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ON THE METRIC DIMENSION OF CIRCULANT GRAPHS

WITH 4 GENERATORS

TOMÁŠ VETRÍK

Abstract. Circulant graphs are Cayley graphs of cyclic groups and the
metric dimension of circulant graphs with at most 3 generators has been
extensively studied in the last decade. We extend known results in the
area by presenting lower and upper bounds on the metric dimension of
circulant graphs with 4 generators.

1. Introduction

The concept of metric dimension was introduced by Slater [11] and stud-
ied independently by Harary and Melter [4]. Slater referred to a metric
dimension of a graph as its location number and motivated the study of
this invariant by its application to the placement of minimum number of
loran/sonar detecting devices in a network so that the position of every ver-
tex in the network can be uniquely represented in terms of its distances to
the devices in the set. In this paper we study the metric dimension of Cayley
graphs of cyclic groups known as circulant graphs.

Let G be a connected graph with the vertex set V (G). The distance d(u, v)
between two vertices u, v ∈ V (G) is the number of edges in a shortest path
between them. A vertex w resolves a pair of vertices u, v if d(u,w) 6= d(v, w).
For an ordered set of vertices W = {w1, w2, . . . , wz}, the representation of
distances of a vertex v with respect to W is the ordered z-tuple

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wz)).

A set of vertices W ⊂ V (G) is a resolving set of G if every two vertices
of G have distinct representations (i.e., if every pair of vertices of G is
resolved by some vertex of W ). The cardinality of a smallest resolving set
is called the metric dimension and it is denoted by dim(G). Note that the
i-th coordinate in r(v|W ) is 0 if and only if v = wi. This means that
in order to show that W is a resolving set of G, it suffices to verify that
r(u|W ) 6= r(v|W ) for every pair of distinct vertices u, v ∈ V (G) \W .
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From [3], it follows that the question whether dim(G) < z is an NP-
complete problem. In [2], it was shown that a connected graph G has
dim(G) = 1 if and only if G is a path. Cycles have metric dimension 2.
The metric dimension of various classes of graphs has been investigated for
four decades. For example, the metric dimension of trees was studied in
[11], convex polytopes in [10], and graphs of given diameter were considered
in [8].

We introduce a circulant graph. Let n,m and a1, a2, . . . , am be posi-
tive integers, such that 1 ≤ a1 < a2 < · · · < am ≤ n/2. The circu-
lant graph Cn(a1, a2, . . . , am) consists of the vertices v0, v1, . . . , vn−1 and
the edges vivi+aj where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ m, the indices are taken
modulo n. The numbers a1, a2, . . . , am are called generators. The graph
Cn(a1, a2, . . . , am) is a regular graph either of degree 2m if all generators
are smaller than n/2, or of degree 2m− 1 if n/2 is one of the generators.

The distance between two vertices vi and vj in Cn(1, 2, 3, 4), where 0 ≤
i ≤ j < n, is

(1.1) d(vi, vj) = min

{⌈
j − i

4

⌉
,

⌈
n− (j − i)

4

⌉}
.

This equation can be simplified as

d(vi, vj) =

{⌈ j−i
4

⌉
, if 0 ≤ j − i ≤ n

2 ,⌈n−(j−i)
4

⌉
, if n

2 ≤ j − i < n.

The circulant graph Cn(a1, a2, . . . , am) is isomorphic to the Cayley graph
for the cyclic group Zn and the generating set X = {a1, a2, . . . , am,−a1,
−a2, . . . ,−am}. A Cayley graph C(Γ, X) is specified by a group Γ and
an identity-free generating set X for this group such that X = X−1. The ver-
tices of C(Γ, X) are the elements of Γ and there is an edge between two
vertices u and v in C(Γ, X) if and only if there is a generator a ∈ X such
that v = ua.

The metric dimension of circulant graphs has been extensively stud-
ied. Javaid, Rahim and Ali [7] showed that dim(Cn(1, 2)) = 3 if n ≡
0, 2, 3 (mod 4). Imran et. al. [5] showed that dim(Cn(1, 2, 3)) = 4 if n ≡
2, 3, 4, 5 (mod 6), n ≥ 14. Borchert and Gosselin [1] found the values of
dim(Cn(1, 2)) and dim(Cn(1, 2, 3)) for any n. They proved that dim(Cn(1, 2))
= 4 if n ≡ 1 (mod 4), and for n ≥ 8 we have dim(Cn(1, 2, 3)) = 5 if
n ≡ 1 (mod 6) and dim(Cn(1, 2, 3)) = 4 otherwise. The metric dimension
of the circulant graphs Cn(1, 3) was studied in [6] and the circulant graphs
Cn(1, n/2) for even n were considered in [9]. We extend known results on
the metric dimension of circulant graphs by presenting lower and upper
bounds on the metric dimension of circulant graphs with 4 generators.

2. Resolving sets of Cn(1, 2, 3, 4)

We state upper bounds on the metric dimension of the circulant graphs
Cn(1, 2, 3, 4) by finding resolving sets having at most 6 vertices for any n ≥
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17. First let us show that there is an infinite set of circulant graphs with 4
generators, which can be resolved by 4 vertices.

Theorem 2.1. Let n ≡ 4 (mod 8) where n ≥ 20. Then

dim(Cn(1, 2, 3, 4)) ≤ 4.

Proof. Let n = 8k + 4 where k ≥ 2. We show that W = {v0, v2, v4k, v4k+2}
is a resolving set of Cn(1, 2, 3, 4). Representations of distances of all the
vertices in V (Cn(1, 2, 3, 4)) \W with respect to W are given in Table 1.

Representation v0 v2 v4k v4k+2

v1 1 1 k k + 1
v4i−1 (1 ≤ i ≤ k) i i k − i + 1 k − i + 1
v4i (1 ≤ i ≤ k − 1) i i k − i k − i + 1
v4i+1 (1 ≤ i ≤ k − 1) i + 1 i k − i k − i + 1
v4i+2 (1 ≤ i ≤ k − 1) i + 1 i k − i k − i
v4k+1 k + 1 k 1 1
v8k−4i+4 (1 ≤ i ≤ k) i i + 1 k − i + 1 k − i + 1
v8k−4i+5 (1 ≤ i ≤ k) i i + 1 k − i + 2 k − i + 1
v8k−4i+6 (1 ≤ i ≤ k) i i k − i + 2 k − i + 1
v8k−4i+7 (1 ≤ i ≤ k + 1) i i k − i + 2 k − i + 2

Table 1

Since any two vertices have different representations, dim(Cn(1, 2, 3, 4)) ≤
4. �

Let us prove that if n ≡ p mod 8 where p = 2, 3, 5, 6, then there exists a
set of 5 vertices which resolves the graphs Cn(1, 2, 3, 4).

Theorem 2.2. Let n ≡ p mod 8 where n ≥ 18 and p = 2, 3, 5, 6. Then

dim(Cn(1, 2, 3, 4)) ≤ 5.

Proof. Let n = 8k + p where k ≥ 2 and p = 2, 3, 5, 6. Let us show that
W = {v0, v1, v2, v3, v4} is a resolving set of Cn(1, 2, 3, 4). First we give
representations of distances of the vertices vi for 5 ≤ i ≤ 4k + 1 and 4k +
p + 3 ≤ i ≤ 8k + p− 1 with respect to W .
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Representation v0 v1 v2 v3 v4

v4i−3 (2 ≤ i ≤ k + 1) i i− 1 i− 1 i− 1 i− 1
v4i−2 (2 ≤ i ≤ k) i i i− 1 i− 1 i− 1
v4i−1 (2 ≤ i ≤ k) i i i i− 1 i− 1
v4i (2 ≤ i ≤ k) i i i i i− 1
v8k−4i+p (1 ≤ i ≤ k − 1) i i + 1 i + 1 i + 1 i + 1
v8k−4i+p+1 (1 ≤ i ≤ k − 1) i i i + 1 i + 1 i + 1
v8k−4i+p+2 (1 ≤ i ≤ k − 1) i i i i + 1 i + 1
v8k−4i+p+3 (1 ≤ i ≤ k) i i i i i + 1

Table 2

Note that no two vertices in Table 2 have the same representations of
distances. We distinguish the following cases:
Case 1 : p = 2.

Representations of distances of v4k+2, v4k+3 and v4k+4 are in the fol-
lowing table:

Representation v0 v1 v2 v3 v4

v4k+2 k k + 1 k k k
v4k+3 k k k + 1 k k
v4k+4 k k k k + 1 k

Table 3

It can be checked that any two distinct vertices of Cn(1, 2, 3, 4) have
different representations of distances with respect to W , therefore W is
a resolving set of Cn(1, 2, 3, 4).

Case 2 : p = 3.
We give representations of distances of v4k+2, v4k+3, v4k+4, and v4k+5.

The representation of v4k+2 can be obtained by using i = k+1 for v4i−2 in
Table 2. Similarly, the representation of v4k+5 can be obtained by using
i = k for v8k−4i+p+2. The remaining two vertices have the following
representations:

Representation v0 v1 v2 v3 v4

v4k+3 k k + 1 k + 1 k k
v4k+4 k k k + 1 k + 1 k

Table 4

No two vertices of Cn(1, 2, 3, 4) have the same representations, there-
fore dim(Cn(1, 2, 3, 4)) ≤ 5.
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Case 3 : p = 5.
It remains to give representations of distances of the vertices vi for

4k + 2 ≤ i ≤ 4k + 7. Representations of v4k+2, v4k+3, v4k+4 can be
obtained by using i = k + 1 for v4i−2, v4i−1, v4i in Table 2 and rep-
resentations of v4k+5, v4k+6, v4k+7 can be obtained by using i = k for
v8k−4i+p, v8k−4i+p+1, v8k−4i+p, respectively. No two representations are
the same.

Case 4 : p = 6.
As in the previous case, consider representations of distances of v4i−3,

v4i−2, v4i−1, v4i presented in Table 2 for 2 ≤ i ≤ k+1, and representations
of v8k−4i+p, v8k−4i+p+1, v8k−4i+p+2, v8k−4i+p+3 for 1 ≤ i ≤ k to obtain
representations of all the vertices in V (Cn(1, 2, 3, 4)) \ W , except for
v4k+5. Since the distance between v4k+5 and any vertex in W is k + 1,
all the vertices have different representations. The proof is complete.

�

In the next three theorems, we present upper bounds on the metric di-
mension of Cn(1, 2, 3, 4) for n ≡ p (mod 8) where p = 0, 1, 7.

Theorem 2.3. Let n ≡ 7 (mod 8) where n ≥ 23. Then

dim(Cn(1, 2, 3, 4)) ≤ 6.

Proof. Let n = 8k + 7 where k ≥ 2, and let W ′ = {v0, v1, v2, v3, v4}. We
consider representations of distances of vertices v4i−3, v4i−2, v4i−1, v4i with
respect to the vertices in W ′ given in Table 2 for 2 ≤ i ≤ k + 1. Similarly,
consider the representations of vertices v8k−4i+p, v8k−4i+p+1, v8k−4i+p+2,
v8k−4i+p+3 in Table 2 for 1 ≤ i ≤ k and p = 7. It remains to give repre-
sentations of the vertices v4k+5 and v4k+6 with respect to W ′. The distance
between any of these two vertices and any vertex in W ′ is k + 1. The ver-
tices v4k+5 and v4k+6 are the only vertices which are not resolved by W ′.
However it is easy to find a vertex, for example v5, which resolves v4k+5

and v4k+6 (since d(v5, v4k+5) = k and d(v5, v4k+6) = k + 1). Hence the set
W = {v0, v1, v2, v3, v4, v5} is a resolving set of Cn(1, 2, 3, 4). �

Theorem 2.4. Let n ≡ 0 (mod 8) where n ≥ 24. Then

dim(Cn(1, 2, 3, 4)) ≤ 6.

Proof. Let n = 8k where k ≥ 3. Let us show that W = {v0, v1, v3, v4, v6, v9}
is a resolving set of Cn(1, 2, 3, 4). We state representations of distances of
all the vertices in V (Cn(1, 2, 3, 4)) \W with respect to W ′ = {v0, v1, v3, v6}.
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Representation v0 v1 v3 v6

v2 1 1 1 1
v5 2 1 1 1
v4i−3 (4 ≤ i ≤ k) i i− 1 i− 1 i− 2
v4i−2 (3 ≤ i ≤ k) i i i− 1 i− 2
v4i−1 (2 ≤ i ≤ k) i i i− 1 i− 1
v4i (2 ≤ i ≤ k) i i i i− 1
v4k+1, v4k+2 k k k k − 1
v4k+3 k k k k
v4k+4 k − 1 k k k
v4k+5 k − 1 k − 1 k k
v8k−4i (1 ≤ i ≤ k − 2) i i + 1 i + 1 i + 2
v8k−4i+1 (1 ≤ i ≤ k − 2) i i i + 1 i + 2
v8k−4i+2 (1 ≤ i ≤ k − 1) i i i + 1 i + 1
v8k−4i+3 (1 ≤ i ≤ k − 1) i i i i + 1

Table 5

Let us present the only vertices which have the same representations:

r(v4k|W ′) = r(v4k+1|W ′) = r(v4k+2|W ′),
r(v4k+5|W ′) = r(v4k+6|W ′).

However,

d(v4, v4k) = k − 1, d(v4, v4k+1) = k,
d(v9, v4k+1) = k − 2, d(v9, v4k+2) = k − 1,
d(v9, v4k+5) = k − 1, d(v9, v4k+6) = k,

which means that all the vertices in V (Cn(1, 2, 3, 4)) \W are resolved by
W . �

Theorem 2.5. Let n ≡ 1 (mod 8) where n ≥ 17. Then

dim(Cn(1, 2, 3, 4)) ≤ 6.

Proof. Let n = 8k+1 where k ≥ 2, and let W = {v0, v1, v4, v7, v4k+2, v4k+3}.
We give representations of distances of all the vertices in V (Cn(1, 2, 3, 4))\W
with respect to W ′ = {v0, v1, v7, v4k+2, v4k+3}.
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Representation v0 v1 v7 v4k+2 v4k+3

v2 1 1 2 k k
v3 1 1 1 k k
v5 2 1 1 k k
v6 2 2 1 k − 1 k
v4i−1 (3 ≤ i ≤ k) i i i− 2 k − i + 1 k − i + 1
v4i (2 ≤ i ≤ k) i i i− 1 k − i + 1 k − i + 1
v4i−3 (3 ≤ i ≤ k) i i− 1 i− 2 k − i + 2 k − i + 2
v4i−2 (3 ≤ i ≤ k) i i i− 2 k − i + 1 k − i + 2
v4k+1 k k k − 1 1 1
v4k+4 k k k 1 1
v4k+5 k − 1 k k 1 1
v4k+6 k − 1 k − 1 k 1 1
v4k+7 k − 1 k − 1 k 2 1
v8k−4i+1 (1 ≤ i ≤ k − 2) i i + 1 i + 2 k − i k − i
v8k−4i+2 (1 ≤ i ≤ k − 2) i i i + 2 k − i k − i
v8k−4i+3 (1 ≤ i ≤ k − 2) i i i + 2 k − i + 1 k − i
v8k−4i+4 (1 ≤ i ≤ k − 1) i i i + 1 k − i + 1 k − i + 1

Table 6

The only vertices which have the same representations are the pairs v2, v8k

and v4k, v4k+1. Since the vertex v4 resolves the pair v2, v8k and the vertex
v9 resolves the pair v4k, v4k+1,

d(v4, v2) = k − 1, d(v4, v8k) = 2,
d(v9, v4k) = k − 1, d(v9, v4k+1) = k,

all the vertices in V (Cn(1, 2, 3, 4)) \W are resolved by W . �

3. Lower bounds on Cn(1, 2, 3, 4)

We prove that a resolving set of any circulant graph Cn(1, 2, 3, 4) consists
of at least 4 vertices. Note that d(vi, vi+1) = d(vi, vi+2) = d(vi, vi+3) =
d(vi, vi+4) = 1, d(vi, vi+5) = d(vi, vi+6) = d(vi, vi+7) = d(vi, vi+8) = 2,
d(vi, vi+9) = d(vi, vi+10) = d(vi, vi+11) = d(vi, vi+12) = 3, . . . , if n is suffi-
ciently large. This implies that if 1 ≤ j ≤ n/2 − 4 and d(v0, vj) = p, then
d(v0, vj+4) = p + 1 and

p = d(v0, vj) ≤ d(v0, vj+1) ≤ d(v0, vj+2) ≤ d(v0, vj+3) ≤ d(v0, vj+4) = p + 1.

Similarly, if n/2 + 4 ≤ j ≤ n− 1 and d(v0, vj) = p, then d(v0, vj−4) = p + 1
and

p = d(v0, vj) ≤ d(v0, vj−1) ≤ d(v0, vj−2) ≤ d(v0, vj−3) ≤ d(v0, vj−4) = p + 1.

Let do(vi, vj) be the number of edges in the path vivi+1vi+2 . . . vj . So if
i ≤ j, then do(vi, vj) = j − i, and if i > j, then do(vi, vj) = n + (j − i). It
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follows that for i, j, l, such that 0 ≤ i ≤ j ≤ l ≤ n− 1, we have

(3.1) do(vi, vj) + do(vj , vl) + do(vl, vi) = n.

Theorem 3.1. For every n ≥ 24, we have dim(Cn(1, 2, 3, 4)) ≥ 4.

Proof. We prove the result by contradiction. Suppose that Cn(1, 2, 3, 4) con-
tains a resolving set W ′ which consists of 3 different vertices vi, vj , vl, where
0 ≤ i < j < l ≤ n − 1. Note that (at least) one of the numbers do(vi, vj),
do(vj , vl), do(vl, vi) is at most n/3, otherwise if all do(vi, vj), do(vj , vl),
do(vl, vi) are greater than n/3, then do(vi, vj) + do(vj , vl) + do(vl, vi) > n
which contradicts (3.1). Similarly, one of do(vi, vj), d

o(vj , vl), d
o(vl, vi) must

be at least n/3, otherwise if all do(vi, vj), do(vj , vl), do(vl, vi) are smaller
than n/3, then do(vi, vj) + do(vj , vl) + do(vl, vi) < n (which means that the
order of Cn(1, 2, 3, 4) is smaller than n).

Without loss of generality we can assume that do(vi, vj) ≤ n/3 and
do(vl, vi) ≥ n/3. Due to the symmetry in the graph, we can assume that
vi = v0. Then 1 ≤ j ≤ n/3. Clearly, d(v0, v1) = d(v0, v2) = d(v0, v3) =
d(v0, v4) = 1 and d(v0, vn−1) = d(v0, vn−2) = d(v0, vn−3) = d(v0, vn−4) = 1.
We consider two main cases:
Case 1 : l ≥ n/2.

We show that the vertices vn−4, vn−3, vn−2, vn−1 cannot be resolved by
W ′. More specifically, we show that one of the three pairs (vn−4, vn−3),
(vn−3, vn−2), (vn−2, vn−1) cannot be resolved by vj and vl.

We have d(vj , vn−1) = p for some positive integer p (the shortest path
between vj and vn−1 is vn−1v0v1 . . . vj), then

p = d(vj , vn−1) ≤ d(vj , vn−2) ≤ d(vj , vn−3) ≤ d(vj , vn−4) ≤ p + 1.

This means that vj can resolve at most one of the pairs (vn−4, vn−3),
(vn−3, vn−2), (vn−2, vn−1).

Similarly, the shortest path between vl and vn−4 is vlvl+1vl+2 . . . vn−4,
so for some positive integer r, we have r = d(vl, vn−4) ≤ d(vl, vn−3) ≤
d(vl, vn−2) ≤ d(vl, vn−1) ≤ r + 1. Thus, vl can resolve at most one of
the pairs (vn−4, vn−3), (vn−3, vn−2), (vn−2, vn−1). It follows that one of
the pairs (vn−4, vn−3), (vn−3, vn−2), (vn−2, vn−1) is not resolved by W ′.
Therefore W ′ is not a resolving set of Cn(1, 2, 3, 4).

Case 2 : l ≤ n
2 .

We show that we have two vertices in the set V ′ = {v1, v2, v3, v4},
which are not resolved by W ′. Note that the distance between any two
vertices in V ′ is 1. We distinguish three subcases.
Subcase 1 : vj , vl ∈ V ′.

Then for two vertices v′, v′′ ∈ V ′ \ {vj , vl} we have d(vj , v
′) =

d(vj , v
′′) = 1, d(vl, v

′) = d(vl, v
′′) = 1, which means that the vertices

v′ and v′′ are not resolved by W ′.
Subcase 2 : vj ∈ V ′ and vl /∈ V ′.

Let us denote the vertices in V ′ \ {vj} by va, vb, vc, where a < b <
c. We have d(vj , va) = d(vj , vb) = d(vj , vc) = 1 and d(vl, vc) = r
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for some positive integer r (the shortest path between vl and vc is
vcvc+1vc+2 . . . vl). Then r = d(vl, vc) ≤ d(vl, vb) ≤ d(vl, va) ≤ r + 1,
which means that vl can resolve at most one of the pairs (va, vb),
(vb, vc), so there are 2 vertices in the set {va, vb, vc} having the same
representations with respect to W ′.

Subcase 3 : vj , vl /∈ V ′.
Since for some positive integer p, we have p = d(vj , v4) ≤ d(vj , v3) ≤

d(vj , v2) ≤ d(vj , v1) ≤ p + 1, it follows that the vertex vj can re-
solve at most one of the pairs (v1, v2), (v2, v3), (v3, v4). Similarly,
r = d(vl, v4) ≤ d(vl, v3) ≤ d(vl, v2) ≤ d(vl, v1) ≤ r + 1 for some r,
which means that vl can resolve at most one of the pairs (v1, v2),
(v2, v3), (v3, v4). It follows that one of the pairs (v1, v2), (v2, v3),
(v3, v4) is not resolved by W ′.

Thus W ′ is not a resolving set of Cn(1, 2, 3, 4), a contradiction. Hence
dim(Cn(1, 2, 3, 4)) ≥ 4. �

We improve the bound given in the previous theorem by showing that if
n ≡ 0, 1, 6, 7 (mod 8), then 4 vertices cannot resolve the graphs Cn(1, 2, 3, 4).

Theorem 3.2. Let n ≡ p (mod 8) where n ≥ 6 and p = 0, 1, 6, 7. Then

dim(Cn(1, 2, 3, 4)) ≥ 5.

Proof. Let n = 8k + q where k ≥ 0 is an integer and q = 6, 7, 8, 9. We
prove that dim(Cn(1, 2, 3, 4)) ≥ 5. Suppose to the contrary that the graph
Cn(1, 2, 3, 4) can be resolved by 4 vertices. Let W ′ = {w1, w2, w3, w4} be a
resolving set of Cn(1, 2, 3, 4). Without loss of generality we can assume that
w1 = v0. Let V ′ = {v4k+1, v4k+2, . . . , v4k+5}. From (1.1), we know that
d(v0, vi) = k + 1 for every vi ∈ V ′ (in general, we have q − 1 vertices v4k+1,
v4k+2, . . . , v4k+q−1, which are at distance k+1 from v0, but we consider only
the vertices of V ′ in this proof). Any two vertices vi, vj ∈ V ′ are adjacent,
which means that d(vi, vj) = 1. For vi 6∈ V ′, we have

p = d(vi, v4k+1) ≤ d(vi, v4k+2) ≤ d(vi, v4k+3)

≤ d(vi, v4k+4) ≤ d(vi, v4k+5) ≤ p + 1

if 0 ≤ i ≤ 4k, and

p = d(vi, v4k+5) ≤ d(vi, v4k+4) ≤ d(vi, v4k+3)

≤ d(vi, v4k+2) ≤ d(vi, v4k+1) ≤ p + 1

if 4k + 6 ≤ i ≤ n − 1, where p is some positive integer. This means that
out of the 4 pairs of vertices (v4k+1, v4k+2), (v4k+2, v4k+3), (v4k+3, v4k+4),
(v4k+4, v4k+5), at most one pair can be resolved by the vertex vi /∈ V ′. We
distinguish the following cases:
Case 1 : w2, w3, w4 ∈ V ′.

There are two distinct vertices v′, v′′ ∈ V ′ \ {w2, w3, w4} and we have
d(wi, v

′) = d(wi, v
′′) = 1 for i = 2, 3, 4, which means that the vertices v′

and v′′ are not resolved by the vertices in W ′.



THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 4 GENERATORS 113

Case 2 : |V ′ ∩W ′| = 2.
Without loss of generality we can assume that w2, w3 ∈ V ′ and w4 /∈

V ′. We have d(w2, v
′) = d(w3, v

′) = 1 for every vertex v′ ∈ V ′ \ {w2, w3}
which means that there are three distinct vertices in V ′, say v′1, v

′
2, v
′
3,

which are not resolved by the vertices w1, w2, w3. Since the distances
d(w4, v

′
1), d(w4, v

′
2), d(w4, v

′
3) are p or p + 1 for some positive integer p,

it follows that there are two different vertices in V ′, which cannot be
resolved by w4.

Case 3 : |V ′ ∩W ′| = 1.
We can assume that w2 ∈ V ′ and w3, w4 /∈ V ′. Note that d(w2, v

′) = 1
for every v′ ∈ V ′\{w2}. Let us write V ′ = {w2, v4k+a, v4k+b, v4k+c, v4k+d}
where a < b < c < d. Since the vertex wi, i = 3, 4, can resolve at most
one of the pairs (v4k+a, v4k+b), (v4k+b, v4k+c), (v4k+c, v4k+d), at least one
pair of vertices of V ′ cannot be resolved by w3 and w4 (and by W ′).

Case 4 : w2, w3, w4 /∈ V ′.
Any vertex wi, i = 2, 3, 4, can resolve at most one of the pairs (v4k+1,

v4k+2), (v4k+2, v4k+3), (v4k+3, v4k+4), (v4k+4, v4k+5), which means that at
least one pair of vertices of V ′ is not resolved by W ′.

Therefore W ′ is not a resolving set of Cn(1, 2, 3, 4), a contradiction. Hence
dim(Cn(1, 2, 3, 4)) ≥ 5. �

4. Conclusion

By [1], [5], and [7], for n ≥ 5 we have

dim(Cn(1, 2)) =

{
4 if n ≡ 1 (mod 4) ,

3 otherwise,

and for n ≥ 8

dim(Cn(1, 2, 3)) =

{
5 if n ≡ 1 (mod 6) ,

4 otherwise.

One could have an impression that these results can be generalized to obtain
the following: For sufficiently large n

dim(Cn(1, 2, . . . , t)) =

{
t + 2 if n ≡ 1 (mod 2t) ,

t + 1 otherwise.

However, from our results presented in the previous two sections it follows
that this statement does not hold for t = 4. The bounds on the metric
dimension of Cn(1, 2, 3, 4) for any n ≥ 22 are presented in Table 7.
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dim(Cn(1, 2, 3, 4)) Lower bound Upper bound
n ≡ 0 (mod 8) 5 6
n ≡ 1 (mod 8) 5 6
n ≡ 2 (mod 8) 4 5
n ≡ 3 (mod 8) 4 5
n ≡ 4 (mod 8) 4 4
n ≡ 5 (mod 8) 4 5
n ≡ 6 (mod 8) 5 5
n ≡ 7 (mod 8) 5 6

Table 7

In most cases dim(Cn(1, 2, 3, 4)) ≤ 5. We conjecture that for any n ≥ 22
the metric dimension of Cn(1, 2, 3, 4) is equal to the upper bounds presented
in Table 7, which would mean that the resolving sets given in Section 2 are
the best possible. Note that for n = 19, dim(Cn(1, 2, 3, 4)) = 4 and values
of dim(Cn(1, 2, 3, 4)) for n ≤ 22 were presented in [1].
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