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ON COMBINATORICS OF MODIFIED LATTICE PATHS

AND GENERALIZED q-SERIES

M. RANA AND MEGHA GOYAL

Abstract. Recently, Agarwal and Sachdeva, 2017, proved two Rogers–
Ramanujan type identities for modified lattice paths by establishing a
bijection between split (n + t)-color partitions and the modified lattice
paths. In this paper, we interpret four generalized basic series combina-
torially in terms of modified lattice paths by using a similar bijection.
This leads to four new Rogers–Ramanujan type identities for modified
lattice paths.

1. Introduction

The theory of lattice paths and the theory of partitions are closely related.
A detailed history and survey of lattice path enumerations for the last 35
years is given in [19]. MacMahon [20] used two dimensional rectangular
graphs to study ‘Composition of Numbers’. These rectangular graphs are
called ‘reticulation’ and the paths are known as ‘line of route’. MacMahon
then studied directions of these graphs which we today call ‘directed paths’.
In [21] MacMahon used the word ‘lattice’ and showed how paths are used to
study permutations, combinations, the theory of partitions and the theory
of probabilities. Interestingly, he also established a bijection between Ferrers
graph and lattice paths in [21] and used these objects to address the Ballot
Theorem [1, 12, 14]. MacMahon further explored lattice paths and the the-
ory of partitions in [22]. Agarwal and Andrews [4] studied n(y, x)-reflected
lattice paths and succeeded in relating these paths with self conjugate parti-
tions by proving that the number of n(y, x)-reflected lattice paths equals the
number of self conjugate partitions with the largest part at most n. Agar-
wal [2] proved that the number of 2n(x, y)-reflected lattice paths equals the
number of partitions of 2n2 into at most 2n parts, each at most 2n and the
parts which are strictly less than 2n can be paired such that the sum of each
pair is 2n. Agarwal and Bressoud [7] introduced a new class of weighted
lattice paths with three steps northeast (↗): from (i, j) to (i + 1, j + 1),
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southeast (↘): from (i, j) to (i + 1, j − 1), only allowed if j > 0 and hor-
izontal (→): from (i, 0) to (i + 1, 0), only allowed along the x-axis. They
used these paths in interpreting the multiple basic series identities found by
Agarwal et al. [6]. Several elegant results on lattice paths and basic series
can be found in [3, 8, 9, 16, 17, 18, 25]. In 2014, Agarwal and Sood [11]
introduced and defined split (n+ t)-color partitions and gave the combina-
torial interpretations of two basic functions of Gordon–McIntosh from [15]
which are given below:

V0(q) = 1 + 2

∞∑
n=1

qn
2
(−q; q2)n

(q; q2)n
,(1.1)

V1(q) =
∞∑
n=1

qn
2
(−q; q2)n−1
(q; q2)n

.(1.2)

Agarwal and Sood posed an open problem: ‘Is it possible to find Rogers–
Ramanujan type identities for split (n + t)-color partitions?’ This problem
was addressed by Sood and Agarwal [26]. In [26] three generalized basic
series were interpreted combinatorially in terms of split (n + t)-color par-
titions and three Rogers–Ramanujan type identities for split (n + t)-color
partitions were obtained as particular cases. Rana et al. [23] further used
split (n + t)-color partitions to interpret the following four generalized q-
series combinatorially.

Let S = {−1, 1, 3, 5, . . .}, for |q| < 1, j ∈ S and 1 ≤ i ≤ 4, define gji (q) by

gj1(q) =
∞∑
n=0

(−q; q2)nqn[1+(n−1)(j+3)/2]

(q4; q4)n(q; q2)n
,(1.3)

gj2(q) =

∞∑
n=0

(−q; q2)nqn(n+1)(j+3)/2

(q4; q4)n(q; q2)n+1
,(1.4)

gj3(q) =
∞∑
n=0

(−q; q2)nqn[1+(n+1)(j+3)/2]

(q4; q4)n(q; q2)n+1
,(1.5)

gj4(q) =

∞∑
n=0

(−q; q2)nqn[1+(n+1)(j+3)/2]

(q4; q4)n(q; q2)n
.(1.6)

These generalized four q-series yield the following four Rogers–Ramanujan
type identities.

∞∑
n=0

(−1)n(q; q2)nq
n2

(q4; q4)n(−q; q2)n
=

(q; q2)∞
(q2; q2)∞

[q5,−q2,−q3; q5]∞,(1.7)

∞∑
n=0

(−q; q2)nq2n(n+1)

(q4; q4)n(q; q2)n+1
=

(−q; q2)∞
(q2; q2)∞

[q12, q3, q9; q12]∞,(1.8)

∞∑
n=0

(−1)n(q; q2)nq
n(n+2)

(q4; q4)n(−q; q2)n+1
=

(q; q2)∞
(q2; q2)∞

[q5,−q5,−q5; q5]∞,(1.9)
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∞∑
n=0

(−1)n(q; q2)nq
n(n+2)

(q4; q4)n(−q; q2)n
=

(q; q2)∞
(q2; q2)∞

[q5,−q,−q4; q5]∞.(1.10)

Agarwal and Sachdeva in [24] studied a new class of lattice paths which they
called ‘modified lattice paths’ for enumerating (1.1)–(1.2) in terms of mod-
ified lattice paths and further successfully interpreted Rogers–Ramanujan
type identities in [10] using modified lattice paths. Here, in this paper, we
provide the combinatorial interpretations of four generalized q-series (1.3)–
(1.6) using the modified lattice paths and then further establish bijections
between certain restricted classes of modified lattice paths and split (n+ t)-
color partitions. We also succeeded in obtaining Rogers–Ramanujan type
identities for modified lattice paths. Before stating our main results let us
recall some definitions.

Definition 1.1 ([13]). A partition of a positive integer ν is a finite non-
increasing sequence of positive integers λ1, λ2, . . . λr such that

∑r
i=1 λi = ν,

where the λis are called summands of the partition. The number of parti-
tions of ν is denoted by p(ν).

Definition 1.2 ([5]). An (n+t)-color partition is a partition in which a sum-
mand of size n can come in (n+t) different colors denoted by the subscripts,
n1, n2, n3, · · · , nn+t. Note that zeros are permitted, without repetition, if and
only if t ≥ 1.

Definition 1.3. The weighted difference of two summands mi, nj ,m ≥ n
is defined by m− n− i− j and is denoted by ((mi − nj)).

Definition 1.4 ([11]). Let mi be a summand in an (n + t)-color partition
of a nonnegative integer ν. Now split the color ‘i’ into two parts–‘the green
part’ and ‘the red part’ and denote them by ‘g’ and ‘r’ respectively, such that
1 ≤ g ≤ i, 0 ≤ r ≤ i− 1 and i = g + r. An (n+ t)-color partition in which
each summand is split in this manner is called a split (n+t)-color partition.

Remark. In a split (n+ t)-color partition, whenever the red part is 0, then
it will not be written separately. That is, 2g+0 is written as 2g only.

Example 1.5. The split (n+ 1)-color partitions of 2 are:

21 21 + 01 11 + 11 11 + 11 + 01
22 22 + 01 12 + 11 12 + 11 + 01
23 23 + 01 12 + 12 12 + 12 + 01

21+1 21+1 + 01 11+1 + 11 11+1 + 11 + 01
22+1 22+1 + 01 11+1 + 12 11+1 + 12 + 01
21+2 21+2 + 01 11+1 + 11+1 11+1 + 11+1 + 01

Agarwal and Sachdeva [10, 24] gave the following description of modified
lattice paths.
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Definition 1.6. All paths will be of finite length lying in the first quadrant.
They will begin on the y-axis and terminate on the x-axis. Only three moves
are allowed at each step:

Northeast (↗): from (i, j) to (i+ 1, j + 1).
Southeast (↘): from (i, j) to (i+ 1, j − 1), only allowed if j > 0.
Horizontal (→): from (i, 0) to (i+ 1, 0), only allowed along x-axis.

In describing modified lattice paths, the following terminology is used:

Peak: Either a vertex on the y-axis which is followed by a south-
east step or a vertex preceded by a northeast step and followed by a
southeast step.
Valley: A vertex preceded by a southeast step and followed by a north-
east step. Note that a southeast step followed by a horizontal step
followed by a northeast step does not constitute a valley.
Mountain: A section of the path which starts on either the x-axis
or y-axis, which ends on the x-axis and which does not touch the
x-axis anywhere in between the end points. Every mountain has at
least one peak and may have more than one.
Plain: A section of the path consisting of only horizontal steps which
starts either on the y-axis or at a vertex preceded by a southeast step
and ends at a vertex followed by a northeast step.
Weight of a vertex: The x-coordinate.
Weight of a path: The sum of the weights of its peaks.
Height of a vertex: The y-coordinate. Now, the height ‘h’ of each
peak is divided into two parts–the lower part will be called a pillar
and the upper part a beam and their heights are denoted by ‘p’ and
‘b’, respectively, such that 1 ≤ p ≤ h, 0 ≤ b ≤ h − 1 and h = p + b.
A pillar will be represented by a ‘dark line’ and a beam by a ‘light
line’.

Example 1.7. The following path has three peaks, one valley, three moun-
tains, and one plain.

Figure 1. A modified lattice path.

Remark. If in the above defined lattice path, the height h is not divided
into pillars and beams then the above definition reduces to the definition of
the weighted lattice paths as introduced and studied in [7].

We now recall the combinatorial interpretations of (1.3)–(1.6) in terms
of split (n + t)-color partitions. In Section 2 we give our main results and
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then in the next Section 3 we establish bijections between certain classes of
split (n+ t)-color partitions and modified lattice paths. As particular cases,
in Section 4, we obtain combinatorial interpretations of Rogers–Ramanujan
type identities (1.7)–(1.10) in terms of modified lattice paths.

In [23] Rana et al. gave the following interpretations of (1.3)–(1.6):

Theorem 1.8. For j ∈ S, let P j1 (ν) represent the number of split n-color
partitions of ν such that

(i) the parts and their subscripts have the same parity;
(ii) the value of the red part can be 0 or 1;
(iii) if mi is the least or only summand of the partition, then m − i ≡

0 (mod 4);
(iv) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Then
∞∑
ν=0

P j1 (ν)qν = gj1(q).

Theorem 1.9. For j ∈ S, let P j2 (ν) represent the number of split (n + 1)-
color partitions of ν such that

(i) the parts and their subscripts have the opposite parity;
(ii) the value of the red part can be 0 or 1;
(iii) the smallest summand is of the form ii+1;
(iv) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Then
∞∑
ν=0

P j2 (ν)qν = gj2(q).

Theorem 1.10. For j ∈ S, let P j3 (ν) represent the number of split (n+ 2)-
color partitions of ν such that

(i) the parts and their subscripts have the same parity;
(ii) the value of the red part can be 0 or 1;
(iii) the smallest summand is of the form ii+2;
(iv) the weighted difference among any two consecutive summands is

greater than j and is congruent to (j + 1) (mod 4).

Then
∞∑
ν=0

P j3 (ν)qν = gj3(q).

Theorem 1.11. For j ∈ S, let P j4 (ν) represent the number of split n-color
partitions of ν such that

(i) the parts and their subscripts have the same parity;
(ii) the value of the red part can be 0 or 1;
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(iii) if mi is the least or only summand of the partition, then m ≥ (j+ 4)
and m− i ≡ (j + 3) (mod 4);

(iv) the weighted difference among any two consecutive summands is
greater than j and is congruent to (j + 1) (mod 4).

Then
∞∑
ν=0

P j4 (ν)qν = gj4(q).

Remark. The conditions (i), (iii), and (iv) in Theorems 1.8–1.11 are al-
lowed for the whole subscript ‘i’ irrespective of green and red parts sepa-
rately.

2. Main Results

Theorem 2.1. For j ∈ S, let Qj1(ν) denote the number of modified lattice
paths of weight ν which starts at (0, 0), such that

(i) they have no valley above height 0 if j = −1 and no valley at all if
j > −1;

(ii) if there is a plain in the beginning of the path, then its length is
congruent to 0 (mod 4) and the lengths of other plains are congruent
to (j + 1) (mod 4);

(iii) there is no beam with height greater than 1.

Then

P j1 (ν) = Qj1(ν), for all ν.

Theorem 2.2. For j ∈ S, let Qj2(ν) denote the number of modified lattice
paths of weight ν which starts at (0, 1), such that

(i) they have no valley above height 0 if j = −1 and no valley at all if
j > −1;

(ii) if there is a plain in the beginning of the path, then its length is
congruent to 0 (mod 4) and the lengths of other plains are congruent
to (j + 1) (mod 4);

(iii) there is no beam with height greater than 1.

Then

P j2 (ν) = Qj2(ν), for all ν.

Theorem 2.3. For j ∈ S, let Qj3(ν) denote the number of modified lattice
paths of weight ν which starts at (0, 2), such that

(i) they have no valley above height 0 if j = −1 and no valley at all if
j > −1;

(ii) if there is a plain in the beginning of the path, then its length is
congruent to 0 (mod 4) and the lengths of other plains are congruent
to (j + 1) (mod 4);

(iii) there is no beam with height greater than 1.



142 M. RANA AND MEGHA GOYAL

Then
P j3 (ν) = Qj3(ν), for all ν.

Theorem 2.4. For j ∈ S, let Qj4(ν) denote the number of modified lattice
paths of weight ν which starts at (0, 0), such that

(i) they have no valley above height 0 if j = −1 and no valley at all if
j > −1;

(ii) there is a plain of length (j + 3) in the beginning of the path and the
lengths of other plains are congruent to (j + 1) (mod 4);

(iii) there is no beam with height greater than 1;
(iv) the weight of the first peak is greater than or equal to (j + 4).

Then
P j4 (ν) = Qj4(ν), for all ν.

2.1. Proof of Theorem 2.1.

Proof. We shall prove that

(2.1)
∞∑
ν=0

Qj1(ν)qν =
∞∑
m=0

qm[1+(m−1)(j+3)/2](−q; q2)m
(q4; q4)m(q; q2)m

.

In
qm[1+(m−1)(j+3)/2](−q; q2)m

(q4; q4)m(q; q2)m

the factor qm[1+(m−1)(j+3)/2] generates modified lattice paths having m peaks
starting at (0, 0) and terminating at (2 + (j+ 3)(m−1), 0), a plain of length
(j+1) between every two consecutive mountains, and each peak is supported
by a pillar of height 1.

For m = 4, the path begins as

j+1 j+1 j+1

Figure 2. Modified lattice path when m = 4.

In the above figure we consider two successive peaks, say, ith and (i+ 1)th
and denote them by Pi and Pi+1 respectively.

Pi Pi+1

j+1

Figure 3. ith and (i+ 1)th peaks
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The factor 1/(q4; q4)m generates m nonnegative multiples of 4, say α1 ≥
α2 ≥ · · · ≥ αm ≥ 0, which are encoded by inserting αm horizontal steps
in front of the first mountain and αi − αi+1 horizontal steps in front of the
(m− i+ 1)th mountain, 1 ≤ i ≤ m. Figure 3 now becomes Figure 4:

P
i

P
i+1

Figure 4. ith and (i+ 1)th peaks

The factor 1/(q; q2)m generates m nonnegative multiples of (2i− 1), 1 ≤
i ≤ m, say, p1 × 1, p2 × 3, · · · , pm × (2m− 1). This is encoded by increasing
the height of the ith pillar to height pm−i+1 + 1. Each increase by one in
the height of a given peak increases its weight by one and the weight of each
subsequent peak by two.

Figure 4 becomes Figure 5A or Figure 5B, depending on whether pm−i >
pm−i+1 or pm−i < pm−i+1. In the case when pm−i = pm−i+1, the new graph
will look like Figure 4.

P
i+1

P
i

(A) ith and (i+ 1)th peaks

P
i

P
i+1

(B) ith and (i+ 1)th peaks

Figure 5

The factor (−q; q2)m generates m nonnegative distinct multiples of (2i−
1), 1 ≤ i ≤ m, say, b1×1, b2×3, · · · , bm×(2m−1), where each bi (1 ≤ i ≤ m)
is 0 or 1. This is encoded by putting a beam of height bm−i+1 on the ith
pillar. Figure 5A (or Figure 5B) will either not change or may change to
three possible shapes. For example, Figure 5A may look like:

P
i+1

P
i

(A)

P
i+1

P
i

(B)

P
i+1

P
i

(C)

Figure 6
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In Figure 6A, Figure 6B, and Figure 6C

Pi ≡
(

1 + (i− 1)(j + 3) + αm−i+1 + 2(pm + pm−1 + · · ·+ pm−i+2)

+ pm−i+1 + 2(bm + bm−1 + · · ·+ bm−i+2)

+ bm−i+1, 1 + pm−i+1 + bm−i+1

)
,

Pi+1 ≡
(

1 + i(j + 3) + αm−i + 2(pm + pm−1 + · · ·+ pm−i+1)

+ pm−i + 2(bm + bm−1 + · · ·+ bm−i+1)

+ bm−i, 1 + pm−i + bm−i

)
.

Each modified lattice path enumerated by Qj1(ν) is uniquely generated in
this manner. This proves (2.1).

3. Bijective Proofs

In this section, we establish a 1–1 correspondence between the modified lat-

tice paths enumerated by Qj1(ν) and the split n-color partitions enumerated

by P j1 (ν).
We do this by encoding each modified lattice path as the sequence of

weights of the peaks with each weight subscripted by the height of the re-
spective peak considered as the height of the supporting pillar which cor-
responds to the green part plus the height of the supporting beam which
corresponds to the red part. Thus, if we denote the ith and (i+ 1)th peaks
in the final graph by Ax and By (B ≥ A), respectively, then

A = 1 + (i− 1)(j + 3) + αm−i+1 + 2(pm + pm−1 + · · ·+ pm−i+2) + pm−i+1

+ 2(bm + bm−1 + · · ·+ bm−i+2) + bm−i+1,

x = 1 + pm−i+1 + bm−i+1,

B = 1 + i(j + 3) + αm−i + 2(pm + pm−1 + · · ·+ pm−i+1) + pm−i

+ 2(bm + bm−1 + · · ·+ bm−i+1) + bm−i,

y = 1 + pm−i + bm−i.

Clearly, the parity of both A and x depends upon pm−i+1 + bm−i+1. If
pm−i+1+bm−i+1 is odd then bothA and x are even and when pm−i+1+bm−i+1

is even then both A and x are odd. This confirms that the parts and their
subscripts have same parity.

The weighted difference of these two parts is

((By −Ax)) = B −A− x− y = αm−i − αm−i+1 + j + 1 > j,

which is nonnegative and congruent to (j + 1) (mod 4). Since the height of
any beam cannot exceed 1, the red part in the corresponding split n-color
partition is at most 1.
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To see the reverse implication, we consider two summands of a partition

enumerated by P j1 (ν), say, Cu and Dv with D ≥ C. (Note that there is
no need to consider the split subscripts.) Clearly u ≤ C and v ≤ D. Let
Q1 ≡ (C, u) and Q2 ≡ (D, v) be the corresponding peaks in the modified
lattice path.

Figure 7. Two peaks Q1 and Q2 separated by a plain.

If there is a plain between Q1 and Q2, its length would be D−C − u− v
which is the weighted difference between the two parts Cu and Dv and is
therefore greater than j and congruent to (j+1) (mod 4) (by condition (iv)
of the Theorem 1.8). We thus conclude that the corresponding path can
have plains with minimal length congruent to (j + 1) (mod 4).

If Cu were the smallest part of the partition, the corresponding peak in
the modified lattice path would be the first peak preceded by a plain of
length α, where α is a nonnegative multiple of 4, since

C = 1 + α+ p+ b,

u = 1 + p+ b,

where b = 0 or 1. Thus

C − u = α ≡ 0 (mod 4) .

Finally, we show that there cannot be a valley above height 0 for j = −1
and no valley at all for j > −1.

Suppose there is a valley V at height r between the peaks Q1 and Q2.

Figure 8. A valley at height r between two peaks.

In this case there is a descent of u− r from Q1 to V and an ascent of v − r
from V to Q2. This implies that D = C+(u−r)+(v−r) and so this implies
D−C−u− v = −2r. However since the weighted difference is nonnegative,
r = 0.

Now for j > −1, we know there is always a plain of minimal length
congruent to (j + 1) (mod 4) which is always positive for j > −1. Hence
there cannot be a valley at all in the corresponding paths for j > −1. This
completes the bijection between the modified lattice paths enumerated by

Qj1(ν) and the split n-color partitions enumerated by P j1 (ν). �
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3.1. Outline of the Proofs of Theorems 2.2–2.4. Here, the changes
required to prove the remaining theorems are discussed briefly.

Theorem 2.2. An appeal to Theorem 2.1; the extra factor qm(j+2) puts a
southeast step from (0,1) to (1,0) followed by a plain of length (j + 1) at
the front of the lattice path. So in this case the path begins with (m + 1)
peaks starting from (0, 1) and ending at (m(j + 3) + 1, 0) with a plain of
minimal length (j + 1) (mod 4) between each pair of peaks. Also, the
extra factor 1/(1− q2m+1) introduces a nonnegative multiple of 2m+ 1, say
pm+1 × (2m + 1). This is encoded by having the first peak grow to height
pm+1 + 1 in the northeast direction. Clearly, it will correspond to the ii+1

part of the corresponding colored partition.

Theorem 2.3. An appeal to Theorem 2.1; the extra factor qm(j+3) puts two
southeast steps (0,2) to (1,1) and (1,1) to (2,0) followed by a plain of length
(j + 1) at the front of the lattice path. So in this case the path begins with
(m + 1) peaks starting from (0, 2) ending at (m(j + 3) + 2, 0) and with a
plain of minimal length (j + 1) (mod 4) between each pair of peaks. Also,
the factor 1/(1− q2m+1) introduces a nonnegative multiple of 2m + 1, say
pm+1 × (2m + 1). This is encoded by having the first peak grow to height
pm+1 + 2 in the northeast direction. Clearly, it will correspond to the ii+2

part of the corresponding colored partition.

Theorem 2.4. An appeal to Theorem 2.1; the extra factor qm(j+3) puts a
plain of length (j+ 3) in front of the first peak. This causes a total increase
of m(j+ 3) in the weight of the path and makes the weight of the first peak
greater than or equal to (j + 4).

4. Particular Cases

Identity (1.7), in conjunction with Theorems 1.8 and 2.1, for j = −1,
leads to the following theorem:

Theorem 4.1. Let E1(ν) denote the number of n-color partitions of ν such
that parts are distinct and first two copies of parts congruent to 5 (mod 10)
are used and only the first copy of parts congruent to ±1 (mod 10) are used.
Let F1(ν) denote the number of n-color partitions of ν such that the first two
copies of parts congruent to ±2 (mod 10) are used. Further let

A1(ν) =
ν∑
k=0

E1(k)F1(ν − k),

then

(4.1) A1(ν) = P−11 (ν) = Q−11 (ν), for all ν.

Example 4.2. We can verify Theorem 4.1 by showing that A1(4) = P−11 (4) =

Q−11 (4) = 3. The relevant split n-color partitions corresponding to P−11 (4)
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are: 44, 43+1, 31 + 11. Also, Q−11 (4) = 3 and the relevant modified lattice
paths are:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 9

The relevant partitions corresponding to E1(ν) and F1(ν), 0 ≤ ν ≤ 4, are
given in the table below:

Table 1. Number of partitions enumerated by E1(ν) and
F1(ν) for 0 ≤ ν ≤ 4.

ν E1(ν) partitions enumerated by E1(ν) F1(ν) partitions enumerated by F1(ν)
0 1 empty partition 1 empty partition
1 1 11 0 -
2 0 - 2 21, 22
3 0 - 0 -
4 0 - 3 2121, 2221, 2222

Hence, A1(4) =
∑4

k=0E1(k)F1(4 − k) = E1(4)F1(0) + E1(3)F1(1) + · · · +
E1(0)F1(4) = 3.

Identity (1.8), in conjunction with Theorems 1.9 and 2.2, for j = 1, leads
to the following theorem:

Theorem 4.3. Let E2(ν) denote the number of partitions of ν into distinct
parts congruent to ±1,±5 (mod 12) and let F2(ν) denote the number of
partitions of ν into parts congruent to ±2,±4 (mod 12). Further let A2(ν) =∑ν

k=0E2(k)F2(ν − k), then

A2(ν) = P 1
2 (ν) = Q1

2(ν), for all ν.

Identity (1.9), in conjunction with Theorems 1.10 and 2.3, for j = −1,
leads to the following theorem:

Theorem 4.4. Let E3(ν) denote the number of partitions of ν into parts
congruent to ±1,±3 (mod 10) and let F3(ν) denote the number of parti-
tions of ν into parts congruent to ±2,±4 (mod 10). Further let A3(ν) =∑ν

k=0E3(k)F3(ν − k), then

A3(ν) = P−13 (ν) = Q−13 (ν), for all ν.

Identity (1.10), in conjunction with Theorems 1.11 and 2.4, for j = −1,
leads to the following theorem:
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Theorem 4.5. Let E4(ν) denote the number of n-color partitions of ν into
distinct parts such that first two copies of parts congruent to 5 (mod 10) are
used and only first copy of parts congruent to ±3 (mod 10) are used and
let F4(ν) denote the number of n-color partitions of ν such that first two
copies of parts congruent to ±4 (mod 10) are used. Further let A4(ν) =∑ν

k=0E4(k)F4(ν − k), then

A4(ν) = P−14 (ν) = Q−14 (ν), for all ν.
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