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EULERIAN POLYNOMIALS AND POLYNOMIAL

CONGRUENCES

KAZUKI IIJIMA, KYOUHEI SASAKI, YUUKI TAKAHASHI,
AND MASAHIKO YOSHINAGA

Abstract. We prove that the Eulerian polynomial satisfies certain
polynomial congruences. Furthermore, these congruences characterize
the Eulerian polynomial.

1. Introduction

The Eulerian polynomial A`(x) (` ≥ 1) was introduced by Euler in the
study of sums of powers [5]. In this paper, we define the Eulerian polynomial
A`(x) as the numerator of the rational function

(1.1) F`(x) =
∞∑
k=1

k`xk =

(
x
d

dx

)` 1

1− x
=

A`(x)

(1− x)`+1
.

The first few examples are A1(x) = x,A2(x) = x + x2, A3(x) = x + 4x2 +
x3, A4(x) = x + 11x2 + 11x3 + x4, etc. The Eulerian polynomial A`(x)
is a monic of degree ` with positive integer coefficients. Write A`(x) =∑`

k=1A(`, k)xk. The coefficient A(`, k) is called an Eulerian number.
In the 1950s, Riordan [10] discovered a combinatorial interpretation of

Eulerian numbers in terms of descents and ascents of permutations, and
Carlitz [3] defined q-Eulerian numbers. Since then, Eulerian numbers are
actively studied in enumerative combinatorics. (See [4, 11, 8].)

Another combinatorial application of the Eulerian polynomial was found
in the theory of hyperplane arrangements [15, 14]. The characteristic poly-
nomial of the so-called Linial arrangement [9] can be expressed in terms of
the root system generalization of Eulerian polynomials introduced by Lam
and Postnikov [6]. The comparison of expressions in [9] and [15] yields the
following.

Received by the editors June 15, 2017, and in revised form January 13, 2019.
2000 Mathematics Subject Classification. 05A15, 05E99.
Key words and phrases. Eulerian polynomials, Hyperplane arrangements.
The authors thank Mr. Rei Yoshida for several discussions about the contents of this

paper. The authors also thank Prof. Richard Stanley for noticing [12]. M. Yoshinaga was
partially supported by JSPS KAKENHI Grant Number JP25400060, JP15KK0144, and
JP16K13741.

c©2019 University of Calgary

46



EULERIAN POLYNOMIALS AND POLYNOMIAL CONGRUENCES 47

Theorem 1.1 ([15, Proposition 5.5]). For `,m ≥ 2, the Eulerian polynomial
A`(x) satisfies the following

(1.2) A`(x
m) ≡

(
1 + x+ x2 + · · ·+ xm−1

m

)`+1

A`(x) mod (x− 1)`+1.

The purpose of this paper is two-fold. First, we give a direct and simpler
proof of Theorem 1.1. Second, we prove the converse of the above theo-
rem. Namely, the congruence (1.2) characterizes the Eulerian polynomial as
follows.

Theorem 1.2. Let f(x) be a monic of degree `. Then, f(x) = A`(x) if and
only if the congruence (1.2) holds for some m ≥ 2. (See Theorem 5.1.)

The remainder of this paper is organized as follows. After recalling classi-
cal results on Eulerian polynomials in §2, we briefly describe in §3 the proof
of the congruence (1.2) in [15] that is based on the expression of character-
istic polynomials of Linial hyperplane arrangements. In §4, we give a direct
proof of the congruence. In §5, we give the proof of Theorem 1.2.

Remark. The right-hand side of (1.2) is discussed also in [12, Proposition
2.5].

2. Brief review of Eulerian polynomials

In this section, we recall classical results on the Eulerian polynomial and
the Eulerian numbers A(`, k). By definition (1.1), the Eulerian polynomial
A`(x) satisfies the relation

A`(x)

(1− x)`+1
= x

d

dx

A`−1(x)

(1− x)`
,

which yields the following recursive relation.

(2.1) A(`, k) = k ·A(`− 1, k) + (`− k + 1) ·A(`− 1, k − 1).

Consider the coordinate change w = 1
x . Then, the Euler operator is

transformed as x d
dx = −w d

dw . The direct computation using the relation
1

1− 1
w

= 1− 1
1−w yields x`+1A`(

1
x) = A`(x). Equivalently, A(`, k) = A(`, `+

1− k).
Definition (1.1) is also equivalent to

(2.2) A`(x) = (1− x)`+1 ·
∞∑
k=0

k`xk

and

(2.3)
∞∑
k=0

k`xk = A`(x) ·
∞∑
k=0

(−x)k
(
−`− 1

k

)
.
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Then, (2.2) yields

(2.4) A(`, k) =
k∑
j=0

(−1)j
(
`+ 1

j

)
(k − j)`,

and (2.3) yields

(2.5) k` =
∑̀
j=1

A(`, j)

(
k + `− j

`

)
.

Note that both sides of (2.5) are polynomials of degree ` in k, and it holds
for any k > 0. Hence the equality holds at the level of polynomials in t.
Thus, we have

(2.6) t` =
∑̀
j=1

A(`, j)

(
t+ `− j

`

)
,

which is called the Worpitzky identity [13]. Using the shift operator S :
t 7−→ t− 1 (see §3), the Worpitzky identity can be written as

(2.7) t` = A`(S)

(
t+ `

`

)
.

Next, we consider exponential generating series of A`(x), and describe rela-
tions with Bernoulli numbers. First, using (2.2), we have

∞∑
`=0

A`(x)

`!
t` =

∞∑
`=0

t`

`!
(1− x)`+1

∞∑
n=0

n`xn

= (1− x)
∞∑
n=0

xnent(1−x)

=
1− x

1− xet(1−x)
.

(2.8)

Replacing x by −1 in (2.8), we have

(2.9)

∞∑
`=0

A`(−1)

`!
t` =

2

1 + e2t
.

Recall that the Bernoulli polynomial B`(x) is defined by

(2.10)
∞∑
`=0

B`(x)

`!
t` =

text

et − 1
,

(B0(x) = 1, B1(x) = x−1
2 , B2(x) = x2−x+1

6 , B3(x) = x3−3
2x

2+1
2x,B4(x) =

x4 − 2x3 + x2 − 1
30 , · · · ) and the constant term B`(0) is called the Bernoulli

number. Replacing x by 0 and t by at with a ∈ C in (2.10), we have

(2.11)
∞∑
`=0

B`(0)

`!
(at)` =

at

eat − 1
.
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Using the identity 2t
e2t+1

= 2t
e2t−1 −

4t
e4t−1 , the Bernoulli number B`(0) can be

expressed as

(2.12) B`(0) =
`

2`(1− 2`)
A`−1(−1).

There is another relation between Eulerian polynomials and Bernoulli poly-
nomials. Let ` > 0. Using (2.5) and the famous formula

∑N−1
x=0 x

` =
B`+1(N)−B`+1(0)

`+1 , we have

(2.13) B`+1(N)−B`+1(0) = (`+ 1) ·
∑̀
k=1

A(`, k)

(
`+N − k
`+ 1

)
.

With the shift operator S, (2.13) can also be expressed as

(2.14) B`+1(t)−B`+1(0) = (`+ 1)A`(S)

(
t+ `

`+ 1

)
.

(This formula appeared in [13, page 209] as “The second form of Bernoulli
function.”)

3. Background on hyperplane arrangements

In this section, we recall the proof of the congruence (1.2) presented in
[15].

LetA = {H1, . . . ,Hk} be a finite set of affine hyperplanes in a vector space
V . We denote the set of all intersections of A by L(A) = {∩S | S ⊂ A}.
The set L(A) is partially ordered by reverse inclusion, which has a unique
minimal element 0̂ = V . The characteristic polynomial of A is defined by

χ(A, q) =
∑

X∈L(A)

µ(X)qdimX ,

where µ is the Möbius function on L(A), defined by

µ(X) =

{
1, if X = 0̂
−
∑

Y <X µ(Y ), otherwise.

Let V = {(x0, x1, . . . , xn) ∈ R`+1 |
∑
xi = 0} ⊂ R`+1. For integers 0 ≤ i <

j ≤ ` and s ∈ Z, denote by Hij,s the affine hyperplane {(x0, . . . , x`) ∈ V |
xi − xj = s}.

Let m ≥ 1 be a positive integer. The arrangement

Lm = {Hij,s | 0 ≤ i < j ≤ `, 1 ≤ s ≤ m}
is called the (extended) Linial arrangement (of type A`). The Linial ar-
rangement has several intriguing enumerative properties [9]. Postnikov and
Stanley [9] (see also [1]) gave the following expression for the characteristic
polynomial χ(Lm, t).

(3.1) χ(Lm, t) =

(
1 + S + S2 + · · ·+ Sm

m+ 1

)`+1

t`,
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where S acts on a function f(t) by Sf(t) = f(t − 1) (naturally Skf(t) =
f(t−k)) as the shift operator. Using the Worpitzky identity (2.7), (3.1) can
be written as

(3.2) χ(Lm, t) =

(
1 + S + S2 + · · ·+ Sm

m+ 1

)`+1

A`(S)

(
t+ `

`

)
.

On the other hand, using the lattice points interpretation of the Worpitzky
identity, the following formula was obtained in [15]

(3.3) χ(Lm, t) = A`(S
m+1)

(
t+ `

`

)
.

The formulas (3.2) and (3.3) imply that the operator

(3.4)

(
1 + S + S2 + · · ·+ Sm

m+ 1

)`+1

A`(S)−A`(Sm+1)

annihilates the polynomial
(
t+`
`

)
of degree `, which means that (3.4) is divis-

ible by (S − 1)`+1 (see [15, Prop. 2.8]). Hence the congruence (1.2) follows.

4. Direct proof of the congruence

4.1. Special case: m = 2. We first handle the case m = 2. By consider-
ing F`(x) + F`(−x), it is easily seen that the formal power series F`(x) =∑∞

k=1 k
`xk satisfies

(4.1) F`(x)− 2`+1F`(x
2) = −F`(−x).

Using the Eulerian polynomial, (4.1) can be written as

(4.2) (1 + x)`+1 ·A`(x)− 2`+1 ·A`(x2) = − (1− x)`+1 ·A`(−x),

which implies the congruence (1.2) for m = 2.

Remark. Substituting formally x = 1 into (4.1), we obtain the formula

“F`(1) = A`(−1)
2`+1(2`+1−1) .” Then, (2.12) implies “F`(1) = −B`+1(0)

`+1 ”, which

gives the correct value ζ(−`) = −B`+1(0)
`+1 of the Riemann zeta function for

` ≥ 1.

4.2. General case. Let m ≥ 2. Denote by ζm = e2π
√
−1/m the primitive

mth root of unity. We will use the following fact

(4.3)
m−1∑
j=1

ζjkm =

{
m− 1, if m|k,
−1, if m 6 |k,

for k ∈ Z.
Using definition (1.1) (or (2.2)), the polynomial

A`(x
m)−

(
1 + x+ x2 + · · ·+ xm−1

m

)`+1

A`(x)
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can be expressed as

(1− xm)`+1
∞∑
k=1

k`xmk −
(

1 + x+ x2 + · · ·+ xm−1

m

)`+1

(1− x)`+1
∞∑
k=1

k`xk

=

(
1− xm

m

)`+1

·

{
m ·

∞∑
k=1

(mk)`xmk −
∞∑
k=1

k`xk

}
.

It is enough to show that

(4.4) P (x) := (1 + x+ · · ·+ xm−1)`+1

{
m ·

∞∑
k=1

(mk)`xmk −
∞∑
k=1

k`xk

}
becomes a polynomial. Applying (4.3), we have

P (x) = (1 + x+ · · ·+ xm−1)`+1
∞∑
k=1

m−1∑
j=1

ζjkm k
`xk

=
m−1∏
i=1

(1− ζimx)`+1 ·
∞∑
k=1

m−1∑
j=1

k`(ζjmx)k

=
m−1∑
j=1

 ∏
1≤i≤m−1

i 6=j

(1− ζimx)`+1

 ·A`(ζjmx),

which is a polynomial in x. This completes the proof of Theorem 1.1.

Remark. The congruence (1.2) is not optimal when ` is even. Indeed, if `
is even, the congruence (1.2) holds modulo (1 − x)`+2, which follows from
the symmetry A(`, k) = A(`, `+ 1− k) and A`(−1) = 0.

5. A characterization of the Eulerian polynomial

In this section, we prove the following.

Theorem 5.1. Let f(x) = x`+a1x
`−1 + · · ·+a` ∈ C[x] be a monic complex

polynomial of degree ` > 0. Then, the following are equivalent.

(a) f(x) = A`(x).
(b) For any m ≥ 2, f(x) satisfies the congruence (1.2). Namely,

(5.1) f(xm) ≡
(

1 + x+ · · ·+ xm−1

m

)`+1

f(x) mod (1− x)`+1

is satisfied.
(c) The congruence for m = 2 holds, namely,

f(x2) ≡
(

1 + x

2

)`+1

f(x) mod (1− x)`+1

is satisfied.
(d) There exists an integer m ≥ 2 such that the congruence (5.1) holds.
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Proof. (a) =⇒ (b) is nothing but Theorem 1.1. The implications (b) =⇒
(c) =⇒ (d) are obvious.

Let us assume (d). We shall prove (a). Choose an integer m ≥ 2 such
that (5.1) is satisfied. There exists a polynomial g(x) ∈ C[x] that satisfies

(5.2) f(xm)−
(

1 + x+ · · ·+ xm−1

m

)`+1

· f(x) = (1− x)`+1 · g(x).

Note that deg g = m`+m− `− 2 < (m− 1)(`+ 1). Dividing this equation
by (1− xm)`+1, we have

(5.3)
f(xm)

(1− xm)`+1
− 1

m`+1
· f(x)

(1− x)`+1
=

g(x)

(1 + x+ · · ·+ xm−1)`+1
.

We expand g(x)
(1+···+xm−1)`+1 into a partial fraction,

(5.4)
g(x)

(1 + · · ·+ xm−1)`+1
=

m−1∑
j=1

Rj(x)

(1− ζjmx)`+1
,

where Rj(x) ∈ C[x] with degRj(x) ≤ `. As is well known in the theory
of formal power series [11], there exist polynomials α(t), βj(t) ∈ C[t] with
degα(t),deg βj(t) ≤ ` such that

(5.5)
f(x)

(1− x)`+1
=

∞∑
k=0

α(k)xk, and
Rj(ζ

−j
m x)

(1− x)`+1
=

∞∑
k=0

βj(k)xk.

Then, the right hand side of (5.3) is

RHS of (5.3) =
m−1∑
j=1

∑
k≥0

βj(k)ζjkm x
k

=

m−1∑
j=1

m−1∑
r=0

∞∑
q=0

βj(qm+ r)ζj(qm+r)
m xqm+r

=
∞∑
q=0

m−1∑
r=0

m−1∑
j=1

ζjrmβj(qm+ r)

xqm+r.

(5.6)

On the other hand, the left hand side of (5.3) is

LHS of (5.3) =
∑
k≥0

α(k)xkm − 1

m`+1

∑
k≥0

α(k)xk

=

∞∑
q=0

(
α(q)− 1

m`+1
α(mq)

)
xmq −

∞∑
q=0

m−1∑
r=1

α(mq + r)

m`+1
xmq+r.

(5.7)
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Comparison of (5.6) and (5.7) gives

m−1∑
j=1

βj(qm) = α(q)− 1

m`+1
α(mq)

m−1∑
j=1

βj(qm+ 1)ζjm = − 1

m`+1
α(mq + 1)

...

m−1∑
j=1

βj(qm+m− 1)ζj(m−1)m = − 1

m`+1
α(mq +m− 1),

(5.8)

for any q ≥ 0. Since both sides of (5.8) are polynomials in q, we have the
following polynomial identities.

m−1∑
j=1

βj(t) = α

(
t

m

)
− 1

m`+1
α(t)

m−1∑
j=1

βj(t)ζ
j
m = − 1

m`+1
α(t)

...

m−1∑
j=1

βj(t)ζ
j(m−1)
m = − 1

m`+1
α(t).

(5.9)

By summing up all identities in (5.9), we obtain a functional equation

α

(
t

m

)
=

1

m`
α(t).

This relation is satisfied only by the polynomial of the form α(t) = c0 · t`,
where c0 ∈ C. Again comparing (1.1) and (5.5), f(x) = c0 · A`(x). Since
f(x) is a monic, we have f(x) = A`(x). �
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