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TRIPLE PRODUCT SUMS OF CATALAN TRIANGLE

NUMBERS

WENCHANG CHU

Abstract. By means of quadratic transformations for the well-poised
hypergeometric series, several reduction and transformation formulae
are derived for the triple product sums of Catalan triangle numbers.
One of them confirms a conjecture made recently by Miana, Ohtsuka
and Romero [18, 2017].

1. Introduction and Motivation

In classical combinatorics, the Catalan numbers (cf. [10, §1.15] and [11,
§5.4])

Cn =
1

n+ 1

(
2n

n

)
with n ∈ N0,

are one of the most fascinating sequences and have numerous interpretations
in enumerative problems (cf. Chu [8], Hilton et al. [14], and Stanley [20,
Exercise 6.19]). There are also several amazing arithmetic properties, for
example, the nonlinear recurrence

Cn+1 =

n∑
k=0

CkCn−k,

the Touchard formula [23] (see also [17, p. 319])

Cn+1 =
∑

0≤k≤n/2

2n−2k
(
n

2k

)
Ck,

as well as the formula due to Jonah [17, p. 325] (see also [25])(
m+ 1

n

)
=

n∑
k=0

(
m− 2k

n− k

)
Ck.

As an extension of Catalan numbers, Shapiro [19, 1976] introduced and
investigated Catalan triangles (see also Sun and Ma [22]) with the entries
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given by

(1) Bn,k =
k

n

(
2n

n− k

)
where k, n ∈ N with k ≤ n.

Recently, Gutiérrez et al. [13] found the following two summation formulae

n∑
k=1

kB2
n,k =

(
n+ 1

2

)
CnCn−1,(2)

n∑
k=1

k2B2
n,k = (3n− 2)C2n−2.(3)

The more general problem of evaluating the binomial moments

(4) Θγ(n) =
n∑
k=1

kγ
(

2n

n− k

)2

was resolved by Chen and Chu [2] and extended by Chu [7], Slavik [21], and
Guo and Zeng [12]. When the weight factor “kγ” is replaced by falling (or
rising) factorials, the related binomial sums have been evaluated by Kilic [15]
and Kilic and Prodinger [16]. Further binomial sums have been examined
by the author in [3–6,9].

The purpose of the present paper is to investigate the following triple
product sum of binomial coefficients

(5) Ωδ
γ(m,n, p) =

∑
k≥δ

(
k − δ

2

)γ(2m+ δ

m+ k

)(
2n+ δ

n+ k

)(
2p+ δ

p+ k

)
,

where δ = 0 or 1 and m, n, p, γ ∈ N0. As preliminaries, we shall review
in the next section a few identities for terminating well-poised series and
partial sums related to quadratic transformations. They will be utilized
in Section 3 to derive several reduction and transformation formulae for
the triple product sums of Catalan triangles. One particular example for
Ω0
3(m,n, n) confirms a conjecture made by Miana, Ohtsuka, and Romero [18,

Conjecture 4.2], which has been the primary motivation for the present
research. Finally in Section 4, we shall briefly discuss how to evaluate the
binomial moments Ωδ

γ(m,n, p) for γ ∈ N in accordance with δ = 0 and 1.
Throughout the paper, we shall adopt the notation of Bailey [1, §2.1] for

the classical hypergeometric series

1+pFp

[
a0, a1, a2, · · · , ap

b1, b2, · · · , bp

∣∣∣ z] =
∞∑
k=0

(a0)k(a1)k(a2)k · · · (ap)k
k!(b1)k(b2)k · · · (bp)k

zk,

where the rising and falling factorials are given by the Γ-function ratios

(x)n =
Γ(x+ n)

Γ(x)
and 〈x〉n =

Γ(1 + x)

Γ(1 + x− n)
.
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The multiparameter forms of the shifted factorial will be abbreviated as[
α, β, · · · , γ
A, B, · · · , C

]
n

=
(α)n(β)n · · · (γ)n
(A)n(B)n · · · (C)n

.

2. Quadratic Transformation and Partial Sums

As a preliminary, a quadratic transformation due to Bailey [1] for the very
well-poised 4F3-series will be examined. From its special case at x = −1,
we derive several equivalent expressions for the partial 4F3-sums, that will
be utilized in the next section to examine triple product sums of Catalan
triangle numbers.

In the theory of classical hypergeometric series, the following quadratic
transformation formula is well-known

(6)
3F2

[
a, b, c

1 + a− b, 1 + a− c

∣∣∣ x]
= (1− x)−a × 3F2

[
a
2 ,

1+a
2 , 1 + a− b− c

1 + a− b, 1 + a− c

∣∣∣ −4x

(1− x)2

]
.

Whipple [24, 1927] discovered it by making the replacement w → −w/x and
then letting n → ∞ in the following transformation between a well-poised

4F3-series and the Saalschützian 5F4-series (see also Bailey [1, §4.5])

4F3

[
a, b, c, −n

1 + a− b, 1 + a− c, w

∣∣∣ 1

]
=

(w − a)n
(w)n

× 5F4

[
1 + a− w, a2 ,

1+a
2 , 1 + a− b− c,−n

1 + a− b, 1 + a− c, 1+a−w−n2 , 2+a−w−n2

∣∣∣ 1

]
.

There is another quadratic formula due to Bailey [1, p. 97]

(7)
4F3

[
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣ x]
=

1 + x

(1− x)a+1
× 3F2

[
1+a
2 , 2+a2 , 1 + a− b− c
1 + a− b, 1 + a− c

∣∣∣ −4x

(1− x)2

]
.

For a formal power series f(x), denote by [xn]f(x) the coefficient of xn

in f(x). Then f(x)/(1− x) results in the generating function of the partial
sums of the coefficients of f(x). This can be explicitly expressed as

f(x) =
∑
n≥0

cnx
n 
 [xn]

f(x)

1− x
=

n∑
k=0

ck.

Given a hypergeometric pFq-series, let pF
(n)
q be the partial sum of pFq to

n+ 1 terms with its summation index running from 0 to n. Now replacing



4 WENCHANG CHU

x by −x, we can reformulate the quadratic relation (7) as

1

1− x 4F3

[
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣ − x]
= (1 + x)−a−1 × 3F2

[
1+a
2 , 2+a2 , 1 + a− b− c
1 + a− b, 1 + a− c

∣∣∣ 4x

(1 + x)2

]
.

Extracting the coefficient of [xn], we can proceed

4F
(n)
3

[
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣ − 1

]
= [xn](1 + x)−a−1 × 3F2

[
1+a
2 , 2+a2 , 1 + a− b− c
1 + a− b, 1 + a− c

∣∣∣ 4x

(1 + x)2

]
=

n∑
k=0

[
1+a
2 , 2+a2 , 1 + a− b− c

1, 1 + a− b, 1 + a− c

]
k

[xn−k]
4k

(1 + x)1+a+2k

=

n∑
k=0

(
−1− a− 2k

n− k

)[
1+a
2 , 2+a2 , 1 + a− b− c

1, 1 + a− b, 1 + a− c

]
k

4k.

Taking into account the relation(
−1− a− 2k

n− k

)
4k =

(
−1− a
n

)[
−n, 1 + a+ n

1+a
2 , 1+a2

]
k

we get the following interesting expression for partial sums.

Lemma 1 (Partial sum expression).

4F
(n)
3

[
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣ − 1

]
=

(
−1− a
n

)
× 3F2

[
−n, 1 + a+ n, 1 + a− b− c

1 + a− b, 1 + a− c

∣∣∣ 1

]
.

Instead, we do not have such fortune to evaluate partial sums for the

3F2-series in Whipple’s transformation (6). We are content to write down
its special case x = −1 for the subsequent application.

Lemma 2 (Transformation formula).

3F2

[
a, b, c

1 + a− b, 1 + a− c

∣∣∣ − 1

]
= 2−a3F2

[
a
2 ,

1+a
2 , 1 + a− b− c

1 + a− b, 1 + a− c

∣∣∣ 1

]
.

The formula stated in Lemma 1 is remarkable because it transforms a very
well-poised partial sum into another terminating, but “zero” balanced series
(with the sum of its numerator parameters equal to that of the denominator
parameters). It may be of interest to look for further equivalent expressions

of the partial sum 4F
(n)
3 (−1) stated in Lemma 1. This can be carried out

by using the following transformations for terminating 3F2-series.
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Lemma 3 (Transformation formulae).

3F2

[
−n, a, b

c, d

∣∣∣ 1

]
=

(c− a)n
(c)n

3F2

[
−n, a, d− b
d, 1 + a− c− n

∣∣∣ 1

]
(8)

=
(c+ d− a− b)n

(c)n
3F2

[
−n, d− a, d− b
d, c+ d− a− b

∣∣∣ 1

]
(9)

=

[
a, c+ d− a− b

c, d

]
n
3F2

[
−n, c− a, d− a

1− a− n, c+ d− a− b

∣∣∣ 1

]
(10)

=

[
c− a, d− a
c, d

]
n
3F2

[
−n, a, 1 + a+ b− c− d− n
1 + a− c− n, 1 + a− d− n

∣∣∣ 1

]
.(11)

Among these formulae, the first one results from a limiting case of the
transformation between two terminating balanced 4F3-series due to Bai-
ley [1, §7.2], which can also be verified easily by combining the series re-
arrangement with the Chu–Vandermonde formula (cf. Bailey [1, §1.3] as
follows

3F2

[
−n, a, b

c, d

∣∣∣ 1

]
=

n∑
k=0

[
−n, a

1, c

]
k
2F1

[
−k, d− b

d

∣∣∣ 1

]

=
n∑
i=0

(−1)i
[
−n, a, d− b
1, c, d

]
i
2F1

[
i− n, a+ i

c+ i

∣∣∣ 1

]
.

Other three formulae in Lemma 3 follow by iterating (8) appropriately, where
(11) has been given explicitly by Bailey [1, §10.1].

By applying Lemma 3 to the 3F2-series displayed in Lemma 1, we get

further four equivalent expressions for the well-poised partial 4F
(n)
3 -sum.

Lemma 4 (Partial sum expressions).

4F
(n)
3

[
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣ − 1

]
=

(1 + a)n
(1 + a− c)n

× 2F
(n)
1

[
c, −b− n
1 + a− b

∣∣∣ 1

]
(12)

=

[
1 + a, 1 + b
1, 1 + a− b

]
n

× 3F2

[
−n, b, 1 + a+ n

b+ 1, 1 + a− c

∣∣∣ 1

]
(13)

=

[
1 + a, 1 + a− b− c
1 + a− b, 1 + a− c

]
n

× 2F
(n)
1

[
b, c

b+ c− a− n

∣∣∣ 1

]
(14)

=

[
1 + a, 1 + b, 1 + c

1 + a− b, 1 + a− c,−n

]
n

× 3F2

[
1, −n, 1 + a+ n

1 + b, 1 + c

∣∣∣ 1

]
.(15)

Among these transformations, we point out that the 3F2-series in (13) is
“exotic”.
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3. Triple Product Sums in Catalan Triangles

Based on the hypergeometric series results prepared in the previous sec-
tion, we shall examine four initial cases of Ωδ

γ(m,n, p) with γ, δ = 0, 1.
When δ = 1, we have the fortune to establish reduction and transformation
formulae even for the partial sums of triple products of Catalan triangle
numbers. In addition, we shall prove a reduction formula for Ω0

3(m,n, p)
that confirms, in particular for p = n, a conjecture made recently by Miana,
Ohtsuka, and Romero [18, Conjecture 4.2].

3.1. Ω0
0(m,n, p). Suppose that m = min{m,n, p} for three nonnegative

numbers m, n, p. For the terminating bilateral series below, it is not difficult
to show, by inverting the summation index k → −k, the following relation

3H3

[
−m, −n, −p

1 +m, 1 + n, 1 + p

∣∣∣ − 1

]
=

m∑
k=−m

(−1)k
[
−m, −n, −p

1 +m, 1 + n, 1 + p

]
k

=1 + 2
∑
k≥1

(−1)k
[
−m, −n, −p

1 +m, 1 + n, 1 + p

]
k

=1 + 2
∑
k≥1

(
2m
m+k

)(
2n
n+k

)(
2p
p+k

)(
2m
m

)(
2n
n

)(
2p
p

) .

On the other hand, by shifting the summation index k → k −m, we have

3H3

[
−m, −n, −p

1 +m, 1 + n, 1 + p

∣∣∣ − 1

]
=

(
2n
m+n

)(
2p
m+p

)(
2m
m

)(
2n
n

)(
2p
p

)
× 3F2

[
−2m, −m− n, −m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
.

By combining the last two equations, we get the expression∑
k≥0

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)

=
1

2

(
2m

m

)(
2n

n

)(
2p

p

)
+

1

2

(
2n

m+n

)(
2p

m+p

)
× 3F2

[
−2m, −m− n, −m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
.

For the last 3F2-series, applying the transformation displayed in Lemma 2

(16)
3F2

[
−2m, −m− n, −m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
= 4m × 3F2

[
−m, 12 −m, 1 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
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and then replacing the resulting 3F2-series by its reversal

3F2

[
−m, 12 −m, 1 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
1
2 , 1 + n+ p

1−m+ n, 1−m+ p

]
m

×3F2

[
−m, −n, −p
1
2 ,−m− n− p

∣∣∣ 1

]
we derive the following expression with the afore-assumed parameter restric-
tion m = min{m,n, p} being removed by symmetry.

Theorem 5. For three nonnegative integers m, n, p, there holds∑
k≥0

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
=

1

2

(
2m

m

)(
2n

n

)(
2p

p

)

+ 3F2

[
−m, −n, −p
1
2 ,−m− n− p

∣∣∣ 1

]
(m+ n+ p)!(2m)!(2n)!(2p)!

2(m+ n)!(m+ p)!(n+ p)!m!n!p!
.

Applying (9) to the last 3F2-series

3F2

[
−m, −n, −p
1
2 ,−m− n− p

∣∣∣ 1

]
=

(12)m

(1 + n+ p)m
3F2

[
−m, 1

2 + n, 12 + p
1
2 ,

1
2 −m

∣∣∣ 1

]
leads us to the following equivalent expression.

Proposition 6. For three nonnegative integers m, n, p, there holds∑
k≥0

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
=

1

2

(
2m

m

)(
2n

n

)(
2p

p

)

+
(12)m(2m)!(2n)!(2p)!

2(m+ n)!(m+ p)!m!n!p!
3F2

[
−m, 1

2 + n, 12 + p
1
2 ,

1
2 −m

∣∣∣ 1

]
.

If we apply (11) to the 3F2-series displayed on the right hand side of (16)

3F2

[
−m, 12 −m, 1 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
1 + n, 1 + p

1−m+ n, 1−m+ p

]
m

×3F2

[
−m, 12 , 1 + n+ p

1 + n, 1 + p

∣∣∣ 1

]
we would get another equivalent expression.

Corollary 7. For three nonnegative integers m, n, p, there holds∑
k≥0

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
=

1

2

(
2m

m

)(
2n

n

)(
2p

p

)

+ 22m−1
(

2n

n

)(
2p

p

)
3F2

[
1
2 , −m, 1 + n+ p
1 + n, 1 + p

∣∣∣ 1

]
.
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3.2. Ω0
1(m,n, p). Let λ be a natural number subject to 0 < λ ≤ m. Sup-

pose that m = min{m,n, p}. By inverting the summation order through
k → m − k, it is not difficult to reformulate the binomial sum in terms of
hypergeometric series

(17)

m∑
k=λ

k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
= m

(
2n

n−m

)(
2p

p−m

)
×4F

(m−λ)
3

[
−2m, 1−m, −m− n, −m− p

−m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
.

Applying Lemma 1 to the last 4F3-sum, we have

4F
(m−λ)
3

[
−2m, 1−m, −m− n, −m− p

−m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
=

(
2m− 1

m− λ

)
3F2

[
λ−m, 1−m− λ, 1 + n+ p

1−m+ n, 1−m+ p

∣∣∣ 1

]
.

For the above 3F2-series, its summation index runs from 0 to m− λ in view
of λ > 0. By taking its reversal

3F2

[
λ−m, 1−m− λ, 1 + n+ p

1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
2λ, 1 + n+ p

1−m+ n, 1−m+ p

]
m−λ

× 3F2

[
λ−m, λ− n, λ− p

2λ, λ−m− n− p

∣∣∣ 1

]
we obtain the following symmetric expression with the afore-assumed re-
striction m = min{m,n, p} being removed by symmetry.

Theorem 8. For four nonnegative integers m, n, p, and λ subject to the
condition 0 < λ ≤ min{m,n, p}, there holds

m∑
k=λ

k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
= 3F2

[
λ−m,λ− n, λ− p
2λ, λ−m− n− p

∣∣∣ 1

]
× (m+ n+ p− λ)!(2m)!(2n)!(2p)!

2(2λ− 1)!(m+ n)!(m+ p)!(n+ p)!(m− λ)!(n− λ)!(p− λ)!
.

According to (9), the last 3F2-series can further be reduced to

3F2

[
λ−m,λ− n, λ− p
2λ, λ−m− n− p

∣∣∣ 1

]
=

(m− λ)!

(n+ p+ 1)m−λ

×2F1
(m−λ)

[
λ+ n, λ+ p

2λ

∣∣∣ 1

]
.

We therefore establish the following equivalent expression.
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Proposition 9. Let m, n, p, and λ be four nonnegative integers that satisfy
the condition 0 < λ ≤ min{m,n, p}. We have

m∑
k=λ

k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
= 2F1

(m−λ)
[
λ+ n, λ+ p

2λ

∣∣∣ 1

]
× (2m)!(2n)!(2p)!

2(2λ− 1)!(m+ n)!(m+ p)!(n− λ)!(p− λ)!
.

Instead, applying (14) to (17) and then inverting the summation order
(valid also for λ = 0) for the resulting 2F1-sum, we have

4F
(m−λ)
3

[
−2m, 1−m, −m− n, −m− p

−m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
=

[
1− 2m, 1 + n+ p

1−m+ n, 1−m+ p

]
m−λ

2F1
(m−λ)

[
−m− n,−m− p
λ−m− n− p

∣∣∣ 1

]
=

[
λ+m,λ+ n+ 1, λ+ p+ 1

1, 1−m+ n, 1−m+ p

]
m−λ

3F2

[
1, λ−m, 1 + n+ p
1 + λ+ n, 1 + λ+ p

∣∣∣ 1

]
which yields another equivalent expression.

Corollary 10. Let m, n, p, and λ be four nonnegative integers satisfying
the condition 0 ≤ λ ≤ min{m,n, p}. We have

m∑
k=λ

k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
= 3F2

[
1, λ−m, 1 + n+ p
1 + λ+ n, 1 + λ+ p

∣∣∣ 1

]
× m+ λ

2

(
2m

m+ λ

)(
2n

n+ λ

)(
2p

p+ λ

)
.

3.3. Ω1
0(m,n, p). Suppose that with m = min{m,n, p} for three natural

numbers m, n, p. For the terminating bilateral series below, it is not difficult
to show, by inverting the summation index k → −k−1, the following relation

3H3

[
−1−m, −1− n, −1− p
1 +m, 1 + n, 1 + p

∣∣∣ − 1

]
=

m+1∑
k=−m

(−1)k
[
−1−m, −1− n, −1− p
1 +m, 1 + n, 1 + p

]
k

= 2
∑
k≥1

(−1)k
[
−1−m, −1− n, −1− p
1 +m, 1 + n, 1 + p

]
k

= 2
∑
k≥1

(
2m+1
m+k

)(
2n+1
n+k

)(
2p+1
p+k

)(
2m+1
m

)(
2n+1
n

)(
2p+1
p

) .
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On the other hand, by shifting the summation index k → k −m, we have

3H3

[
−1−m, −1− n, −1− p
1 +m, 1 + n, 1 + p

∣∣∣ − 1

]
=

(
2n+1
n−m

)(
2p+1
p−m

)(
2m+1
m

)(
2n+1
n

)(
2p+1
p

)
× 3F2

[
−1− 2m, −1−m− n, −1−m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
.

By combining the last two equations, we get the expression∑
k≥1

(
2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
=

1

2

(
2n+ 1

n−m

)(
2p+ 1

p−m

)

× 3F2

[
−1− 2m, −1−m− n, −1−m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
.

For the last 3F2-series, applying the transformation displayed in Lemma 2

(18)
3F2

[
−1− 2m, −1−m− n, −1−m− p

1−m+ n, 1−m+ p

∣∣∣ − 1

]
= 21+2m

3F2

[
−m,−1

2 −m, 2 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
and then replacing the resulting 3F2-series by its reversal

3F2

[
−m,−1

2 −m, 2 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
3
2 , 2 + n+ p

1−m+ n, 1−m+ p

]
m

× 3F2

[
−m, −n, −p

3
2 ,−1−m− n− p

∣∣∣ 1

]
we derive the following expression with the afore-assumed restricted condi-
tion m = min{m,n, p} being removed by symmetry.

Theorem 11. For three nonnegative integers m, n, p, there holds∑
k≥1

(
2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 3F2

[
−m, −n, −p

3
2 ,−1−m− n− p

∣∣∣ 1

]

× (m+ n+ p+ 1)!(2m+ 1)!(2n+ 1)!(2p+ 1)!

(m+ n+ 1)!(m+ p+ 1)!(n+ p+ 1)!m!n!p!
.

Applying (9) to the last 3F2-series

3F2

[
−m, −n, −p

3
2 ,−1−m− n− p

∣∣∣ 1

]
=

(12)m

(2 + n+ p)m
3F2

[
−m, 3

2 + n, 32 + p
3
2 ,

1
2 −m

∣∣∣ 1

]
leads us to the following equivalent expression.
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Proposition 12. For three nonnegative integers m, n, p, there holds∑
k≥1

(
2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 3F2

[
−m, 3

2 + n, 32 + p
3
2 ,

1
2 −m

∣∣∣ 1

]

×
(12)m(2m+ 1)!(2n+ 1)!(2p+ 1)!

(m+ n+ 1)!(m+ p+ 1)!m!n!p!
.

If we apply (11) to the 3F2-series displayed in (18)

3F2

[
−m,−1

2 −m, 2 + n+ p
1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
2 + n, 2 + p

1−m+ n, 1−m+ p

]
m

× 3F2

[
−m, 1

2 , 2 + n+ p

2 + n, 2 + p

∣∣∣ 1

]
we would get another equivalent expression.

Corollary 13. For three nonnegative integers m, n, p, there holds∑
k≥1

(
2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 4m

(
2n+ 1

n

)(
2p+ 1

p

)

× 3F2

[
−m, 1

2 , 2 + n+ p

2 + n, 2 + p

∣∣∣ 1

]
.

3.4. Ω1
1(m,n, p). Suppose that m = min{m,n, p}. For a natural number λ

satisfying the condition 0 < λ ≤ m + 1, we may reformulate the following
binomial sum, by inverting the summation order through k → 1 +m− k, in
terms of hypergeometric series

m+1∑
k=λ

(
k−1

2

)(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
=
(
m+ 1

2

)(2n+ 1

n−m

)(
2p+ 1

p−m

)

×4F
(1+m−λ)
3

[
−1− 2m, 1

2 −m, −1−m− n, −1−m− p
−1

2 −m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
.(19)

First transforming the last 4F3-sum by Lemma 1

4F
(1+m−λ)
3

[
−1− 2m, 1

2 −m, −1−m− n, −1−m− p
−1

2 −m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
=

(
2m

1 +m− λ

)
3F2

[
λ−m− 1, 1−m− λ, 2 + n+ p

1−m+ n, 1−m+ p

∣∣∣ 1

]
and then considering the reversal of the resulting 3F2-series

3F2

[
λ−m− 1, 1−m− λ, 2 + n+ p

1−m+ n, 1−m+ p

∣∣∣ 1

]
=

[
2λ− 1, 2 + n+ p

1−m+ n, 1−m+ p

]
1+m−λ

× 3F2

[
λ−m− 1, λ− n− 1, λ− p− 1

2λ− 1, λ− 2−m− n− p

∣∣∣ 1

]
we derive the following symmetric expression with the afore-assumed restric-
tion m = min{m,n, p} being removed by symmetry.
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Theorem 14. For four nonnegative integers m, n, p, and λ subject to the
condition 0 < λ ≤ min{m,n, p}, there holds

m+1∑
k=λ

(
k − 1

2

)(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 3F2

[
λ−m− 1, λ− n− 1, λ− p− 1

2λ− 1, λ−m− n− p− 2

∣∣∣ 1

]
× (2 +m+ n+ p− λ)!

(1 +m− λ)!(1 + n− λ)!(1 + p− λ)!

× (2m+ 1)!(2n+ 1)!(2p+ 1)!

2(2λ− 2)!(1 +m+ n)!(1 +m+ p)!(1 + n+ p)!
.

Rewriting further the last 3F2-series, through (9), as the 2F1-sum below

3F2

[
λ−m− 1, λ− n− 1, λ− p− 1

2λ− 1, λ−m− n− p− 2

∣∣∣ 1

]
=

(1 +m− λ)!

(n+ p+ 2)1+m−λ
2F1

(1+m−λ)
[
λ+ n, λ+ p

2λ− 1

∣∣∣ 1

]
leads us to the following equivalent expression.

Proposition 15. Let m, n, p, and λ be four nonnegative integers that satisfy
the condition 0 < λ ≤ 1 + min{m,n, p}. We have

m+1∑
k=λ

(
k−1

2

)(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 2F1

(1+m−λ)
[
λ+ n, λ+ p

2λ− 1

∣∣∣ 1

]
× (2m+ 1)!(2n+ 1)!(2p+ 1)!

2(2λ− 2)!(m+ n+ 1)!(m+ p+ 1)!(n− λ+ 1)!(p− λ+ 1)!
.

Furthermore, applying (14) to the 4F3-sum displayed in (19) and then
inverting the summation order (valid for λ = 0 too) for the resulting 2F1-
sum, we get

4F
(1+m−λ)
3

[
−1− 2m, 1

2 −m, −1−m− n, −1−m− p
−1

2 −m, 1−m+ n, 1−m+ p

∣∣∣ − 1

]
=

[
−2m, 2 + n+ p

1−m+ n, 1−m+ p

]
1+m−λ

2F1
(1+m−λ)

[
−1−m− n,−1−m− p

λ− 2−m− n− p

∣∣∣ 1

]
=

[
λ+m,λ+ n+ 1, λ+ p+ 1

1, 1−m+ n, 1−m+ p

]
1+m−λ

× 3F2

[
1, λ−m− 1, 2 + n+ p

1 + λ+ n, 1 + λ+ p

∣∣∣ 1

]
which gives rise to another equivalent expression.
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Corollary 16. Let m, n, p, and λ be four nonnegative integers that satisfy
the condition 0 ≤ λ ≤ 1 + min{m,n, p}. We have

m+1∑
k=λ

(
k − 1

2

)(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
= 3F2

[
1, λ−m− 1, 2 + n+ p

1 + λ+ n, 1 + λ+ p

∣∣∣ 1

]
× m+ λ

2

(
2m+ 1

m+ λ

)(
2n+ 1

n+ λ

)(
2p+ 1

p+ λ

)
.

3.5. Ω0
3(m,n, p). In accordance with the equation

2k3 = (m+ k)(n+ k)(p+ k)− (m− k)(n− k)(p− k)− 2k(mn+mp+ np)

we can derive the following relation

(20)

∑
k≥1

Bm,kBn,kBp,k =
1

2

(
2m

m

)(
2n

n

)(
2p

p

)
− mn+mp+ np

mnp

×
∑
k≥1

k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
,

where we have made, by the telescoping, the following evaluation(
2m

m

)(
2n

n

)(
2p

p

)
= 8

∑
k≥1

(
2m− 1

m+ k − 1

)(
2n− 1

n+ k − 1

)(
2p− 1

p+ k − 1

)

− 8
∑
k≥1

(
2m− 1

m+ k

)(
2n− 1

n+ k

)(
2p− 1

p+ k

)
.

Specifying λ = 1 in Proposition 9, we can employ this particular case to
reformulate the binomial sum (20) as∑

k≥1
k

(
2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)

=
(2m)!(2n)!(2p)!

2(m+ n)!(m+ p)!(n− 1)!(p− 1)!
2F1

(m−1)
[
n+ 1, p+ 1

2

∣∣∣ 1

]
=

(2m)!(2n)!(2p)!

2(m+ n)!(m+ p)!n!(p− 1)!

m∑
k=1

(
n+ k − 1

n− 1

)(
p+ k − 1

p

)
.

We therefore find the following reduction formula.

Theorem 17. Let m, n, p be three natural numbers. We have∑
k≥1

Bm,kBn,kBp,k =
1

2

(
2m

m

)(
2n

n

)(
2p

p

)
− mn+mp+ np

2mn

× (2m)!(2n)!(2p)!

(m+ n)!(m+ p)!n!p!

m∑
k=1

(
n+ k − 1

n− 1

)(
p+ k − 1

p

)
.
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Now we are in position to confirm the following conjectured formula.

Proposition 18 (Miana–Ohtsuka–Romero [18, Conjecture 4.2]). Let m and
n be two natural numbers. We have∑

k≥1
Bm,kB

2
n,k =

1

2

(
2m

m

)(
2n

n

)2

− 2m+ n

2ν

×
(
2m
m

)(
2n
n

)2(
m+n
n

)(
n+ν
n

) ν∑
k=1

(
µ+ k − 1

µ

)(
n+ k − 1

n− 1

)
,

where µ = max{m,n} and ν = min{m,n}.

In fact, it is routine to check that when m ≤ n, the last formula corre-
sponds to the p = n case of Theorem 17. Instead, when m > n, we can get
it from Theorem 17 by making the exchange m
 n and then letting p = n.

4. Moments on Triple Product Sums

In evaluating the moments of Catalan numbers, Chen–Chu [2, Equations
9,10] find the following identity

(21) x2γ =

γ∑
j=0

(−1)j〈y + x〉j〈y − x〉jσj,γ−j(y),

where σj,` is given by

(22) σj,`(y) =
2(−1)j

〈2y〉2j+1

j∑
i=0

(
2y

i

)(
2j − 2y

j − i

)
(y − i)2j+2`+1.

We shall show that the same identity can be utilized to treat the moments
of triple product of Catalan triangle numbers. The next theorem reduces
the evaluation of Ωδ

γ(m,n, p) to those of Ωδ
0(m,n, p) and Ωδ

1(m,n, p), that
have already been done in the previous section.

Theorem 19. Let m, n, p, γ be four nonnegative numbers and ε, δ = 0 or
1. We have

Ωδ
ε+2γ(m,n, p) =

γ∑
j=0

(−1)j〈2m+ δ〉2jσj,γ−j
(
m+ δ

2

)
Ωδ
ε(m− j, n, p).

Proof. Recall the binomial sum by definition (5)

Ω0
γ(m,n, p) =

∑
k≥0

kγ
(

2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)
.
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We can manipulate it, by utilizing the case x = k and y = m of (21–22), as
follows

Ω0
ε+2γ(m,n, p) =

∑
k≥0

kε
(

2m

m+ k

)(
2n

n+ k

)(
2p

p+ k

)

×
γ∑
j=0

(−1)j〈m+ k〉j〈m− k〉jσj,γ−j(m)

=

γ∑
j=0

(−1)j〈2m〉2jσj,γ−j(m)

×
∑
k≥0

kε
(

2m− 2j

m+ k − j

)(
2n

n+ k

)(
2p

p+ k

)
.

We have therefore derived the following equality

Ω0
ε+2γ(m,n, p) =

γ∑
j=0

(−1)j〈2m〉2jσj,γ−j(m)Ω0
ε(m− j, n, p)

which corresponds to the case δ = 0 of the theorem.
Analogously, another binomial sum defined by (5)

Ω1
γ(m,n, p) =

∑
k≥1

(
k − 1

2

)γ(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
can be reformulated, with the help of the equations (21–22) under the re-
placements x = k − 1/2 and y = m+ 1/2, as follows

Ω1
ε+2γ(m,n, p) =

∑
k≥1

(
k − 1

2

)ε(2m+ 1

m+ k

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)

×
γ∑
j=0

(−1)j〈m+ k〉j〈m− k + 1〉jσj,γ−j
(
m+ 1

2

)
=

γ∑
j=0

(−1)j〈2m+ 1〉2jσj,γ−j
(
m+ 1

2

)
×

∑
k≥1

(
k − 1

2

)ε(2m− 2j + 1

m+ k − j

)(
2n+ 1

n+ k

)(
2p+ 1

p+ k

)
.

This results in the following reduction formula

Ω1
ε+2γ(m,n, p) =

γ∑
j=0

(−1)j〈2m+ 1〉2jσj,γ−j
(
m+ 1

2

)
Ω1
ε(m− j, n, p)

which confirms the case δ = 1 of the theorem. �
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By carrying out the same procedure, we can prove the following reduction
formula for the more general multiple product sums. The details will not be
produced.

Theorem 20. Let γ, m and ñ = {n1, n2, · · · , n`} be ` + 2 nonnegative
numbers. For ε, δ = 0 or 1, define the multiple product sums by

Λδγ(m, ñ) =
∑
k≥δ

(
k − δ

2

)γ(2m+ δ

m+ k

) p∏
i=1

(
2ni + δ

ni + k

)
.

Then the following reduction formula holds

Λδε+2γ(m, ñ) =

γ∑
j=0

(−1)j〈2m+ δ〉2jσj,γ−j
(
m+ δ

2

)
Λδε(m− j, ñ).
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