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NEW CYCLIC KAUTZ DIGRAPHS WITH OPTIMAL

DIAMETER

KATERINA BÖHMOVÁ, CRISTINA DALFÓ, AND CLEMENS HUEMER

Abstract. We obtain a new family of digraphs with minimal diameter,
that is, given the number of vertices and out-degree, there is no other
digraph with a smaller diameter. This new family of digraphs are called
‘modified cyclic digraphs’ MCK(d, `), and it is derived from the Kautz
digraphs K(d, `) and from the so-called cyclic Kautz digraphs CK(d, `).

The cyclic Kautz digraphs CK(d, `) were defined as the digraphs
whose vertices are labeled by all possible sequences a1 . . . a` of length `,
such that each character ai is chosen from an alphabet of d + 1 distinct
symbols, where the consecutive characters in the sequence are different
(as in Kautz digraphs), and also requiring that a1 6= a`. Their arcs
are between vertices a1a2 . . . a` and a2 . . . a`a`+1, with a1 6= a` and
a2 6= a`+1. Since CK(d, `) do not have minimal diameter for their
number of vertices, we construct the modified cyclic Kautz digraphs to
obtain the same diameter as in the Kautz digraphs, and we also show
that MCK(d, `) are d-out-regular. Moreover, for t ≥ 1, we compute the
number of vertices of the iterated line digraphs Lt(CK(d, `)).

1. Introduction

Searching for graphs or digraphs with maximum number of vertices given
maximum degree ∆ and diameter D, or with minimum diameter given max-
imum degree ∆ and number of vertices N are two very prominent problems
in graph theory. These problems are called the (∆, D) problem and the
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Figure 1. The Kautz digraphs K(2, 3) and K(2, 4).

(∆, N) problem, respectively. See the comprehensive survey by Miller and
Širáň [6] for more information. In this paper, we obtain a new family of
digraphs with minimal diameter in the sense that, given the number of ver-
tices and out-degree, there is no other digraph with a smaller diameter. This
new family is called modified cyclic Kautz digraphs MCK(d, `), and it is
derived from the Kautz digraphs K(d, `) and from the so-called cyclic Kautz
digraphs CK(d, `).

It is well-known that, for some integers d ≥ 2 and ` ≥ 1, the Kautz
digraphs K(d, `) have vertices labeled by all possible sequences a1 . . . a` of
length ` with different consecutive symbols, ai 6= ai+1 for i = 1, . . . , ` − 1,
from an alphabet Σ of d+ 1 distinct symbols. The Kautz digraphs K(d, `)
have arcs between vertices a1a2 . . . a` and a2 . . . a`a`+1. See Figure 1 for a
pair of examples.

The cyclic Kautz digraphs CK(d, `) (see Figure 2) were defined in [2],
as the digraphs whose labels of their vertices are as the ones of the Kautz
digraphs, with the additional requirement that the first and last symbols
must also be different (a1 6= a`). The cyclic Kautz digraphs CK(d, `) have
arcs between vertices a1a2 . . . a` and a2 . . . a`a`+1, with ai 6= ai+1, a1 6= a`,
and a2 6= a`+1.

Note that CK(d, `) are subdigraphs of K(d, `). Unlike in K(d, `), any la-
bel of a vertex of CK(d, `) can be cyclically shifted to form a label of another
of its vertices. Note that, in contrast to the Kautz digraphs, CK(d, `) are
not d-regular (neither d-out-regular). Therefore, for CK(d, `) the meaning
of d is the size of the alphabet minus one and, for ` > 3, d also corresponds
to the maximum out-degree of CK(d, `).

In [1, 2] the authors showed that the cyclic Kautz digraphs CK(d, `) have
number of vertices

(1.1) nd,` = (−1)`d+ d`,
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number of arcs

(1.2) md,` = (d+1)d`−(2d−1)nd,`−1 = (d+1)d`−(2d−1)((−1)`−1d+d`−1),

and diameter

D =


1 for d = 1, ` ≥ 2 if ` is even; for ` = 1;
2 for d > 1, ` = 2;

2`− 1 for d = 2, ` = 4; for d = 3, ` ≥ 3; for d ≥ 4, ` = 3;
2`− 2 for d ≥ 4, ` ≥ 4.

Note that, for d = 1 and ` ≥ 2 when ` is odd, the cyclic Kautz digraphs
do not exist. Moreover, for d = 2 and ` ≥ 3 when ` 6= 4, the cyclic Kautz
digraphs are not connected.

It is known that the diameter of a line digraph L(G) of a strongly con-
nected digraph G is D(L(G)) = D(G) + 1, even if G is a nonregular digraph
with the exception of directed cycles (see Fiol, Yebra, and Alegre [5]). With
the line digraph technique, we obtain digraphs whose diameter is only one
unit larger than the one of the original digraph. Applying this technique
iteratively, we get digraphs whose diameter is asymptotically minimal for
a large number of iterations. For this reason, we calculate the number of
vertices of digraphs obtained with this technique for the cyclic Kautz di-
graphs. Computing the number of vertices of a t-iterated line digraph is
easy for regular digraphs. Still, in the case of nonregular digraphs, it be-
comes an interesting combinatorial problem, which can be quite difficult to
solve. Fiol and Lladó defined in [4] the partial line digraph PL(G) of a di-
graph G, where some (but not necessarily all, as in the line digraph L(G)) of
the vertices in G become arcs in PL(G). For a comparison between the par-
tial digraph technique and other construction techniques to obtain digraphs
with minimum diameter, see Miller, Slamin, Ryan, and Baskoro [7]. We
use the partial line digraph technique to obtain the modified cyclic Kautz
digraphs MCK(d, `).

In this paper, in Section 2, we construct the modified cyclic Kautz di-
graphs MCK(d, `) to obtain digraphs with the same diameter as the Kautz
digraphs, and we show that MCK(d, `) are d-out-regular. Moreover, in
Section 3, we obtain the number of vertices of the t-iterated line digraph of
CK(d, `) for 1 ≤ t ≤ ` − 2, and for the case of CK(d, 4) for all values of
t. For the particular case of CK(2, 4), these numbers of vertices follow a
Fibonacci sequence with starting values 18 and 30.

We use the habitual notation for digraphs, that is, a digraph G = (V,E)
consists of a (finite) set V = V (G) of vertices and a set E = E(G) of arcs
(directed edges) between vertices of G. There are no multiple arcs, that
is, there is at most one arc from each vertex to any other. If a = (u, v)
is an arc between vertices u and v, then vertex u (and arc a) is adjacent
to vertex v, and vertex v (and arc a) is adjacent from u. Let Γ+

G(v) and

Γ−G(v) denote the set of vertices adjacent from and to vertex v, respectively.

Their cardinalities are the out-degree δ+
G(v) = |Γ+

G(v)| of vertex v, and the
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Figure 2. The cyclic Kautz digraphs CK(2, 3) and CK(2, 4).

in-degree δ−G(v) = |Γ−G(v)| of vertex v. A digraph G is called d-out-regular

if δ+
G(v) = d, d-in-regular if δ−G(v) = d, and d-regular if δ+

G(v) = δ−G(v) = d,
for all v ∈ V .

2. The modified cyclic Kautz digraphs

Recall that the diameter of the Kautz digraphs is optimal, that is, for
a fixed out-degree d and number of vertices (d + 1)d`−1, the Kautz di-
graph K(d, `) has the smallest diameter (D = `) among all digraphs with
(d + 1)d`−1 vertices and degree d (see, for example, Miller and Širáň [6]).
Since the diameter of the cyclic Kautz digraphs CK(d, `) is greater than
the diameter of the Kautz digraphs K(d, `), we construct the modified cyclic
Kautz digraphs MCK(d, `) by adding some arcs to CK(d, `) to obtain the
same diameter as K(d, `), without increasing the maximum degree.

In a cyclic Kautz digraph CK(d, `), a vertex labeled with a2 . . . a`+1

is forbidden if a2 = a`+1. For each such label, we replace the first sym-
bol a2 by one of the possible symbols a′2 such that now a′2 6= a3, a`+1 (so
a′2 . . . a`+1 represents a vertex). Then, we add arcs from vertex a1 . . . a` to
vertex a′2 . . . a`+1, with a1 6= a` and a′2 6= a3, a`+1. Note that CK(d, `) and
MCK(d, `) have the same vertices, because we only add arcs to CK(d, `) to
obtain MCK(d, `). See a pair of examples of modified cyclic Kautz digraphs
in Figure 3.

The Kautz digraphs K(d, `) can also be defined as iterated line digraphs
of the complete symmetric digraphs Kd+1 (see Fiol, Yebra, and Alegre [5]).
This means that the Kautz digraphs K(d, `) can be obtained as the line
digraph of K(d, `− 1). Namely,

K(d, `) = L`−1(Kd+1),

K(d, `) = L(K(d, `− 1)),
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Figure 3. Modified cyclic Kautz digraphs MCK(2, 3) and
MCK(2, 4) (the thick lines are the arcs added with respect
to the corresponding cyclic Kautz digraphs).

where L is the (1-iterated) line digraph of a digraph, and Lt is the t-iterated
line digraph.

Fiol and Lladó [4] defined the partial line digraph as follows. Let E′ ⊆ E
be a subset of arcs that are adjacent to all vertices of G, that is, {v; (u, v) ∈
E′} = V . A digraph PL(G) is said to be a partial line digraph of G if its
vertices represent the arcs of E′, that is, V (PL(G)) = {uv; (u, v) ∈ E′}, and
a vertex uv is adjacent to vertices v′w, for each w ∈ Γ+

G(v), where

v′ =


v

if vw ∈ V (PL(G)),

any other element of Γ−G(w) such that v′w ∈ V (PL(G))

otherwise.

See an example of this definition in Figure 4.

Theorem 2.1 ([4]). Let G = (V,E) be a d-out-regular digraph (with d > 1)
of order N and diameter D. Then, the order NPL and diameter DPL of a
partial line digraph PL(G) satisfy N ≤ NPL ≤ dN , D ≤ DPL ≤ D + 1.
Moreover, PL(G) is also d-out-regular.

Note that NPL = N if and only if PL(G) is isomorphic to G. Moreover,
NPL = |E| if and only if PL(G) is isomorphic to L(G).

Theorem 2.2. The modified cyclic Kautz digraph MCK(d, `) has the fol-
lowing properties:

(a) It is d-out-regular.



116 KATERINA BÖHMOVÁ, CRISTINA DALFÓ, AND CLEMENS HUEMER

(b) Its diameter is D = `, which is the same as the diameter of the
Kautz digraph K(d, `).

Proof. First, we show that the modified cyclic Kautz digraph MCK(d, `)
can be obtained as a partial line digraph of Kautz digraph K(d, ` − 1):
MCK(d, `) = PL(K(d, ` − 1)). See a scheme of the process for obtaining
MCK(d, `) from K(d, ` − 1) in Figure 4. The vertices of MCK(d, `) are
the same vertices as the ones of CK(d, `), that is, sequences a1 . . . a` with
ai 6= ai+1 and a1 6= a`, for i = 1, . . . , ` − 1. To obtain a MCK(d, `), we
add some arcs to CK(d, `). Since label a2a3 . . . a`a2 is forbidden, it does not
belong to MCK(d, `). The added arcs are the following:

a1a2a3 . . . a` −→ a′2a3 . . . a`a2.

Moreover, the vertices of K(d, ` − 1) are a1 . . . a`−1 with ai 6= ai+1 for
i = 1, . . . , ` − 2, and have arcs between vertices a1 . . . a`−1 and a2 . . . a`.
Then, the arcs of K(d, `−1) are a1 . . . a`, with ai 6= ai+1 for i = 1, . . . , `−1.
Let E be the set of arcs of K(d, ` − 1), and let E′ ⊆ E be the subset of
arcs that satisfies a1 6= a`. Now we apply the partial digraph technique
to E′. Replacing the arcs of E′ by vertices, we obtain that the vertices of
PL(K(d, `−1)) are a1 . . . a`, with ai 6= ai+1 and a1 6= a`, for i = 1, . . . , `−1.
According to the definition of partial line digraph, there are two kinds of arcs
in PL(K(d, `−1)). The first kind of arcs goes from vertex a1 . . . a` to vertex
a2 . . . a`+1, both vertices belonging to the set of vertices of PL(K(d, `− 1)).
The second kind of arcs goes from vertex a1 . . . a` to vertex a′2a3 . . . a`a2,
where we replaced the forbidden label a2a3 . . . a`a2 in PL(K(d, ` − 1)) for
a′2a3 . . . a`a2, for a value of a′2 such that a′2 6= a2, a3. Since we obtain the
same vertices and arcs in MCK(d, `) as in PL(K(d, ` − 1)), they are the
same digraph.

(a) Since K(d, ` − 1) is d-out-regular (indeed, it is d-regular), then by
Theorem 2.1 its partial line digraph PL(K(d, ` − 1)) = MCK(d, `)
is also d-out-regular.

(b) Since the diameter ofK(d, `−1) isD = `−1, then by Theorem 2.1 the
diameter of its partial line digraph PL(K(d, ` − 1)) = MCK(d, `)
is `. The diameter of PL(K(d, ` − 1)) cannot be ` − 1, because
PL(K(d, `− 1)) 6= K(d, `− 1). Then, the diameter of MCK(d, `) is
`, which is the same as the diameter of K(d, `).

�

3. Line digraphs iterations of the cyclic Kautz digraphs

As done with the Kautz digraphs K(d, `), here we compute the number of
vertices of the t-iterated line digraphs of the cyclic Kautz digraphs CK(d, `),
which are nonregular digraphs. In contrast with the case of regular digraphs,
the resolution of the nonregular case is not immediate.

As said in the introduction, the diameter of a line digraph L(G) of a
digraph G is D(L(G)) = D(G) + 1, even if G is a nonregular digraph with
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Figure 5. CK(2, 4) and its line digraph at iteration t = 1.

the exception of directed cycles. Then, with the line digraph technique,
we obtain digraphs whose diameter is asymptotically minimal for a large
number of iterations (see Fiol, Yebra, and Alegre [5], and Fàbrega and
Fiol [3]). For this reason, we calculate the number of vertices of digraphs
obtained with this technique. In Figure 5, there is an example of a CK(d, `)
and its line digraph.

Theorem 3.1. Let `(≥ 3) and d(≥ 1) be integers. Then, the number of
vertices of the t-iterated line digraph Lt(CK(d, `)), for 1 ≤ t ≤ `− 2, is

(d2 − d+ 1)td`−t +
1

2
(−1)`d

[
dt(d+ 1)− (d− 2)t(d− 1)

]
.



118 KATERINA BÖHMOVÁ, CRISTINA DALFÓ, AND CLEMENS HUEMER

Recall that two vertices of CK(d, `) are adjacent when they have the form
a1a2 . . . a` and a2 . . . a`a`+1 (with a1 6= a` and a2 6= a`+1). This suggests rep-
resenting an arc of CK(d, `) as a sequence of `+ 1 characters a1a2 . . . a`a`+1

satisfying ai 6= ai+1 for 1 ≤ i ≤ `, a1 6= a`, and a2 6= a`+1. Note that a1 can
be equal to a`+1. See Figure 6 for an example. The arcs of CK(d, `) are the
vertices of the iterated line digraph of CK(d, `) at the first iteration t = 1.
Two such vertices are adjacent when they have the form a1a2 . . . a`a`+1 and
a2a3 . . . a`+1a`+2, with a1 6= a`, a2 6= a`+1, and a3 6= a`+2. Therefore, a
vertex of L2(CK(d, `)) can be represented by a sequence of `+ 2 characters
satisfying ai 6= ai+1, a1 6= a`, a2 6= a`+1, and a3 6= a`+2. In general, for
0 ≤ t ≤ ` − 2, the vertices of Lt(CK(d, `)) are represented by sequences
a1a2 . . . a`+t satisfying ai 6= ai+1 for 1 ≤ i ≤ ` + t − 1 and ai 6= ai+`−1 for
1 ≤ i ≤ t + 1. We denote the set of these sequences by S for any t and `.
See Figure 7.

For the case d = 1, if ` is even, CK(d, `) is a digon (that is, two vertices
with two opposite arcs), namely the two sequences of alternating characters,
and CK(d, `) has no vertices if ` is odd. It is easy to verify that this also
holds for the set S. Thus, Lt(CK(d, `)) has the claimed number of vertices.

Let us now prove the case d ≥ 2. To count the number of elements of S,
we first only count sequences of the form a1a2 . . . a` for ` even, with ai 6= ai+1

for 1 ≤ i ≤ ` − 1 and ai 6= ai+`/2 for 1 ≤ i ≤ `/2. We denote this set of
sequences of even length by S ′ ⊂ S.

We partition S ′ into two classes C` and D`, where C` is the set of those
sequences of S ′ that have a`/2+1 = a`, and D` is the set of the remaining
ones. We also introduce an auxiliary class of sequences B`, which is defined
as D` with the further restriction that a`/2+1 = a`/2; hence, the elements
of B` are not sequences of S. See Figure 8. We denote the cardinalities of
C`,D`, and B` with C`, D`, and B`, respectively.

For the first values of `, it is easy to calculate

B4 = (d+ 1)d2, B6 = (d+ 1)d(d− 1)3,
C4 = 0, C6 = (d+ 1)d(d3 − 2d2 + 3d− 1),
D4 = (d+ 1)d(d− 1)2, D6 = (d+ 1)d(d− 1)2(d2 − 2d+ 3).

For ` > 6, we generate all sequences of B`, C`, and D` from all sequences
of B`−2, C`−2, and D`−2. This is done by inserting a new character between
a`/2 and a`/2+1, and another new character after a`. See Figure 9. Let
us now describe how to generate sequences from the class B` using only the
classes C`−2 and D`−2. There is only one possibility to insert a new character
between a`/2 and a`/2+1, that is, anew = a`/2+1. The other new character
a`+2 has to be different from a` and from anew = a`/2+1. If we start with a
sequence from D`−2, then anew 6= a`, and there are d − 1 possible ways to
insert character a`+2. If we start with a sequence from C`−2, then anew = a`,
and there are d possible ways to insert character a`+1. We therefore obtain

B` = (d− 1)D`−2 + dC`−2.
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a2 a3 a` a`+1a1 a2 a3 a` a1 a2 a3 a` a`+1

Figure 6. Sequences representing two vertices of CK(d, 4)
and the arc between them. The lines between characters
indicate that these characters must be different.

a1 a2 at+1 a4 a5 a6 a7 a` a`+1 a`+t

Figure 7. A sequence of ` + t characters that represents a
vertex of the iterated line digraph of a cyclic Kautz digraph
CK(d, ` = 8) at iteration t = 2.

Similar arguments show

C` = (d− 1)D`−2 + dB`−2,

D` = (d2 − 3d+ 3)D`−2 + (d− 1)2C`−2 + (d− 1)2B`−2.

Note that every sequence is generated exactly once.

Lemma 3.2. The system

B` = (d− 1)D`−2 + dC`−2

C` = (d− 1)D`−2 + dB`−2

D` = (d2 − 3d+ 3)D`−2 + (d− 1)2C`−2 + (d− 1)2B`−2

with initial values

B6 = (d+ 1)d(d− 1)3

C6 = (d+ 1)d(d3 − 2d2 + 3d− 1)

D6 = (d+ 1)d(d− 1)2(d2 − 2d+ 3)

has solution

B` = d(d2 − d+ 1)`/2−1 +
1

2
(−1)`/2−1d(d− 1)(d− 2)`/2−1

+
1

2
(−1)`/2(d+ 1)d`/2,

C` =
1

2
(−1)`/2−1(d− 1)d(d− 2)`/2−1 + d(d2 − d+ 1)`/2−1

− 1

2
(−1)`/2d`/2(d+ 1),

D` = (d− 1)d
(

(d2 − d+ 1)`/2−1 − (−1)`/2−1(d− 2)`/2−1
)
.

This lemma can be proven by using simple computations.
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a1 a2 a3 a`/2 a` a6 a7 a`

a1 a2 a3 a`/2 a`/2+1 a6 a7 a`

a1 a2 a3 a`/2 a`/2 a6 a7 a`

class C`

class D`

class B`

Figure 8. The classes B`, C`, and D`.

a`/2+1a1 a2 a3 a`/2 anew a6 a7 a` a`+2

a1 a2 a3 a`/2 a`/2+1 a6 a7 a`

Figure 9. A sequence of length ` + 2 is obtained from one
of length ` by inserting a new character between a`/2 and
a`/2+1 and another one, a`+2, after a`.

Remark: From Lemma 3.2, we immediately obtain the number of vertices
of the t = (` − 2)-iteration of the line digraph of a cyclic Kautz digraph
CK(d, `) for d ≥ 2 and ` ≥ 3, which is C2`−2 +D2`−2.

We now count the number of sequences from the set S in general. Recall
that an element of S has the form a1a2 . . . a`+t satisfying ai 6= ai+1 for
1 ≤ i ≤ ` + t − 1 and ai 6= ai+`−1 for 1 ≤ i ≤ t + 1. In the following, we
set r = t + 1 (we assume r and d are fixed integers) and represent the set
of sequences S by Ej , where j = 0, 1, 2, . . . An element of Ej has the form
a1 . . . a2r+j satisfying ai 6= ai+1 for 1 ≤ i ≤ 2r + j − 1, and ai 6= ai+r+j for
1 ≤ i ≤ r. Ej is the cardinality of Ej . Observe that E0 = C2r + D2r. To
determine E1, we insert a new character between characters ar and ar+1 in
each sequence of B2r, C2r, and D2r. This gives

E1 = dB2r + (d− 1)(C2r +D2r).
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a1 ar anew ar ar+1 a4 a5 a6

a1 ar ar+1 a4 a5

a1 ar ar+1 a4 a5 a6 a7

Ej−2

Ej−1

a6

Ej

a1 ar anew ar+1 a4 a5 a6 a7

Ej

Figure 10. The sequences of Ej are obtained from the se-
quences of Ej−1 and Ej−2. Here, r = 2 and j = 4.

For j > 1, Ej is obtained from Ej−1 and Ej−2. In each sequence of the
set Ej−1, we insert a new character between the characters ar and ar+1,
which can be done in d− 1 ways. In each sequence of the set Ej−2, we first
duplicate the character ar, and then insert a new character between these
two characters ar. This can be done in d − 1 ways. Figure 10 depicts the
insertion procedure.

Note that each sequence of Ej is generated exactly once. Thus, we only
need to solve the recursion given in the following result.

Lemma 3.4. For fixed integers r and d, the recursion

Ej = (d− 1)Ej−1 + dEj−2

with initial values E0 = C2r +D2r and E1 = dB2r + (d− 1)(C2r +D2r) has
solution

Ej = (−1)j(B2r + C2r +D2r)
1− (−d)j+1

d+ 1
−B2r(−1)j .

Again this lemma can be proven with simple computations.
We now use B2r + C2r +D2r = (d+ 1)d(d2 − d+ 1)r−1 and

B2r = d(d2 − d+ 1)r−1 +
1

2
(−1)r−1d(d− 1)(d− 2)r−1 +

1

2
(−1)r(d+ 1)dr.

Then,

Ej = (d2−d+1)r−1dj+2+
1

2
(−1)r+j(d−2)r−1(d−1)d+

1

2
(−1)r+j+1dr(d+1).

From Ej we now obtain the number of vertices of the iterated line graph
of CK(d, `) at iteration t ≥ 1. Since t = r − 1 and j = ` − t − 2, we arrive
at the claimed formula of Theorem 3.1:

(d2 − d+ 1)td`−t +
1

2
(−1)`+1(d− 2)t(d− 1)d+

1

2
(−1)`dt+1(d+ 1).
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Remark: Theorem 3.1 also holds for t = 0 if, for the particular case d = 2,
the indeterminate form (d− 2)t is defined as 1.

Note that, in general, the t-iterated line digraph of a cyclic Kautz digraph
is neither a Kautz digraph, nor a cyclic Kautz digraph. But if the length is
` = 2, then it is clear that CK(d, 2) (and all its iterated line digraphs) are
Kautz digraphs.

Theorem 3.1 gives the number of vertices at the t-iteration of the line
digraph of CK(d, `), with 1 ≤ t ≤ ` − 2. Now we compute the number
of vertices of Lt(CK(d, `)) without restriction on the value of t, for the
particular case ` = 4. Let Nt denote the number of vertices of Lt(CK(d, 4)).

Proposition 3.6. The number of vertices Nt of the iterated line digraph of
CK(d, 4) at iteration t ≥ 0 is

Nt = α

(
d− 1 +

√
d2 − 2d+ 5

2

)t

+ β

(
d− 1−

√
d2 − 2d+ 5

2

)t

,

where

α =
1

2
d(d+ 1)

(
d2 − d+ 1 +

d3 − 2d2 + 4d− 1√
d2 − 2d+ 5

)
β =

1

2
d(d+ 1)

(
d2 − d+ 1− d3 − 2d2 + 4d− 1√

d2 − 2d+ 5

)
.

Moreover, if d = 2, Nt follows a Fibonacci sequence with initial values 18
and 30.

Proof. In the following, we construct Lt(CK(d, `)) by adding a new symbol
a4+t to every vertex a1 . . . a3+t of Lt−1(CK(d, `)). We make a partition of
Lt−1(CK(d, 4)) into two sets, one with sequences such that at+1 = at+3, and
the other one with sequences that satisfy at+1 6= at+3. In the first case, the
cardinality of the number of vertices is called N+

t−1 and, in the second one,

it is called N−t−1. Hence, Nt−1 = N+
t−1 + N−t−1. See a scheme for ` = 4 in

Figure 11, where the lines drawn between symbols indicate that they must
be different.

With d + 1 symbols, given the characters at+1 and at+3, for at+4, there
are d possible symbols corresponding to N+

t−1 (that is, with at+1 = at+3),

and d − 1 corresponding to N−t−1 (that is, with at+1 6= at+3). Then, Nt =

dN+
t−1 + (d − 1)N−t−1. Moreover, Nt−2 = N+

t−1, because from a vertex of

Lt−2(CK(d, 4)) there is only one possible symbol for the character at+3

to obtain a vertex of Lt−1(CK(d, 4)), such that at+1 = at+3. See again
Figure 11. Thus, N−t−1 = Nt−1 − Nt−2, and Nt satisfies the recurrence

equation Nt = (d−1)Nt−1 +Nt−2, with initial conditions N0 = nd,4 = d4 +d
(see eq. (1.1)) and N1 = md,4 = d(d+ 1)(d3 − 2d2 + 3d− 1) (see eq. (1.2)).
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Nt

l=4
t

a

a

b

a c

a

Nt-1

Nt-2

Nt-1

-

+

=

l=4

Figure 11. Scheme to obtain the number of vertices in the
t-iterated line digraph of CK(d, 4). We indicate in grey the
characters that have to be added to obtain a sequence with
t + 4 characters. The lines between two symbols represent
that they must be different.

Solving this recurrence equation, we have

Nt = α

(
d− 1 +

√
d2 − 2d+ 5

2

)t

+ β

(
d− 1−

√
d2 − 2d+ 5

2

)t

.

With the initial conditions N0 and N1, we get

α =
1

2
d(d+ 1)

(
d2 − d+ 1 +

d3 − 2d2 + 4d− 1√
d2 − 2d+ 5

)
,

β =
1

2
d(d+ 1)

(
d2 − d+ 1− d3 − 2d2 + 4d− 1√

d2 − 2d+ 5

)
.

As a particular case, if d = 2, then the recurrence equation is Nt = Nt−1 +
Nt−2, with initial values N0 = 18 and N1 = 30. Then,

Nt =

(
9 +

21√
5

)(
1 +
√

5

2

)t

+

(
9− 21√

5

)(
1−
√

5

2

)t

,

and we obtain the values Nt = 18, 30, 48, 78, . . . for t = 0, 1, 2, 3, . . ., which
is a Fibonacci sequence with initial values 18 and 30. �

We leave as an open problem to find the number of vertices of the t-
iterated cyclic Kautz digraph CK(d, `) for the remaining values of d, t, and
`.
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