
ν=0

cF
(4,j)
2 (ν).

Remark. The partition functions A(k,j)(ν) of Theorems 3.1–3.4, are the

same as partition functions P ji (ν), 1 ≤ i ≤ 4 defined in Theorems 2.1–2.4

given in [20] and the partition functions cF
(k,j)
2 (ν), 1 ≤ k ≤ 4 are new. In
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Theorems 3.1–3.4, conditions (l.a), (l.c), and (l.d), 8 ≤ l ≤ 11, the whole
subscript i is considered irrespective of its parts g and r separately.

Agarwal and Sood [5] explored the split (n+t)–color partitions to interpret
following three basic q–series combinatorially. For |q| < 1, j ∈ S and 5 ≤
k ≤ 7, define f (k,j)(q) by

f (5,j)(q) =
∞∑
n=0

(−q; q2)nqn[1+(n−1)(j+3)/2]

(q; q)2n
,(3.5)

f (6,j)(q) =
∞∑
n=0

(−q; q2)nqn(n+1)(j+3)/2]

(q; q)2n+1
,(3.6)

f (7,j)(q) =

∞∑
n=0

(−q; q2)nqn[1+(n+1)(j+3)/2]

(q; q)2n+1
.(3.7)

We here extend the results of Agarwal and Sood [5] and use the 2–color
F–partitions to interpret (3.5)–(3.7) in the following theorems, respectively.

Theorem 3.5. For j ∈ S and ν ≥ 0, let A(5,j)(ν) denote the number of
‘split n–color partitions’ of ν such that

(12.a) the parts and their subscripts have the same parity,
(12.b) the red part of the subscripts cannot exceed 1,
(12.c) the weighted difference of any two consecutive parts is greater than

j and even.

Further, let cF
(5,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which the top and bottom row entries of each column appear with same
subscripts such that

(12.d) for each column

(
ph
qh

)
, p ≤ q − h+ 1,

(12.e) h = 1 or 2,

(12.f) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 3)/2, ignoring the subscripts.

Then
∞∑
ν=0

A(5,j)(ν)qν =

∞∑
ν=0

cF
(5,j)
2 (ν)qν .

Remark. In Theorem 3.5, conditions (12.a) and (12.c), the whole subscript
i is considered, not its parts g and r separately. Similarly, in Theorems 3.6
and 3.7 given below, conditions (l.a), (l.c), and (l.d), l = 13, 14, the whole
subscript i is considered, not its parts g and r separately.

Theorem 3.6. For j ∈ S and ν ≥ 0, let A(6,j)(ν) denote the number of
‘split (n+ 1)–color partitions’ of ν such that

(13.a) the parts and their subscripts have the opposite parity,
(13.b) the red part of the subscripts cannot exceed 1,
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(13.c) the smallest part is of the form ii+1 for some i and the red part of
its subscript is 0,

(13.d) the weighted difference between any two consecutive parts is greater
than j and even.

Further, let cF
(6,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which the top and bottom row entries of each column appear with same
subscripts such that

(13.e) for each column

(
ph
qh

)
, p ≤ q − h+ 2,

(13.f) h = 1 or 2,
(13.g) for the last column, either ph = 01 or p ≥ (j + 3)/2, ignoring the

subscript,

(13.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 5)/2, ignoring the subscripts.

Then
∞∑
ν=0

A(6,j)(ν)qν =
∞∑
ν=0

cF
(6,j)
2 (ν)qν .

Theorem 3.7. For j ∈ S and ν ≥ 0, let A(7,j)(ν) denote the number of
‘split (n+ 2)–color partitions’ of ν such that

(14.a) the parts and their subscripts have the same parity,
(14.b) the red part of the subscripts cannot exceed 1,
(14.c) the smallest part is of the form ii+2 for some i and the red part of

its subscript is 0,
(14.d) the weighted difference between any two consecutive parts is greater

than j and even.

Further, let cF
(7,j)
2 (ν) denote the number of 2–color F–partitions of ν in

which top and bottom row entries of each column appear with same subscripts
such that

(14.e) for each column

(
ph
qh

)
, p ≤ q − h+ 3,

(14.f) h = 1 or 2,
(14.g) for the last column, either ph = 01 or p ≥ (j + 5)/2, ignoring the

subscript,

(14.h) for any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
, we have p ≥

q′ + (j + 7)/2, ignoring the subscripts.

Then
∞∑
ν=0

A(7,j)(ν)qν =
∞∑
ν=0

cF
(7,j)
2 (ν)qν .
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Note. The partition functions A(k,j)(ν), 5 ≤ k ≤ 7 of Theorems 3.5–3.7,
respectively are due to Agarwal and Sood [5] and the partition functions

cF
(k,j)
2 (ν), 5 ≤ k ≤ 7 are new.

We now give proofs of Theorems 3.5–3.7.

Proof of Theorem 3.5. We establish a one to one correspondence between

the 2–color F–partitions enumerated by cF
(5,j)
2 (ν) and the split n–color

partitions enumerated by A(5,j)(ν). We do this by mapping each column

( phqh ) of the 2–color F–partition enumerated by cF
(5,j)
2 (ν) to a single part

mg+r of a split n–color partition enumerated by A(5,j)(ν). The mapping φ
is

(3.8) φ :

(
ph
qh

)
→ (p+ q + 1)(q−p−h+2)+(h−1), if p ≤ q − h+ 1

and the inverse mapping φ−1 is given by

(3.9) φ−1 : mg+r →


(
m−(g+r)

2

)
r+1(

m+(g+r)−2
2

)
r+1

 , if m ≡ (g + r) (mod 2),

Now suppose we have any two adjacent columns

(
ph
qh

)
and

(
p′k
q′k

)
in a

2–color F–partition enumerated by cF
(5,j)
2 (ν) with

φ :

(
ph
qh

)
= mg+r and φ :

(
p′k
q′k

)
= ng′+r′ .

Then since (
ph
qh

)
→ (p+ q + 1)(q−p−h+2)+(h−1) = mg+r

and (
p′k
q′k

)
→ (p′ + q′ + 1)(q′−p′−k+2)+(k−1) = ng′+r′ ,

we have

((mi − nj)) = m− n− i− j
= (p+ q + 1)− (p′ + q′ + 1)− (q − p− h+ 2 + (h− 1))

− (q′ − p′ − k + 2 + (k − 1))

= 2(p− q′ − 1).(3.10)

Hence (3.10) and (12.f) imply (12.c).
Now using (3.8), we have

m− (g + r) = (p+ q + 1)− (q − p− h+ 2 + (h− 1)) = 2p

which implies (m−(g+r)) ≡ 0 (mod 2), hence (12.a) holds. Further, (12.b)
is obvious from (3.8) and (12.e).
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To see the reverse implication, we consider the inverse images of two
consecutive parts mg+r, ng′+r′ of a split n–color partition enumerated by

A(5,j)(ν)

φ−1 : mg+r =


(
m−(g+r)

2

)
r+1(

m+(g+r)−2
2

)
r+1


and

φ−1 : ng′+r′ =


(
n−(g′+r′)

2

)
r′+1(

n+(g′+r′)−2
2

)
r′+1

 ,

that is,

p =
m− (g + r)

2
,(3.11)

q =
m+ (g + r)− 2

2
,(3.12)

p′ =
n− (g′ + r′)

2
,(3.13)

q′ =
n+ (g′ + r′)− 2

2
,(3.14)

and so

m− (g + r) = 2p,(3.15)

n+ (g′ + r′) = 2q′ + 2,(3.16)

hence

(3.17) ((mi − nj)) = 2p− 2q′ − 2.

Together, (3.17) and (12.c) imply (12.f). Also (12.e) is obvious from (3.9)
and (12.b). Now from (3.9), (3.11), and (3.12), we have

q − p− h+ 2 =
m+ (g + r)− 2

2
− m− (g + r)

2
− (r + 1) + 2

= g.(3.18)

Hence (3.18) implies (12.d) using the fact that g ≥ 1. This completes the
proof of Theorem 3.5. �

Sketch of proof of Theorem 3.6. The map φ is given by

(3.19) φ :

(
ph
qh

)
→ (p+ q + 1)(q−p−h+3)+(h−1) if p ≤ q − h+ 2,

and the inverse mapping φ−1 is given by

(3.20) φ−1 : mi →


(
m−(g+r)+1

2

)
r+1(

m+(g+r)−3
2

)
r+1

 , if m ≡ (g + r + 1) (mod 2).
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The part 01 in the split (n+ 1)–color partition corresponds to the phantom
column

(
01
−11
)

in the restricted 2–color F–partition. Since the part 01 does
not have any contribution towards the total value of ν, the corresponding
column in the 2–color F–partitions is eliminated.

Observe that if 01 appears as a part in the split (n + 1)–color partition
then after ignoring the corresponding phantom column of the 2–color F–
partition, the next column satisfies the condition p ≥ (j + 3)/2. �

Sketch of proof of Theorem 3.7. The map φ is given by

(3.21) φ :

(
ph
qh

)
→ (p+ q + 1)(q−p−h+4)+(h−1) if p ≤ q − h+ 3,

and the inverse mapping φ−1 is given by

(3.22) φ−1 : mi →


(
m−(g+r)+2

2

)
r+1(

m+(g+r)−4
2

)
r+1

 , if m ≡ (g + r) (mod 2).

As in the case of Theorem 3.6, the phantom column
(

01
−11
)

in the colored
F–partition corresponds to the part 02 in the split (n+2)–color partition as
discussed in Theorem 3.6. Also the part 02 does not have any contribution
towards the total value of ν, therefore the corresponding column in the
colored F–partitions is eliminated.

Note that if 02 appears as a part in the split (n + 2)–color partition
then the next column satisfies the condition p ≥ (j + 5)/2, ignoring the
corresponding phantom column of 2–color F–partitions. �

The proofs of Theorems 3.1–3.3 are similar to the proofs of Theorems 3.5–
3.7, respectively. Using the same map one can proceed with similar steps
to obtain the results. For the proof of Theorem 3.4, use the map given in
Theorem 3.5 and the same steps to obtain the result.

In the next section, we use the method given in [1] and provide the direct
proof of Theorems 3.1–3.7 by classifying the 2–color F–partitions into sub-
classes and use recurrence relations or q–functional equations to generate the
desired q–series. Section 5 discusses the Roger–Ramanujan type identities
as a particular case.

4. Direct proofs of generalized q–series using 2–color
F–partitions

We now provide a direct proof of Theorem 3.5 in terms of 2–color F–
partitions.

Let cF
(5,j)
2 (ν) enumerate the 2–color F–partitions as described in Theo-

rem 3.5. Our goal is to prove that

(4.1)

∞∑
ν=0

cF
(5,j)
2 (ν)qν =

∞∑
n=0

(−q; q2)nqn[1+(n−1)(j+3)/2]

(q; q)2n
.
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Proof of Theorem 3.5. Let cF
(5,j)
2 (m, ν) represent the number of 2–color F–

partitions of ν enumerated by cF
(5,j)
2 (ν) into m columns. Split the partitions

enumerated by cF
(5,j)
2 (m, ν) into following four classes:

(i) contains ( phqh ) as the mth column, p 6= 0,

(ii) contains
(
01
01

)
as the mth column,

(iii) contains
(
02
12

)
as the mth column,

(iv) contains
(
01
q1

)
, q ≥ 1 or

(
02
q2.

)
, q ≥ 2 as the mth column.

Transform the partitions of class (i) by subtracting 1 from the top and
bottom row entries of each column, we get partitions of ν−2m into m parts
without disturbing the restrictions on the columns as described in Theorem

3.5. Thus the transformed partitions are enumerated by cF
(5,j)
2 (m, ν− 2m).

Transform the partitions of class (ii) by deleting the column
(
01
01

)
and

then subtracting (j + 3)/2 from the top and bottom row entries of each

column. The transformed partitions are enumerated by cF
(5,j)
2 (m − 1, ν −

m(j + 3) + j + 2) as this transformation does not effect the conditions of
Theorem 3.5.

Next, transform the partitions of class (iii) by deleting the column
(
02
12

)
and then subtracting (j+ 5)/2 from the top and bottom row entries of each

column. The transformed partitions are enumerated by cF
(5,j)
2 (m − 1, ν −

m(j + 5) + j + 3) as this transformation does not effect the conditions of
Theorem 3.5.

Finally, transform the partitions of class (iv) by subtracting 1 from the top
row entries of each column except the last column and 1 from the bottom row

entries of each column. We get the partitions enumerated by cF
(5,j)
2 (m, ν −

2m + 1) having the mth column as
(

0h
(q−1)h

)
. Thus the actual number of

partitions in class (iv) are obtained by subtracting the number of those

partitions which are enumerated by cF
(5,j)
2 (m, ν − 2m + 1) with the last

column as ( phqh ) , p 6= 0 from cF
(5,j)
2 (m, ν − 2m + 1). Thus the transformed

partitions are enumerated by cF
(5,j)
2 (m, ν−2m+1)−cF (5,j)

2 (m, ν−4m+1).

Hence we get the following recurrence formula for cF
(5,j)
2 (m, ν) :

cF
(5,j)
2 (m, ν) = cF

(5,j)
2 (m, ν − 2m) + cF

(5,j)
2 (m− 1, ν −m(j + 3) + j + 2)

+ cF
(5,j)
2 (m− 1, ν −m(j + 5) + j + 3)

+ cF
(5,j)
2 (m, ν − 2m+ 1)− cF (5,j)

2 (m, ν − 4m+ 1),(4.2)

where cF
(5,j)
2 (0, 0) = 1 and cF

(5,j)
2 (m, ν) = 0 for ν < 0.

For |q| < 1 and |z| < |q|−1, let gj(z, q) be defined by

(4.3) gj(z, q) =

∞∑
ν=0

∞∑
m=0

cF
(5,j)
2 (m, ν)zmqν , for all j ∈ S.
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Substituting cF
(5,j)
2 (m, ν) from (4.2) into (4.3), we get the q–functional equa-

tion

gj(z, q) = gj(zq2, q) + zqgj(zqj+3, q) + zq2gj(zqj+5, q)

+ q−1gj(zq2, q)− q−1gj(zq4, q).(4.4)

Setting

(4.5) gj(z, q) =
∞∑
n=0

α(n, q)zn

and using (4.4) in (4.5) then examining the coefficients of zn, we get

(4.6) α(n, q) =
q1+(j+3)(n−1)(1 + q2n−1)

(1− q2n)(1− q2n−1)
α(n− 1, q).

Iterating (4.6) n times and noting that α(0, q) = 1, we find

(4.7) α(n, q) =
(−q; q2)nqn(1+(j+3)(n−1)/2)

(q2; q2)n(q; q2)n
.

Therefore,

gj(z, q) =
∞∑
n=0

(−q; q2)nqn(1+(j+3)(n−1)/2)

(q; q)2n
zn(4.8)

= f (5,j)(z, q)(4.9)

and
∞∑
ν=0

cF
(5,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=0

cF
(5,j)
2 (m, ν)

)
qν

= f (5,j)(1, q)

= f (5,j)(q).

This proves Theorem 3.5. �

Proof of Theorem 3.6. Let ρj(ν) represent the number of 2–color F–partitions

of ν enumerated by cF
(6,j)
2 (ν) with the additional condition that the last col-

umn is of the type
(
0h
qh

)
and let ρj(m, ν) represent the number of 2–color

F–partitions of ν enumerated by ρj(ν) into m columns. Further, let

(4.10) hj(q) =

∞∑
ν=0

ρj(ν)qν

and

(4.11) hj(z, q) =
∞∑

ν,m=0

ρj(m, ν)zmqν .
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With the help of (4.2), we have

ρj(m, ν) = cF
(5,j)
2 (m− 1, ν −m(j + 3) + j + 2)(4.12)

+
1

2
{cF (5,j)

2 (m− 1, ν −m(j + 5) + j + 3)

+ cF
(5,j)
2 (m, ν − 2m+ 1)− cF (5,j)

2 (m, ν − 4m+ 1)},

where cF
(5,j)
2 (0, 0) = 1 and cF

(5,j)
2 (m, ν) = 0 for ν < 0.

Transforming (4.12) into a q–functional equation, we get

hj(z, q) = zqgj(zqj+3, q) +
1

2
zq2gj(zqj+5, q)(4.13)

+
1

2
q−1gj(zq2, q)− 1

2
q−1gj(zq4, q).

Setting

(4.14) hj(z, q) =
∞∑
n=0

β(n, q)zn

and then examining the coefficients of zn in the above expression (4.13) we
get

2β(n, q) = 2q(j+3)(n−1)+1α(n− 1, q)(4.15)

+ q(j+5)(n−1)+2α(n− 1, q)

+ q2n−1α(n, q)− q4n−1α(n, q).

Substituting α(n, q) from (4.7) into (4.15) and then simplifying, we get

(4.16) β(n, q) =
(−q; q2)n−1qn(1+(j+3)(n−1)/2)

(q2; q2)n−1(q; q2)n
.

Thus

(4.17) hj(z, q) =
∞∑
n=0

(−q; q2)nq(n+1)[1+(j+3)n/2]

(q2; q2)n(q; q2)n+1
zn+1 = zqf (6,j)(zq, q).

Define ψj(m, ν) by

f (6,j)(z, q) =

∞∑
m,ν=0

ψj(m, ν)zmqν .

By examining the coefficients of (4.17), we get

ρj(m+ 1, ν +m+ 1) = ψj(m, ν).

If 1 is subtracted from the bottom row entry of each column which is enu-
merated by ρj(m+ 1, ν +m+ 1) ignoring the subscripts, we have the final

partitions enumerated by cF
(6,j)
2 (m+ 1, ν). Note here that as illustrated in
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the bijective proof of Theorem 3.6, we discard the phantom column
(

0
−1
)
.

Thus

ψj(m, ν) = cF
(6,j)
2 (m+ 1, ν)

and so

(4.18)
∞∑

m,ν=0

cF
(6,j)
2 (m+ 1, ν)zmqν = f (6,j)(z, q).

Now

∞∑
ν=0

cF
(6,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=1

cF
(6,j)
2 (m, ν)

)
qν

=
∞∑

m,ν=0

cF 2
(6,j)(m+ 1, ν)qν

= f (6,j)(1, q)

= f (6,j)(q).

This proves Theorem 3.6. �

Proof of Theorem 3.7. Rewrite equation (4.17) as

(4.19) hj(z, q) = zqf (7,j)(z, q).

Define ηj(m, ν) by

(4.20) f (7,j)(z, q) =
∞∑

m,ν=0

ηj(m, ν)zmqν .

By examining the coefficients of (4.19), we get

(4.21) ρj(m+ 1, ν + 1) = ηj(m, ν).

If the last column
(
0h
qh

)
is replaced by

(
0h
qh−1

)
which is enumerated by ρj(m+

1, ν+1), we have the final partitions enumerated by cF
(7,j)
2 (m+1, ν). Noting

that as illustrated in bijective proof of Theorem 3.7, we discard the phantom
column

(
0
−1
)
. Thus

ηj(m, ν) = cF
(7,j)
2 (m+ 1, ν)

and introduce

(4.22)

∞∑
m,ν=0

cF
(7,j)
2 (m+ 1, ν)zmqν = f (7,j)(z, q).
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Now
∞∑
ν=0

cF
(7,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=1

cF
(7,j)
2 (m, ν)

)
qν

=
∞∑

m,ν=0

cF
(7,j)
2 (m+ 1, ν)qν

= f (7,j)(1, q)

= f (7,j)(q).

This proves Theorem 3.7. �

Sketch of Proof of Theorem 3.1. The proof of Theorem 3.1 proceeds in the
same manner as Theorem 3.5; we obtain the following recurrence relations
and hence the q–functional equation.

cF
(1,j)
2 (m, ν) = cF

(1,j)
2 (m, ν − 4m) + cF

(1,j)
2 (m− 1, ν −m(j + 3) + j + 2)

+ cF
(1,j)
2 (m− 1, ν −m(j + 5) + j + 3)

+ cF
(1,j)
2 (m, ν − 2m+ 1)− cF (1,j)

2 (m, ν − 6m+ 1),(4.23)

gj1(z, q) = g(1,j)(zq4, q) + zqgj1(zq
j+3, q) + zq2gj1(zq

j+5, q)

+ q−1gj1(zq
2, q)− q−1gj1(zq

6, q).(4.24)

Setting

gj1(z, q) =

∞∑
n=0

α′(n, q)zn

in (4.24) and then examining the coefficients of zn in the above expression
we get

α′(n, q) =
q1+(j+3)(n−1)(1 + q2n−1)

(1− q4n)(1− q2n−1)
α′(n− 1, q).

Iterating the above expression n times and noting that α′(0, q) = 1, we find
that

(4.25) α′(n, q) =
(−q; q2)nqn(1+(j+3)(n−1)/2)

(q4; q4)n(q; q2)n
.

Therefore,

gj1(z, q) =
∞∑
n=0

(−q; q2)nqn(1+(j+3)(n−1)/2)

(q4; q4)n(q; q2)n
zn

= f (1,j)(z, q)
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and

∞∑
ν=0

cF
(1,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=0

cF
(1,j)
2 (m, ν)

)
qν

= f (1,j)(1, q)

= f (1,j)(q).

This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2. LetDj(ν) represent the number of 2–color F–partitions

of ν enumerated by cF
(2,j)
2 (ν) with the additional constraint that the last

column is of the type
(
0h
qh

)
and let Dj(m, ν) represent the number of 2–color

F–partitions of ν enumerated by Dj(ν) into m columns. Further, let

(4.26) hj1(q) =
∞∑
ν=0

Dj(ν)qν

and

(4.27) hj1(z, q) =
∞∑

ν,m=0

Dj(m, ν)zmqν .

With the help of 4.23, we have

Dj(m, ν) = cF
(1,j)
2 (m− 1, ν −m(j + 3) + j + 2)

+
1

2
[cF

(1,j)
2 (m− 1, ν −m(j + 5) + j + 3)

+ cF
(1,j)
2 (m, ν − 2m+ 1)− cF (1,j)

2 (m, ν − 6m+ 1)],(4.28)

where cF
(1,j)
2 (0, 0) = 1 and cF

(1,j)
2 (m, ν) = 0 for ν < 0. Transforming (4.28)

into a q–functional equation, we get

hj1(z, q) = zqf (1,j)(zqj+3, q) +
1

2
zq2f (1,j)(zqj+5, q)

+
1

2
q−1f (1,j)(zq2, q)− 1

2
q−1f (1,j)(zq6, q).(4.29)

Setting

(4.30) hj1(z, q) =
∞∑
n=0

γ′(n, q)zn,

and examining the coefficients of zn in (4.30) we get

2γ′(n, q) = 2q(j+3)(n−1)+1α′(n− 1, q) + q(j+5)(n−1)+2α′(n− 1, q)(4.31)

+ q2n−1α′(n, q)− q6n−1α′(n, q).
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Substituting α′(n, q) from (4.25) into (4.31) and then simplifying, we get

(4.32) γ′(n, q) =
(−q; q2)n−1qn(1+(j+3)(n−1)/2)

(q4; q4)n−1(q; q2)n
.

Thus

(4.33) hj1(z, q) =
∞∑
ν=0

(−q; q2)nq(n+1)[1+(j+3)n/2]

(q4; q4)n(q; q2)n+1
zn+1 = zqf (2,j)(zq, q).

Define Qj(m, ν) by

(4.34) f (2,j)(z, q) =
∞∑

m,ν=0

Qj(m, ν)zmqν .

By examining the coefficients of 4.35, we get

Dj(m+ 1, ν +m+ 1) = Qj(m, ν).

If each summand is subtracted by 1 which is enumerated by Dj(m+ 1, ν +
m + 1) ignoring the subscripts, we have the final partitions enumerated by

cF
(2,j)
2 (m+ 1, ν). Thus

Qj(m, ν) = cF
(2,j)
2 (m+ 1, ν)

and so
∞∑

m,ν=0

cF
(2,j)
2 (m+ 1, ν)zmqν = f (2,j)(z, q).

Now
∞∑
n=0

cF
(2,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=1

cF
(2,j)
2 (m, ν)

)
qν

=

∞∑
m,ν=0

cF
(2,j)
2 (m+ 1, ν)qν

= f (2,j)(1, q)

= f (2,j)(q).

This completes the proof of Theorem 3.2. �

Proof of Theorem 3.3. Rewrite (4.31) as

(4.35) hj1(z, q) = zqf (3,j)(z, q).

Define Rj(m, ν) by

(4.36) f (3,j)(z, q) =

∞∑
m,ν=0

Rj(m, ν)zmqν .
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By examining the coefficients of (4.35), we get

(4.37) Dj(m+ 1, ν + 1) = Rj(m, ν).

If last column
(
0h
qh

)
is replaced by

(
0h
qh−1

)
which is enumerated by Dj(m+

1, ν+ 1), we have the final partitions enumerated by cF
(3,j)
2 (m+ 1, ν). Thus

Rj(m, ν) = cF
(3,j)
2 (m+ 1, ν)

and

(4.38)
∞∑

m,ν=0

cF
(3,j)
2 (m+ 1, ν)zmqν = f (3,j)(z, q).

Now
∞∑
ν=0

cF
(3,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=1

cF
(3,j)
2 (m, ν)

)
qν

=
∞∑

m,ν=0

cF
(3,j)
2 (m+ 1, ν)qν

= f (3,j)(1, q)

= f (3,j)(q).

This completes the proof of Theorem 3.3. �

Proof of Theorem 3.4. Let cF
(4,j)
2 (m, ν) represent the number of 2–color F–

partitions of ν enumerated by cF
(4,j)
2 (ν) into m columns. Split the partitions

enumerated by cF
(4,j)
2 (m, ν) into following four classes:

(i) contains ( phqh ) as the mth column, p 6= (j + 3)/2,

(ii) contains
(

((j+3)/2)1
((j+3)/2)1

)
as the mth column,

(iii) contains
(

((j+3)/2)2
((j+5)/2)2

)
as the mth column,

(iv) contains
(

((j+3)/2)1
q1

)
, q ≥ (j + 5)/2 or

(
((j+3)/2)2

q2

)
, q ≥ (j + 7)/2

as the mth column.

Transform the partitions of class (i) by subtracting 2 from the top and
bottom row entries of each column, we get partitions of (ν−4m) into m parts
without disturbing the restrictions on the columns as described in Theorem

3.4. Thus the transformed partitions are enumerated by cF
(4,j)
2 (m, ν− 4m).

Further, transform the partitions of class (ii) by deleting the column(
((j+3)/2)1
((j+3)/2)1

)
and then subtracting (j + 3)/2 from the top and bottom row

entries of each column. The transformed partitions are enumerated by

cF
(4,j)
2 (m − 1, ν −m(j + 3) − 1) as this transformation does not effect the

conditions of Theorem 3.4.
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Next, transform the partitions of class (iii) by deleting the column(
((j+3)/2)2
((j+5)/2)2

)
and then subtracting (j + 5)/2 from the top and bottom row

entries of each column. The transformed partitions are enumerated by

cF
(4,j)
2 (m− 1, ν −m(j + 5)) as this transformation does not effect the con-

ditions of Theorem 3.4.
Finally, transform the partitions of class (iv) by subtracting 1 from the top

row entries of each column except the last column and 1 from the bottom row

entries of each column. We get the partitions enumerated by cF
(4,j)
2 (m, ν −

2m+1) having the mth column as
(

((j+3)/2)1
q1

)
, q ≥ (j+5)/2 or

(
((j+3)/2)2

q2

)
,

q ≥ (j+7)/2. Thus the actual number of partitions in class (iv) are obtained
by subtracting the number of those partitions which are enumerated by

cF
(4,j)
2 (m, ν − 2m + 1) with the last column as ( phqh ) , p 6= (j + 3)/2 from

cF
(4,j)
2 (m, ν − 2m+ 1). Thus the transformed partitions are enumerated by

cF
(4,j)
2 (m, ν − 2m+ 1)− cF (4,j)

2 (m, ν − 6m+ 1). Hence we get the following

recurrence formula for cF
(4,j)
2 (m, ν) :

cF
(4,j)
2 (m, ν) = cF

(4,j)
2 (m, ν − 4m)(4.39)

+ cF
(4,j)
2 (m− 1, ν −m(j + 3)− 1)

+ cF
(4,j)
2 (m− 1, ν −m(j + 5))

+ cF
(4,j)
2 (m, ν − 2m+ 1)− cF (4,j)

2 (m, ν − 6m+ 1),

where cF
(4,j)
2 (0, 0) = 1 and cF

(4,j)
2 (m, ν) = 0 for ν < 0.

For |q| < 1 and |z| < |q|−1, let gj1(z, q) be defined by

(4.40) gj1(z, q) =

∞∑
ν=0

∞∑
m=0

cF
(4,j)
2 (m, ν)zmqν , for all j ∈ S

Substituting cF
(4,j)
2 (m, ν) from (4.39) into (4.40), we get the q–functional

equation

gj1(z, q) =gj1(zq
4, q) + zqj+4gj1(zq

j+3, q) + zqj+5gj1(zq
j+5, q)

+ q−1gj1(zq
2, q)− q−1gj1(zq

6, q).(4.41)

Set

(4.42) gj1(z, q) =
∞∑
n=0

γ(n, q)zn.

Using (4.41) in (4.42) and then examining the coefficients of zn, we get

(4.43) γ(n, q) =
q1+n(j+3)(1 + q2n−1)

(1− q4n)(1− q2n−1)
γ(n− 1, q).
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Iterating (4.43) n times and noting that γ(0, q) = 1, we find

(4.44) γ(n, q) =
(−q; q2)nqn(1+(j+3)(n+1)/2)

(q4; q4)n(q; q2)n
.

Therefore,

gj1(z, q) =

∞∑
n=0

(−q; q2)nqn(1+(j+3)(n+1)/2)

(q4; q4)n(q; q2)n
zn(4.45)

=f (4,j)(z, q)(4.46)

and

∞∑
ν=0

cF
(4,j)
2 (ν)qν =

∞∑
ν=0

( ∞∑
m=0

cF
(4,j)
2 (m, ν)

)
qν

= f (4,j)(1, q)

= f (4,j)(q).

This completes the proof of Theorem 3.4. �

5. Particular cases

Theorems 3.1–3.7 translate into Theorems 5.1–5.7 and provide the com-
binatorial interpretations to following seven Rogers–Ramanujan type identi-
ties, respectively, which are listed in Chu and Zhang’s Compendium [9] and
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Slater’s compendium [22].

∞∑
n=0

(−1)n(q, q2)nq
n2

(q4, q4)n(−q, q2)n
=

(q; q2)∞
(q2; q2)∞

[q5,−q2,−q3; q5]∞,([9, I(29)])

∞∑
n=0

(−q, q2)nq2n(n+1)

(q4, q4)n(q, q2)n+1
=

(−q; q2)∞
(q2; q2)∞

[q12, q3, q9; q12]∞,([9, I(113)])

∞∑
n=0

(−1)n(q, q2)nq
n(n+2)

(q4, q4)n(−q, q2)n+1
=

(q; q2)∞
(q2; q2)∞

[q5,−q5,−q5; q5]∞,([9, I(25)])

∞∑
n=0

(−1)n(q, q2)nq
n(n+2)

(q4, q4)n(−q, q2)n
=

(q; q2)∞
(q2; q2)∞

[q5,−q,−q4; q5]∞,([9, I(27)])

∞∑
n=0

(−q; q2)nqn
2

(q, q)2n
=

(−q; q2)∞
(q2; q2)∞

[−q2,−q4, q6; q6]∞,([22, I(29)])

∞∑
n=0

(−q, q2)nqn(n+1)

(q, q)2n+1
=

1

(q; q)∞
[q4, q8, q12; q12]∞,

([9, I(104)], [22, I(51)])

∞∑
n=0

(−q, q2)nqn(n+2)

(q, q)2n+1
=

1

(q; q)∞
[q2, q10, q12; q12]∞,

([9, I(102)]. [22, I(50)])

Theorem 5.1. Let C1(ν) represent the number of n–color partitions of ν
which contain distinct parts such that the first two copies of parts congruent
to 5 (mod 10) are allowed; only first copy of parts congruent to ±1 (mod 10)
is allowed; and let D1(ν) represent the number of n–color partitions of ν
which contain the first two copies of parts congruent to ±2 (mod 10). Fur-
ther, let

B1(ν) =

ν∑
l=0

C1(l)D1(ν − l),

then

B1(ν) = A(1,−1)(ν) = cF
(1,−1)
2 (ν), for all ν,

where A(1,−1)(ν) and cF
(1,−1)
2 are defined in Theorem 3.1 for j = −1.

Theorem 5.2. Let C2(ν) represent the number of partitions of ν which con-
tain distinct parts congruent to ±1,±5 (mod 12) and let D2(ν) represent the
partitions of ν which contain parts congruent to ±2,±4 (mod 12). Further,
let

B2(ν) =

ν∑
l=0

C2(l)D2(ν − l),

then

B2(ν) = A(2,1)(ν) = cF
(2,1)
2 (ν), for all ν,
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where A(2,1)(ν) and cF
(2,1)
2 are defined in Theorem 3.2 for j = 1.

Theorem 5.3. Let C3(ν) represent the number partitions of ν which contain
the parts congruent to ±1,±3 (mod 10) and let D3(ν) represent the number
of partitions of ν which contain the parts congruent to ±2,±4 (mod 10).
Further, let

B3(ν) =
ν∑
l=0

C3(l)D3(ν − l),

then
B3(ν) = A(3,−1)(ν) = cF

(3,−1)
2 (ν), for all ν,

where A(3,−1)(ν) and cF
(3,−1)
2 are defined in Theorem 3.3 for j = −1.

Theorem 5.4. Let C4(ν) represent the number of n–color partitions of ν
which contain the first two copies of distinct parts congruent to 5 (mod 10)
and only first copy of parts congruent to ±3 (mod 10) and let D4(ν) repre-
sent the number of n–color partitions of ν which contain the first two copies
of parts congruent to ±4 (mod 10). Further, let

B4(ν) =
ν∑
l=0

C4(l)D4(ν − l),

then
B4(ν) = A(4,−1)(ν) = cF

(4,−1)
2 (ν), for all ν,

where A(4,−1)(ν) and cF
(4,−1)
2 (ν) are defined in Theorem 3.4 for j = −1.

Theorem 5.5. Let B5(ν) represent the number of partitions of ν which
contain distinct odd parts, even parts congruent to ±2,±4 (mod 12) and
the parts which are congruent to ±2 (mod 12), appear in two copies. Then

B5(ν) = A(1,−1)(ν) = cF
(5,−1)
2 (ν), for all ν,

where A(5,−1)(ν) and cF
(5,−1)
2 are defined in Theorem 3.5 for j = −1.

Example. The relevant partitions corresponding to B5(7) = 13 are,

7, 5 + 21, 5 + 22, 4 + 3, 4 + 21 + 1, 4 + 22 + 1, 3 + 21 + 21,

3 + 22 + 22, 3 + 22 + 21, 22 + 22 + 22 + 1, 21 + 21 + 21 + 1,

22 + 22 + 21 + 1, 22 + 21 + 21 + 1.

To illustrate the bijection, example for ν = 7 is shown in the table below:

Split n–color partitions relevant
to A(5,−1)(7)

2–color F–partitions relevant to

cF
(5,−1)
2 (7)
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71

(
31
31

)
73

(
21
41

)
75

(
11
51

)
77

(
01
61

)
72+1

(
22
42

)
74+1

(
12
52

)
76+1

(
02
62

)
6411

(
11 01
41 01

)
63+111

(
12 01
42 01

)
6211

(
21 01
31 01

)
61+111

(
22 01
32 01

)
5122

(
21 01
21 11

)
5121+1

(
21 02
21 12

)

Theorem 5.6. Let B6(ν) represent the number of partitions of ν into parts
congruent to ±1,±2,±3, ±5, 6 (mod 12). Then

B6(ν) = A(6,−1)(ν) = cF
(6,−1)
2 (ν), for all ν,

where A(6,−1)(ν) and cF
(6,−1)
2 are defined in Theorem 3.6 for j = −1.

Theorem 5.7. Let B7(ν) represent the number of partitions of ν into parts
congruent to ±1,±3,±4,±5, 6 (mod 12). Then

B7(ν) = A(7,−1)(ν) = cF
(7,−1)
2 (ν), for all ν,

where A(7,−1)(ν) and cF
(7,−1)
2 are defined in Theorem 3.7 for j = −1.
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6. Conclusion

Our results provide the infinite two–way combinatorial identities of the
generalized q–series (3.1)–(3.7) using 2–color F–partitions and include re-
sults in [5, 20]. In some particular cases we obtain the three–way combina-
torial interpretations of some Rogers–Ramanujan type identities.

A(k,−1)(ν) = cF
(k,−1)
2 (ν) = Bk(ν), 1 ≤ k ≤ 7, k 6= 2(6.1)

A(2,1)(ν) = cF
(2,1)
2 (ν) = B2(ν),(6.2)

where A(k,j)(ν) and cF
(k,j)
2 (ν), 1 ≤ k ≤ 7 are defined in Theorems 3.1–3.7

and Bk(ν), 1 ≤ k ≤ 7 are defined in Theorems 5.1–5.7, respectively. In
total, we obtain twenty one new combinatorial identities in the usual sense.
Out of which five are obtained in [20], three are given by Agarwal and Sood
[5] and are reproduced in Theorems 3.5–3.7, the rest are given as below:

A(k,−1)(ν) = cF
(k,−1)
2 (ν), 1 ≤ k ≤ 7, k 6= 2(6.3)

A(2,1)(ν) = cF
(2,1)
2 (ν),(6.4)

Bk(ν) = cF
(k,−1)
2 (ν), 1 ≤ k ≤ 7, k 6= 2(6.5)

B2(ν) = cF
(2,1)
2 (ν).(6.6)
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