LOWER BOUNDS ON THE DISTANCE DOMINATION NUMBER OF A GRAPH

RANDY DAVILA, CALEB FAST, MICHAEL A. HENNING, AND FRANKLIN KENTER

Abstract

For an integer $k \geq 1$, a (distance) k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of $V(G) \backslash S$ is at distance at most k from some vertex of S. The k domination number, $\gamma_{k}(G)$, of G is the minimum cardinality of a k dominating set of G. In this paper, we establish lower bounds on the k-domination number of a graph in terms of its diameter, radius, and girth. We prove that for connected graphs G and $H, \gamma_{k}(G \times H) \geq$ $\gamma_{k}(G)+\gamma_{k}(H)-1$, where $G \times H$ denotes the direct product of G and H.

1. Introduction

Distance in graphs is a fundamental concept in graph theory. Let G be a connected graph. The distance between two vertices u and v in G, denoted $d_{G}(u, v)$, is the length (i.e., the number of edges) of a shortest (u, v)-path in G. The eccentricity $\operatorname{ecc}_{G}(v)$ of v in G is the distance between v and a vertex farthest from v in G. The minimum eccentricity among all vertices of G is the radius of G, denoted by $\operatorname{rad}(G)$, while the maximum eccentricity among all vertices of G is the diameter of G, denoted by diam (G). Thus, the diameter of G is the maximum distance among all pairs of vertices of G. A vertex v with $\operatorname{ecc}_{G}(v)=\operatorname{diam}(G)$ is called a peripheral vertex of G. A diametral path in G is a shortest path in G whose length is equal to the diameter of the graph. Thus, a diametral path is a path of length $\operatorname{diam}(G)$ joining two peripheral vertices of G. If S is a set of vertices in G, then the distance, $d_{G}(v, S)$, from a vertex v to the set S is the minimum distance from v to a vertex of S; that is, $d_{G}(v, S)=\min \left\{d_{G}(u, v) \mid u \in S\right\}$. In particular, if $v \in S$, then $d(v, S)=0$.

The concept of domination in graphs is also very well studied in graph theory. A dominating set in a graph G is a set S of vertices of G such

[^0]that every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. The literature on the subject of domination parameters in graphs, up to the year 1997, has been surveyed and detailed in the two books $[8,7]$.

In this paper we continue the study of distance domination in graphs, which combines the concepts of both distance and domination in graphs. Let $k \geq 1$ be an integer and let G be a graph. In 1975, Meir and Moon [15] introduced the concept of a distance k-dominating set (called a " k-covering" in [15]) in a graph. A set S is a k-dominating set of G if every vertex is within distance k from some vertex of S; that is, for every vertex v of G, we have $d(v, S) \leq k$. The k-domination number of G, denoted $\gamma_{k}(G)$, is the minimum cardinality of a k-dominating set of G. When $k=1$, the 1 -domination number of G is precisely the domination number of G, that is, $\gamma_{1}(G)=\gamma(G)$. The literature on the subject of distance domination in graphs, up to the year 1997, can be found in the book [9]. Distance domination is now widely studied; see, for example, $[1,4,6,10,11,14,15,17,18,19]$.

Definitions and Notation. For notation and graph theory terminology, we in general follow [12]. Specifically, let G be a graph with vertex set $V(G)$ of order $n(G)=|V(G)|$ and edge set $E(G)$ of size $m(G)=|E(G)|$. We assume throughout the paper that all graphs considered are simple graphs, i.e., finite graphs without multiple edges and no directed edges or loops. A non-trivial graph is a graph on at least two vertices. A neighbor of a vertex v in G is a vertex adjacent to v. The open neighborhood of v, denoted $N_{G}(v)$, is the set of all neighbors of v in G, while the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. The closed k-neighborhood, denoted $N_{k}[v]$, of v is defined in [4] as the set of all vertices within distance k from v in G; that is, $N_{k}[v]=\{u \mid d(u, v) \leq k\}$. When $k=1, N_{k}[v]=N[v]$.

The degree of a vertex v in G, denoted $d_{G}(v)$, is the number of neighbors, $\left|N_{G}(v)\right|$, of v in G. The minimum and maximum degree among all the vertices of G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The subgraph induced by a set S of vertices of G is denoted by $G[S]$. The girth of G, denoted $g=g(G)$, is the length of a shortest cycle in G. For sets of vertices X and Y of G, the set $X k$-dominates the set Y if every vertex of Y is within distance k from some vertex of X. In particular, if $X k$-dominates the set $V(G)$, then X is a k-dominating set of G.

If the graph G is clear from context, we simply write $V, E, d(v), \operatorname{ecc}(v)$, $N(v)$, and $N[v]$ rather than $V(G), E(G), d_{G}(v), \operatorname{ecc}_{G}(v), N_{G}(v)$, and $N_{G}[v]$, respectively. We use the standard notation $[n]=\{1,2, \ldots, n\}$.

Known Results. The k-domination number of G is in the class of $N P$-hard graph invariants to compute [7]. Because of the computational complexity of computing $\gamma_{k}(G)$, graph theorists have sought upper and lower bounds on $\gamma_{k}(G)$ in terms of simple graph parameters like order, size, and degree.

Since every k-dominating set of a spanning subgraph of a graph G is a k-dominating set of G, we recall the following observation:

Proposition 1.1 ([20]). For $k \geq 1$, if H is a spanning subgraph of a graph G, then $\gamma_{k}(G) \leq \gamma_{k}(H)$.

In 1975, Meir and Moon [15] established an upper bound for the k domination number of a tree in terms of its order. They proved that for $k \geq 1$, if T is a tree of order $n \geq k+1$, then $\gamma_{k}(T) \leq n /(k+1)$. As a consequence of this result and Proposition 1.1, if G is a connected graph of order $n \geq k+1$, then $\gamma_{k}(G) \leq n /(k+1)$. A short proof of the Meir-Moon upper bound can be found in [11]; see also Proposition 24 and Corollary 12.5 in the book [9].

A complete characterization of the graphs G achieving equality in this upper bound was obtained by Topp and Volkmann [19]. Tian and Xu [18] improved the Meir-Moon upper bound and showed that for $k \geq 1$, if G is a connected graph of order $n \geq k+1$ with maximum degree Δ, then $\gamma_{k}(G) \leq(n-\Delta+k-1) / k$. The Tian-Xu bound was further improved by Henning and Lichiardopol [10], who showed that for $k \geq 2$, if G is a connected graph with minimum degree $\delta \geq 2$ and maximum degree Δ of order $n \geq \Delta+k-1$, then

$$
\gamma_{k}(G) \leq \frac{n+\delta-\Delta}{\delta+k-1}
$$

We recall the following well-known lower bound on the domination number of a graph in terms of its diameter.

Theorem 1.2 ([8]). If G is a connected graph with diameter d, then $\gamma(G) \geq$ $(d+1) / 3$.

The following two results were originally conjectured by the conjecture making program Graffiti.pc; see [2] for details.

Theorem 1.3 ([3]). If G is a connected graph with radius r, then $\gamma(G) \geq$ $(2 r) / 3$.

Theorem 1.4 ([3]). If G is a connected graph with girth $g \geq 3$, then $\gamma(G) \geq$ $g / 3$.

Our Results. In this paper, we establish lower bounds for the k-domination number of a graph in terms of its diameter (Theorem 3.1), radius (Corollary 3.5), and girth (Theorem 3.6). These results generalize the results of Theorem 1.2, 1.3, and 1.4. A key tool in order to prove our results is the important lemma (Lemma 2.1) that every connected graph has a spanning tree with equal k-domination number. We also prove a key property (Lemma 2.2) of shortest cycles in a graph that enables us to establish our girth result for the k-domination number of a graph. We also show that our bounds are all sharp and provide examples following the proofs.

2. Preliminary Lemmas

We shall need the following two lemmas.
Lemma 2.1. For $k \geq 1$, every connected graph G has a spanning tree T such that $\gamma_{k}(T)=\gamma_{k}(G)$.
Proof. Let S be a minimum k-dominating set of G and note that $|S|=$ $\gamma_{k}(G)$. For $i \in[k]$, let $D_{i}(S)=\left\{v \in V(G) \backslash S \mid d_{G}(v, S)=i\right\}$. Since S is a k-dominating set of G, every vertex v in G is within distance k from some vertex of S and therefore belongs to $D_{i}(S)$ for some $i \in[k]$. Furthermore, such a vertex is adjacent to at least one vertex of $D_{i-1}(S)$, and possibly to vertices in $D_{i}(S)$ and $D_{i+1}(S)$. For all $i \in[k]$ and for each vertex $v \in D_{i}(S)$, we delete all but one edge that joins v to a vertex of $D_{i-1}(S)$. Further, we delete all edges, if any, that join v to vertices in $D_{i}(S)$. Let F denote the resulting spanning subgraph of the graph G.

We claim that F is a forest. Suppose, to the contrary, that F contains a cycle C. Let v be a vertex in such a cycle C at maximum distance from a vertex of S in G, and let v_{1} and v_{2} be the two neighbors of v on C. Suppose that $v \in D_{p}(S)$ for some $p \in[k]$. Then $d_{G}(v, S)=p$ and $d_{G}(w, S) \leq p$ for every vertex w of C different from v. If v_{1} or v_{2} belongs to $D_{p}(S)$, this contradicts the way in which F was constructed, noting that no edge in F joins two vertices in the same set $D_{i}(S)$. Thus, both v_{1} and v_{2} belong to $D_{p-1}(S)$. Once again, this contradicts the way in which F was constructed, noting that exactly one edge in F joins a vertex in $D_{i}(S)$ to a vertex in $D_{i-1}(S)$. Therefore, F is a forest.

If F is a tree, then we let $T=F$; otherwise, if the forest F has $\ell \geq 2$ components, then we let T be obtained from F by adding to it $\ell-1$ edges in such a way that the resulting subgraph is connected. We note that T is a tree. By construction, if $v \in D_{i}(S)$ for some $i \in[k]$, then there is a path from v to S of length i in T, and so $d_{T}(v, S) \leq d_{G}(v, S)$. Since T is a spanning tree of $G, d_{G}(v, S) \leq d_{T}(v, S)$ for every vertex $v \in V(G)$. Consequently, the spanning tree T of G is distance-preserving from the set S in the sense that $d_{G}(v, S)=d_{T}(v, S)$ for every vertex $v \in V(G)$. Since S is a k-dominating set of G, the set S is therefore a k-dominating set of T, and so $\gamma_{k}(T) \leq|S|=\gamma_{k}(G)$. However, by Observation 1.1, $\gamma_{k}(G) \leq \gamma_{k}(T)$. Consequently, $\gamma_{k}(T)=\gamma_{k}(G)$.
Lemma 2.2. Let G be a connected graph that contains a cycle, and let C be a shortest cycle in G. If v is a vertex of G outside C that k-dominates at least $2 k$ vertices of C, then there exist two vertices $u, w \in V(C)$ that are both k-dominated by v such that a shortest (u, v)-path does not contain w, and a shortest (v, w)-path does not contain u.

Proof. Since v is not on C, it has a distance of at least 1 to every vertex of C. Let u be a vertex of C at minimum distance from v in G and let Q be the set of vertices on C that are k-dominated by v in G. Thus $Q \subseteq V(C)$ and, by assumption, $|Q| \geq 2 k$. Among all vertices in Q, let $w \in Q$ be chosen
to have maximum distance from u on the cycle C. Since there are $2 k-1$ vertices within distance $k-1$ from u on C, the vertex w has distance at least k from u on the cycle C. Let P_{u} be a shortest (u, v)-path and let P_{w} be a shortest (v, w)-path in G. If $w \in V\left(P_{u}\right)$, then $d_{G}(v, w)<d_{G}(v, u)$, contradicting our choice of the vertex u. Therefore, $w \notin V\left(P_{u}\right)$.

Suppose that $u \in V\left(P_{w}\right)$. Since C is a shortest cycle in G, the distance between u and w on C is the same as the distance between u and w in G. Thus, $d_{G}(u, w)=d_{C}(u, w)$, implying that $d_{G}(v, w)=d_{G}(v, u)+d_{G}(u, w) \geq$ $1+d_{G}(u, w)=1+d_{C}(u, w) \geq 1+k$, a contradiction. Therefore, $u \notin$ $V\left(P_{w}\right)$.

3. Lower Bounds

In this section we provide various lower bounds on the k-domination number for general graphs. We first prove a generalization of Theorem 1.2 by establishing a lower bound on the k-domination number of a graph in terms of its diameter.

Theorem 3.1. For $k \geq 1$, if G is a connected graph with diameter d then

$$
\gamma_{k}(G) \geq \frac{d+1}{2 k+1}
$$

Proof. Let $P: u_{0} u_{1} \ldots u_{d}$ be a diametral path in G, joining two peripheral vertices $u=u_{0}$ and $v=u_{d}$ of G. Then P has length $\operatorname{diam}(G)=d$. We will show that every vertex of $G k$-dominates at most $2 k+1$ vertices of P.

Suppose, to the contrary, that there exists a vertex $q \in V(G)$ that k dominates at least $2 k+2$ vertices of P; note that it is possible that $q \in V(P)$. Let Q be the set of vertices on the path P that are k-dominated by the vertex q in G. By supposition, $|Q| \geq 2 k+2$. Let i and j be the smallest and largest integers, respectively, such that $u_{i} \in Q$ and $u_{j} \in Q$. We note that $Q \subseteq\left\{u_{i}, u_{i+1}, \ldots, u_{j}\right\}$. Thus, $2 k+2 \leq|Q| \leq j-i+1$. Since P is a shortest (u, v)-path in G, we therefore note that $d_{G}\left(u_{i}, u_{j}\right)=d_{P}\left(u_{i}, u_{j}\right)=$ $j-i \geq 2 k+1$.

Let P_{i} be a shortest $\left(u_{i}, q\right)$-path in G and let P_{j} be a shortest $\left(q, v_{i}\right)$-path in G. Since the vertex $q k$-dominates both u_{i} and u_{j} in G, both paths P_{i} and P_{j} have length at most k. Therefore, the $\left(u_{i}, u_{j}\right)$-path obtained by following the path P_{i} from u_{i} to q, and then proceeding along the path P_{j} from q to u_{j}, has length at most $2 k$, implying that $d_{G}\left(u_{i}, u_{j}\right) \leq 2 k$, a contradiction. Therefore, every vertex of $G k$-dominates at most $2 k+1$ vertices of P.

Now let S be a minimum k-dominating set of G so that $|S|=\gamma_{k}(G)$. Each vertex of $S k$-dominates at most $2 k+1$ vertices of P, and so $S k$-dominates at most $|S|(2 k+1)$ vertices of P. However, since S is a k-dominating set of G, every vertex of P is k-dominated the set S, and so $S k$-dominates $|V(P)|=d+1$ vertices of P. Therefore, $|S|(2 k+1) \geq d+1$, or, equivalently, $\gamma_{k}(G) \geq(d+1) /(2 k+1)$.

That the lower bound of Theorem 3.1 is tight may be seen by taking G to be a path, $v_{1} v_{2} \ldots v_{n}$, of order $n=\ell(2 k+1)$ for some $\ell \geq 1$. Let $d=\operatorname{diam}(G)$, so $d=n-1=\ell(2 k+1)-1$. By Theorem $3.1, \gamma_{k}(G) \geq(d+1) /(2 k+1)=\ell$. The set

$$
S=\bigcup_{i=0}^{\ell-1}\left\{v_{k+1+i(2 k+1)}\right\}
$$

is a k-dominating set of G, and so $\gamma_{k}(G) \leq|S|=\ell$. Consequently, $\gamma_{k}(G)=$ $\ell=(d+1) /(2 k+1)$. We state this formally as follows.

Proposition 3.2. If $G=P_{n}$ where $n \equiv 0 \bmod (2 k+1)$, then

$$
\gamma_{k}(G)=\frac{\operatorname{diam}(G)+1}{2 k+1}
$$

More generally, by applying Theorem 3.1, the k-domination number of a path P_{n} on $n \geq 3$ vertices is easy to compute.

Proposition 3.3. For $k \geq 1$ and $n \geq 3$,

$$
\gamma_{k}\left(P_{n}\right)=\left\lceil\frac{n}{2 k+1}\right\rceil
$$

For $k \geq 1$ and $n \geq 3$, every vertex of a cycle $C_{n} k$-dominates exactly $2 k+1$ vertices. Thus, if S is a minimum k-dominating set of G, then the set S k-dominates at most $|S|(2 k+1)$ vertices of P, implying that $|S|(2 k+1) \geq n$, or, equivalently, $\gamma_{k}\left(C_{n}\right)=|S| \geq n /(2 k+1)$. Conversely, by Proposition 1.1 and Proposition 3.3, $\gamma_{k}\left(C_{n}\right) \leq \gamma_{k}\left(P_{n}\right)=\lceil n /(2 k+1)\rceil$. Consequently, we have the following result.

Proposition 3.4. For $k \geq 1$ and $n \geq 3$,

$$
\gamma_{k}\left(C_{n}\right)=\left\lceil\frac{n}{2 k+1}\right\rceil
$$

For $k \geq 1$ and $n \geq 3$, where $n \equiv 0 \bmod (2 k+1)$, consider a path $P: v_{1} v_{2} \ldots v_{n}$. By replacing each vertex v_{i}, for $2 \leq i \leq n-1$, on the path P with a clique V_{i} of size at least $\delta \geq 1$, adding all edges between v_{1} and vertices in V_{2}, adding all edges between v_{n} and vertices in V_{n-1}, and adding all edges between vertices in V_{i} and V_{i+1} for $2 \leq i \leq n-2$, we obtain a graph with minimum degree at least δ achieving the lower bound of Theorem 3.1.

From Theorem 3.1, we have the following lower bound on the k-domination number of a graph in terms of its radius. We remark that when $k=1$, Corollary 3.5 is precisely Theorem 1.3. Therefore, Corollary 3.5 is a generalization of Theorem 1.3.

Corollary 3.5. For $k \geq 1$, if G is a connected graph with radius r, then

$$
\gamma_{k}(G) \geq \frac{2 r}{2 k+1}
$$

Proof. By Lemma 2.1, the graph G has a spanning tree T such that $\gamma_{k}(T)=$ $\gamma_{k}(G)$. Since adding edges to a graph cannot increase its radius, $\operatorname{rad}(G) \leq$ $\operatorname{rad}(T)$. Since T is a tree, we note that $\operatorname{diam}(T) \geq 2 \operatorname{rad}(T)-1$. Applying Theorem 3.1 to the tree T, we have that

$$
\gamma_{k}(G)=\gamma_{k}(T) \geq \frac{\operatorname{diam}(T)+1}{2 k+1} \geq \frac{2 \operatorname{rad}(T)}{2 k+1} \geq \frac{2 \operatorname{rad}(G)}{2 k+1} .
$$

That the lower bound of Corollary 3.5 is tight may be seen by taking G to be a path, P_{n}, of order $n=2 \ell(2 k+1)$ for some integer $\ell \geq 1$. Let $d=\operatorname{diam}(G)$ and let $r=\operatorname{rad}(G)$ so that $d=2 \ell(2 k+1)-1$ and $r=\ell(2 k+1)$. In particular, we note that $d=2 r-1$. By Proposition 3.3, $\gamma_{k}(G)=(d+1) /(2 k+1)=(2 r) /(2 k+1)$. As before, by replacing each internal vertex on the path with a clique of size at least $\delta \geq 1$, we can obtain a graph with minimum degree at least δ achieving the lower bound of Corollary 3.5.

We next prove a generalization of Theorem 1.4 by establishing a lower bound on the k-domination number of a graph in terms of its girth. We remark that when $k=1$, Theorem 3.6 is precisely Theorem 1.4.

Theorem 3.6. For $k \geq 1$, if G is a connected graph with girth $g<\infty$, then

$$
\gamma_{k}(G) \geq \frac{g}{2 k+1} .
$$

Proof. The lower bound is trivial if $g \leq 2 k+1$. We may therefore assume that $g \geq 2 k+2$. Let C be a shortest cycle in G, so that C has length g. We note that the distance between two vertices in $V(C)$ is exactly the same in C as in G. We consider two cases, depending on the value of the girth.

CASE $1: 2 k+2 \leq g \leq 4 k+2$:
In this case, we need to show that $\gamma_{k}(G) \geq\lceil g /(2 k+1)\rceil=2$. Suppose, to the contrary, that $\gamma_{k}(G)=1$. Then, G contains a vertex v that is within distance k from every vertex of G. In particular, $d(u, v) \leq k$ for every vertex $u \in V(C)$. If $v \in V(C)$, then since C is a shortest cycle in G, we note that $d_{C}(u, v)=d_{G}(u, v) \leq k$ for every vertex $u \in V(C)$. However, the lower bound condition on the girth, namely $g \geq 2 k+2$, implies that no vertex on the cycle C is within distance k in C from every vertex of C, which is a contradiction. Therefore, $v \notin V(C)$.

By Lemma 2.2, there exists two vertices $u, w \in V(C)$ such that a shortest (v, u)-path does not contain w and a shortest (v, w)-path does not contain u. We will show that we can choose u and w to be adjacent vertices on C.

Let w be a vertex of C at maximum distance, say d_{w}, from v in G. Let w_{1} and w_{2} be the two neighbors of w on the cycle C. If $d_{G}\left(v, w_{1}\right)=d_{w}$, then we can take $u=w_{1}$, and the desired property (that a shortest (v, u)-path does not contain w and a shortest (v, w)-path does not contain u) holds. Hence, we may assume that $d_{G}\left(v, w_{1}\right) \neq d_{w}$. By our choice of the vertex w, we note that $d_{G}\left(v, w_{1}\right) \leq d_{w}$, implying that $d_{G}\left(v, w_{1}\right)=d_{w}-1$. Similarly,
we may assume that $d_{G}\left(v, w_{2}\right)=d_{w}-1$. Let P_{w} be a shortest (v, w)-path. At most one of w_{1} and w_{2} belong to the path P_{w}. After renaming w_{1} and w_{2}, if necessary, we may assume that w_{1} does not belong to the path P_{w}. In this case, letting $u=w_{1}$ and letting P_{u} be a shortest (v, u)-path, we note that $w \notin V\left(P_{u}\right)$. Since we have already observed that $u \notin V\left(P_{w}\right)$, this shows that u and w can indeed be chosen to be neighbors on C.

Let x be the last vertex in common with the (v, u)-path, P_{u}, and the (v, w)-path, P_{w}; note that it is possible that $x=v$. Then the cycle obtained from the (x, u)-section of P_{u} by proceeding along the edge $u w$ to w, and then following the (w, x)-section of P_{w} back to x, has length at most $d_{G}(v, u)+1+$ $d_{G}(v, w) \leq 2 k+1$, contradicting the fact that the girth satisfies $g \geq 2 k+2$. Therefore, $\gamma_{k}(G) \geq 2$, as desired.

CASE 2: $g \geq 4 k+3$:
Let S be a minimum k-dominating set of G so that $|S|=\gamma_{k}(G)$. Let $K=S \cap V(C)$ and let $L=S \backslash V(C)$. Then $S=K \cup L$. If $L=\emptyset$, then $S=K$ and the set K is a k-dominating set of C; by Proposition 3.4 it follows that

$$
\gamma_{k}(G)=|S|=|K| \geq \gamma_{k}\left(C_{g}\right)=\left\lceil\frac{g}{2 k+1}\right\rceil
$$

and the theorem holds. Hence we may assume that $|L| \geq 1$, for otherwise the desired result holds. We wish to show that $|K|+|L|=|S| \geq\lceil g /(2 k+1)\rceil$. Suppose, to the contrary, that

$$
|K| \leq\left\lceil\frac{g}{1+2 k}\right\rceil-1-|L|
$$

As observed earlier, the distance between two vertices in $V(C)$ is exactly the same in C as in G. This implies that each vertex of K, since $K \subseteq V(C)$, is within distance k from exactly $2 k+1$ vertices of C. Thus, the set K k-dominates at most

$$
\begin{aligned}
|K|(2 k+1) & \leq\left(\left\lceil\frac{g}{2 k+1}-1-|L|\right\rceil\right)(2 k+1) \\
& \leq\left(\frac{g+2 k}{2 k+1}-1-|L|\right)(2 k+1) \\
& =g-1-|L|(2 k+1)
\end{aligned}
$$

vertices from C. Consequently, since $|V(C)|=g$, there are at least $|L|(2 k+$ $1)+1$ vertices of C which are not k-dominated by vertices of K, and therefore must be k-dominated by vertices from L. Thus, by the Pigeonhole Principle, there is at least one vertex, call it v, in L that k-dominates at least $2 k+2$ vertices in C. By Lemma 2.2, there exist two vertices $u, w \in V(C)$ that are both k-dominated by v and such that a shortest (u, v)-path, P_{u}, from u to v, does not contain w and a shortest (w, v)-path, P_{w}, from w to v, does not contain u. Analogously as in the proof of Lemma 2.2, we can choose the vertex u to be a vertex of C at minimum distance from v in G. Thus, the vertex u is the only vertex on the cycle C that belongs to the
path P_{u}. Combining the paths P_{u} and P_{w} produces a (u, w)-walk of length at most $d_{G}(u, v)+d_{G}(v, w) \leq 2 k$, implying that $d_{G}(u, w) \leq 2 k$. Since C is a shortest cycle in G, we therefore have that $d_{C}(u, w)=d_{G}(u, w) \leq 2 k$.

The cycle C yields two (w, u)-paths. Let $P_{w u}$ be the (w, u)-path on the cycle C of shorter length (starting at w and ending at u). Thus, $P_{w u}$ has length $d_{C}(u, w) \leq 2 k$. Note that the path $P_{w u}$ belongs entirely on the cycle C. Let $x \in V(C)$ be the last vertex in common with the (w, v)-path, P_{w}, and the (w, u)-path, $P_{w u}$; note that it is possible that $x=w$. However, observe that $x \neq u$, since $u \notin V\left(P_{w}\right)$. Let y be the first vertex in common with the (x, v)-subsection of the path P_{w} and with the (u, v)-path P_{u}; note that it is possible that $y=v$. However, observe that $y \neq x$ since $x \notin V\left(P_{u}\right)$ and $V\left(P_{u}\right) \cap V(C)=\{u\}$. Using the (x, u)-subsection of the path $P_{w u}$, the (x, y)-subsection of the path P_{w}, and the (u, y)-subsection of the path P_{u} produces a cycle in G of length at most $d_{G}(u, v)+d_{G}(w, v)+d_{G}(u, w) \leq$ $k+k+2 k=4 k$, contradicting the fact that the girth $g \geq 4 k+3$. Therefore, $\gamma_{k}(G)=|S|=|K|+|L| \geq\lceil g /(2 k+1)\rceil$, as desired.

The lower bound of Theorem 3.6 is tight, as may be seen by taking G to be a cycle C_{n}, where $n \equiv 0 \bmod (2 k+1)$. We note that G has girth $g=n$ and, by Proposition 3.4, $\gamma_{k}(G)=n /(2 k+1)=g /(2 k+1)$.

4. Direct Product Graphs

The direct product graph, $G \times H$, of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and with edges $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$, where $g_{1} g_{2} \in E(G)$ and $h_{1} h_{2} \in E(H)$. Let $A \subseteq V(G \times H)$. The projection of A onto G is defined as

$$
P_{G}(A)=\{g \in V(G):(g, h) \in A \text { for some } h \in V(H)\} .
$$

Similarly, the projection of A onto H is defined as

$$
P_{H}(A)=\{g \in V(H):(g, h) \in A \text { for some } h \in V(G)\} .
$$

For a detailed discussion on direct product graphs, we refer the reader to the handbook on graph products [5]. There have been various studies on the domination number of direct product graphs. For example, Mekiš [16] proved the following lower bound on the domination number of direct product graphs.

Theorem 4.1 ([16]). If G and H are connected graphs, then

$$
\gamma(G \times H) \geq \gamma(G)+\gamma(H)-1
$$

Staying within the theme of our previous results, we now prove a projection lemma which will enable us generalize the result of Theorem 4.1 on the domination number to the k-domination number.

Lemma 4.2 (Projection Lemma). Let G and H be connected graphs. If D is a k-dominating set of $G \times H$, then $P_{G}(D)$ is a k-dominating set of G and $P_{H}(D)$ is a k-dominating set of H.

Proof. Let $D \subseteq V(G \times H)$ be a k-dominating set of $G \times H$. We show firstly that $P_{G}(D)$ is a k-dominating set of G. Let g be a vertex in $V(G)$. If $g \in P_{G}(D)$, then g is clearly k-dominated by $P_{G}(D)$. Hence, we may assume that $g \in V(G) \backslash P_{G}(D)$. Let h be an arbitrary vertex in $V(H)$. Since $g \notin P_{G}(D)$, the vertex $(g, h) \notin D$. However, the set D is a k-dominating set of $G \times H$, and so (g, h) is within distance k from D in G; that is, $d_{G \times H}((g, h), D) \leq k$. Let $\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right), \ldots,\left(g_{r}, h_{r}\right)$ be a shortest path from (g, h) to D in $G \times H$, where $(g, h)=\left(g_{0}, h_{0}\right)$ and $\left(g_{r}, h_{r}\right) \in D$. By assumption, $1 \leq r \leq k$. For $i \in\{0, \ldots, r-1\}$, the vertices $\left(g_{i}, h_{i}\right)$ and $\left(g_{i+1}, h_{i+1}\right)$ are adjacent in $G \times H$. Hence, by the definition of the direct product graph, the vertices g_{i} and g_{i+1} are adjacent in G, implying that $g_{0} g_{1} \ldots g_{r}$ is a $\left(g_{0}, g_{r}\right)$-walk in G of length r. This in turn implies that there is a $\left(g_{0}, g_{r}\right)$-path in G of length r. Recall that $g=g_{0}$ and $1 \leq r \leq k$. Since $\left(g_{r}, h_{r}\right) \in D$, the vertex $g_{r} \in P_{G}(D)$. Hence, there is a path from g to a vertex of $P_{G}(D)$ in G of length at most k. Since g is an arbitrary vertex in $V(G)$, the set $P_{G}(D)$ is therefore a k-dominating set of G. Analogously, the set $P_{H}(D)$ is a k-dominating set of H.

Using our Projection Lemma, we are now in a position to generalize Theorem 4.1.

Theorem 4.3. If G and H are connected graphs, then

$$
\gamma_{k}(G \times H) \geq \gamma_{k}(G)+\gamma_{k}(H)-1 .
$$

Proof. Let $D \subseteq V(G \times H)$ be a minimum k-dominating set of $G \times H$. Suppose, to the contrary, that

$$
\begin{equation*}
|D| \leq \gamma_{k}(G)+\gamma_{k}(H)-2 . \tag{*}
\end{equation*}
$$

By Lemma 4.2, $P_{G}(D)$ is a k-dominating set of G and $P_{H}(D)$ is a k dominating set of H. Therefore, we have that $|D| \geq\left|P_{G}(D)\right| \geq \gamma_{k}(G)$ and $|D| \geq\left|P_{H}(D)\right| \geq \gamma_{k}(H)$. If $\gamma_{k}(G)=1$, then by $(*)$ we have,

$$
\gamma_{k}(H)-1 \geq|D| \geq \gamma_{k}(H),
$$

which is a contradiction. Therefore, $\gamma_{k}(G) \geq 2$. Analogously, $\gamma_{k}(H) \geq 2$.
Recall that $\left|P_{G}(D)\right| \geq \gamma_{k}(G)$. We now remove vertices from the set $P_{G}(D)$ until we obtain a set, D_{G} say, of cardinality exactly $\gamma_{k}(G)-1$. Thus, D_{G} is a proper subset of $P_{G}(D)$ of cardinality $\gamma_{k}(G)-1$. Since D_{G} is not a k dominating set of G, there exists a vertex $g \in V(G)$ that is not k-dominated by the set D_{G} in G, that is, $d_{G}\left(g, D_{G}\right)>k$. Let $D_{G}=\left\{g_{1}, \ldots, g_{t}\right\}$, where $t=\gamma_{k}(G)-1 \geq 1$. For each $i \in[t]$, there exists a (not necessarily unique) vertex $h_{i} \in V(H)$ such that $\left(g_{i}, h_{i}\right) \in D$, as $D_{G} \subseteq P_{G}(D)$. We now consider the set

$$
D_{0}=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{t}, h_{t}\right)\right\},
$$

and note that $D_{0} \subset D$ and $\left|D_{0}\right|=\gamma_{k}(G)-1$. By $(*)$, we note that

$$
\begin{aligned}
\left|P_{H}\left(D \backslash D_{0}\right)\right| & \leq\left|D \backslash D_{0}\right| \\
& =|D|-\left|D_{0}\right| \\
& \leq\left(\gamma_{k}(G)+\gamma_{k}(H)-2\right)-\left(\gamma_{k}(G)-1\right) \\
& =\gamma_{k}(H)-1 \\
& <\gamma_{k}(H) .
\end{aligned}
$$

Thus there exists a vertex $h \in V(H)$ that is not k-dominated by the set $P_{H}\left(D \backslash D_{0}\right)$ in H, that is, $d_{H}\left(h, P_{H}\left(D \backslash D_{0}\right)\right)>k$.

We now consider the vertex $(g, h) \in V(G \times H)$. Since D is a k-dominating set of $G \times H$, the vertex (g, h) is k-dominated by some vertex, say $\left(g^{*}, h^{*}\right)$, of D in $G \times H$. An analogous proof as in the proof of Lemma 4.2 shows that $d_{G}\left(g, g^{*}\right) \leq k$ and $d_{H}\left(h, h^{*}\right) \leq k$. If $\left(g^{*}, h^{*}\right) \in D \backslash D_{0}$, then $h^{*} \in P_{H}(D \backslash$ $\left.D_{0}\right)$, implying that $d_{H}\left(h, P_{H}\left(D \backslash D_{0}\right)\right) \leq d_{H}\left(h, h^{*}\right) \leq k$, a contradiction. Hence, $\left(g^{*}, h^{*}\right) \in D_{0}$. This in turn implies that $g^{*} \in P_{G}\left(D_{0}\right)=G_{D}$. Thus, $d_{G}\left(g, D_{G}\right) \leq d_{G}\left(g, g^{*}\right) \leq k$, contradicting the fact that $d_{G}\left(g, D_{G}\right)>k$. Therefore, the assumption that $|D| \leq \gamma_{k}(G)+\gamma_{k}(H)-2$ must be false, and the result follows.

References

[1] J. Cyman, M. Lemańsla, and J. Raczek, Lower bound on the distance k-domination number of a tree, Math. Slovaca 56 (2006), no. 2, 235-243.
[2] E.E. DeLaViña, Written on the wall II, Web, http://cms.dt.uh.edu/faculty/ delavinae/research/wowII.
[3] E.E. DeLaViña, R. Pepper, and B. Waller, Lower bounds for the domination number, Discuss. Math. Graph Theory 56 (2010), no. 2, 475-487.
[4] P. Fraisse, A note on distance dominating cycles, Discrete Math. 71 (1988), 89-92.
[5] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs, second ed., Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011.
[6] A. Hansberg, D. Meierling, and L. Volkmann, Distance domination and distance irredundance in graphs, Electron. J. Combin. 14 (2007), no. 1, Research Paper 35, 10.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds.), Domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 209, Marcel Dekker, Inc., New York, 1998, Advanced topics.
[8] _ , Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, Marcel Dekker, Inc., New York, 1998.
[9] M.A. Henning, Distance domination in graphs, Domination in graphs, Monogr. Textbooks Pure Appl. Math., vol. 209, Dekker, New York, 1998, pp. 321-349.
[10] M.A. Henning and N. Lichiardopol, Distance domination in graphs with given minimum and maximum degree, Manuscript.
[11] M.A. Henning, O.R. Oellermann, and H.C. Swart, Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991), no. 1, 11-18.
[12] M.A. Henning and A. Yeo, Total domination in graphs, Springer Monographs in Mathematics, Springer, New York, 2013.
[13] D. Licthenstein, Planar satisfiability and its uses, SIAM J. Comput. 11 (1982), 329343.
[14] D. Meierling and L. Volkmann, A lower bound for the distance k-domination number of trees, Results Math. 47 (2005), no. 3-4, 335-339. MR 2153501
[15] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975), 225-233.
[16] G. Mekiš, Lower bounds for the domination number and the total domination number of direct product graphs, Discrete Math. 310 (2010), no. 23, 3310-3317.
[17] P.J. Slater, R-domination in graphs, J. Assoc. Comput. Mach. 23 (1976), no. 3, 446450.
[18] F. Tian and J.-M. Xu, A note on distance domination numbers of graphs, Australas. J. Combin. 43 (2009), 181-190.
[19] J. Topp and L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991), no. 3, 229-238.
[20] B. Zelinka, On the k-domatic numbers of graphs, Czachoslovak Math J. 33 (1983), 309-313.

Randy Davila
Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
Department of Mathematics
Texas State University-San Marcos
San Marcos, TX 78666, USA
E-mail address: randyrdavila@gmail.com
Caleb Fast
Computational and Applied Mathematics
Rice University
Houston, TX 77005, USA
E-mail address: calebfast@gmail.com
Michael A. Henning
Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
E-mail address: mahenning@uj.ac.za
Franklin Kenter
Computational and Applied Mathematics
Rice University
Houston, TX 77005, USA
E-mail address: fhk2@rice.edu

[^0]: Received by the editors November 17, 2015, and in revised form December 09, 2015.
 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. Distance domination; diameter; radius; girth; direct product. Caleb Fast was supported by NSF CMMI-1300477.
 Michael A. Henning was supported in part by the South African National Research Foundation and the University of Johannesburg.

