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REGULARITY IN WEIGHTED GRAPHS

A SYMMETRIC FUNCTION APPROACH

MARNI MISHNA

Abstract. This work describes how the class of k-regular multigraphs
with edge multiplicities from a finite set can be expressed using sym-
metric species results of Méndez. Consequently, the generating functions
can be computed systematically using the scalar product of symmetric
functions. This gives conditions on when the classes are D-finite us-
ing criteria of Gessel, and a potential route to asymptotic enumeration
formulas.

1. Introduction

The asymptotic enumeration of regular graphs is a compelling topic that
has appeared in many forms in combinatorics over the past half century.
There are several approaches, and each has its own conditions and re-
sults. Here, we revisit the symmetric function approach, introduced by
Goulden, Jackson, and Reilly [10], generalized by Gessel [9], and automated
by Chyzak, Mishna, and Salvy [4]. The goal of this work is to give insight
on the following problem posed by McKay in a recent Oberwolfach problem
session:

Problem 1.1 (McKay [16]). Let J and J ∗ be subsets of the nonnegative
integers, and let d = (d1, . . . , dn) be a vector of nonnegative integers. Let
M(n,J ,J ∗) be the number of symmetric matrices whose diagonal entries
are drawn from J ∗, off-diagonal entries from J , and whose row sums are
d1, . . . , dn. As usual in graph theory, entries on the diagonal are counted
twice. We are interested in the asymptotic value of M(n,J ,J ∗) in the
sparse case, where the row sums do not grow very quickly with n.

We consider this problem in the case that the di take on a finite number of
values. (We call this set of possible values D.) We show that the generating
function of the sequence M(n,J ,J ∗) is D-finite under certain conditions.
(We recall the definitions in Section 3.) This gives a template for the form
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of the asymptotic expansion requested by McKay, and identifies them as an
example of the multiassembly species construction of Méndez [17].

A univariate generating function is D-finite if it satisfies a linear differen-
tial equation with polynomial coefficients. This property has considerable
implications on asymptotic enumeration: D-finite functions have restric-
tions on their asymptotic form; asymptotic information is encoded in the
differential equation that it satisfies; they can be treated with a number of
automated tools. Although we do not compute asymptotic formulas here,
the fact that the generating functions are D-finite can be useful for precisely
such a computation. For example, there are restrictions on the constant and
the sub-exponential growth. See [6, Theorem 2] for more details.

We cast this problem in graph theoretic language as follows in order to
state our results precisely. Let J and D be sets of positive integers, and
suppose additionally that D is finite. Let GJ ,D,n be the set of well-labelled
graphs on n vertices where edge weights are from J ∪ {0} and the sum of
weights of the edges incident to any given vertex is an element of D. The
case when all di = k is the case of k-regular graphs. Here, a graph is well-
labelled if the label set is {1, 2, . . . , n}, where n is the number of vertices.
Initially, we only consider graphs without loops and hence J ∗ = {0}. We
later describe how to generalize to other finite J ∗.

The following is our main result. It appears below as Theorem 4.3.

Theorem. Let J and D be finite sets of positive integers. Let GJ ,D(z)
be the generating function for the class GJ ,D of well-labelled simple graphs
where edge weights are from J ∪ {0} and the sum of weights of the edges
incident to any given vertex is an element of D. Then,

GJ ,D(z) =
∑
n

|GJ ,D,n| zn

is D-finite. Furthermore, the differential equation satisfied by GJ ,D(z) is
theoretically computable.

The condition of finiteness on J is not necessary, but is a consequence of
the finiteness of D. We show how to relax the condition of finiteness, once
there is more notation developed.

To illustrate the notation, remark G{1},{k}(z) is the generating function
for simple, labelled, k-regular graphs, and G{1,2,...,k},{k}(z) is the generating
function for labelled k-regular multigraphs. The D-finiteness of these gen-
erating functions for generic k was conjectured by Goulden, Jackson and
Reilly [10], and was proved by Gessel [9]. Our strategy proves the more
general result by using the work of Méndez [17] to create the same frame-
work as Gessel [9], to which the work of Chyzak et al. [4] then applies.
This amounts to building a symmetric function encoding of the full class
of graphs, and then performing a subseries extraction to realize the degree
restriction. These are all theoretically effective, and hence the differential
equations are potentially computable.
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As Gessel noted, the class of all regular graphs is not D-finite. Conse-
quently, these classes are likely to constitute the largest classes of regular
graphs with D-finite generating functions.

1.1. Contribution: Structure of graphs with controlled edge multi-
plicities. McKay remarked in his problem “The simplest non-trivial case is
J ∗ = {0} and J = {0, 2, 3}”. In our notation, J ∗ = {0} corresponds to the
criterion that the graphs have no loops, and our J is the same as McKay’s.
We first consider di = k for all i, and loosen this to consider then di ∈ D for
finite D and conclude with some more general comments. We also address
J ∗ = {0, 1}.

Our principal contribution is a new formulation of McKay’s problem, and
the resulting proof of D-finiteness. We find our approach to be of interest
as it gives a new way to view his problem, and also a new example for the
class of symmetric species. In this context, generalizations to hypergraph
variants are very natural.

In Section 2 we describe how to write the graph generating functions using
symmetric functions. The construction generalizes our previous work [18]
in a straightforward way using the multiassemblies studied by Méndez [17].
The construction uses the species theory formalism [2], but we leave the
category theoretic details to previous sources to avoid a rather substantial
detour that is well described elsewhere. We remark, however, this appears
to be different than the description of graphs as a species recently developed
by Gainer-Dewar and Gessel [8]. That said, our Proposition 3.3 bears some
resemblance to the formulas in Section 6 of Henderson’s species generaliza-
tion [12], which is the formalism upon which their work is based. Perhaps
this problem is a good entry point for that theory.

The D-finiteness result follows quickly once we adapt Waring’s formula.
This is explained in Section 4. We conclude with some directions on how to
weaken the conditions as stated.

2. Labelled graph generating functions

We start with a systematic encoding of graph classes using symmetric
functions.

2.1. Simple graphs and X-generating functions. Let G be a simple
graph with vertex set V (G) ⊂ Z+, and edge set E(G). To each vertex i we
associate the weight xi and to the graph G we associate the monomial π(G)
defined

π(G) =
∏

{i,j}∈E(G)

xixj = xd11 x
d2
2 . . . xdkk ,

where di is the degree of the vertex i. Let G(X) be the generating function
of the set of all labelled simple graphs G, where the vertex weights are a
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subset of X = {x1, x2, . . . , }:

G(X) =
∑
G∈G

π(G) =
∏
i<j

(1 + xixj) .

(We remark that the well-labelled graphs is a subset of G). To see the second
equality, note that every edge is either present once, or not at all. Similarly,
if G is the set of graphs that permit multiple edges (but not loops),

G(X) =
∑
G∈G

π(G) =
∏
i<j

(
1

1− xixj

)
,

as every edge exists some nonnegative integer number of times.
Under this description, the set G is a symmetric species [17], and the

series encoding G(X) is what Méndez calls the associated X-generating
function. Our strategy is to determine the X-generating function for the
class of graphs of GJ in which edge weights are incorporated, and treated
as multiplicities. (Hence, it is essential that the edge weights be positive
integers.) It is straightforward to get an expression for this, and then it is a
mechanical manipulation to get a form we desire.

The X-generating function for the class of labelled graphs with graphs
edge weights from the set of positive integers J is

(2.1) GJ (X) =
∑
G∈GJ

π(G) =
∏
i<j

(
1 +

∑
s∈J

(xixj)
s

)
.

For example, G{1,2,3,... }(X) = G(X). Frequently we simplify expressions by
omitting X.

To determine the series for graph classes with loops it is sufficient to
change the product index from i < j to i ≤ j. If, rather, the loops have
weights from a different set, say J ∗, we multiply Eq. (2.1) by the product∏
i

(
1 +

∑
s∈J ∗(xixi)

s
)
.

The number of well-labelled graphs in this class with given degree se-
quence d1, . . . , dn is the coefficient of the monomial xd11 x

d2
2 . . . xdnn . For graph

classes defined in our main theorem, and the specified degree vectors, this
is the value under investigation by McKay. In standard generating function
notation we write the coefficient as

[xd11 x
d2
2 . . . xdnn ]GJ .

As is always the case for symmetric species, the X-generating functions
are symmetric functions. We access the coefficient using classic symmetric
function operations.

2.2. Expressing GJ (X) using symmetric functions. Since we can re-
label any graph with a different set of labels and it remains in the class, GJ
is a symmetric class with respect to the graph labels. We leverage this un-
derlying symmetry to rewrite the generating function in terms of symmetric
functions.
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Let λ = (λ1, . . . , λk) be an integer partition of n, a fact which we denote
by λ ` n. Let X = x1, x2, . . . be an infinite, but countable, variable set.
Then the symmetric function mλ(X) (or simply mλ) is defined

mλ(X) =
∑

xλ1i1 x
λ2
i2
. . . xλkik

where the sum is over all k-tuples of distinct positive integers (i1, i2, . . . , ik).
This is the monomial symmetric function indexed by λ. The set of the
monomial symmetric functions form a basis for a vector space of symmetric
functions over Q.

We express the classic elementary, complete, and power sum symmetric
functions in the monomial basis as follows:

en = m(1,1,...,1), hn =
∑
λ`n

mλ, pn = m(n).

Recall the definition eλ = eλ1eλ2 . . . eλk . The set of the elementary symmet-
ric functions indexed by partitions also forms a basis for a vector space of
symmetric functions. This is also true for the sets of hλ and pλ respectively,
which are similarly defined. We work in the ring of series in the power sum
symmetric functions, Q[[p1, p2, p3, . . . ]]. In particular, we are interested in
elements R(X) of the form

R(X) =
∑
0<n

∑
λ`n

cλpλ(X).

The symmetric function operation known as plethysm is essential to our
solution. Given two symmetric functions u and v, the inner product defines
the quantity u[v] by defining the following rules, with symmetric functions
u, v, w and α, β from the underlying field:

(αu+ βv)[w] = αu[w] + βv[w], (uv)[w] = u[w]v[w],

and, most importantly, if w =
∑

λ cλpλ then pn[w] =
∑

λ cλp(nλ1)p(nλ2) . . ..
For example, we can deduce that w[pn] = pn[w], and in particular that
pn[pm] = pnm. In a mnemonic way:
(2.2)
w[pn] = w(p1n, p2n, . . . , pkn, . . .) whenever w = w(p1, p2, . . . , pk, . . .).

Let H =
∑

n hn and E =
∑

n en. Gessel noted that G and G can both
be expressed using plethysm:

G =
∏
i<j

(1 + xixj) =
∑
n

en[e2] = E[e2],(2.3)

G =
∏
i<j

(
1

1− xixj

)
=
∑
n

hn[en] = H[e2].(2.4)

Given Eq. (2.2), often plethysm expressions are easier to manipulate when
the symmetric functions are written in the power sum basis. We do this
next in Section 2.3, and this is followed by a discussion on how to derive the
plethym expressions for GJ in Section 3.
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2.3. Expressions in the power sum basis. We recall the following classic
lemma as it guides our work. It shows how to express an infinite sum of hn
as a function of power sum symmetric functions.

Lemma 2.1 (Waring formula). The following equations are true:

H =
∑
n

hn =
∏
i<j

1

1− xi
= exp

(∑
0<k

pk/k

)
,

E =
∑
n

en =
∏
i<j

(1 + xi) = exp

(∑
0<k

(−1)k+1pk/k

)
.

Proof. The proof is an elementary series manipulation:

log
∏
0<i

1

1− xi
=
∑
0<i

log
1

1− xi
=
∑
0<i

∑
0<k

xki /k =
∑
0<k

∑
0<i

xki /k =
∑
0<k

pk/k.

�

Indeed, the plethysms are easier to analyse given this form:

G = H[e2] = exp

(∑
0<k

1

k
pk

)
[e2]

= exp(
∑

pk[e2]/k)

= exp(
∑ 1

k
pk[p

2
1/2− p2/2])

= exp(
∑ 1

2k
(p2k − p2k)).

We can similarly express E[e2] (and indeed H[h2], E[h2]).

3. Labelled graphs as a symmetric species

One of the innovations of species theory [2, 13], is a rigorous combinatorial
interpretation of the plethysm operation in terms of natural compositions of
combinatorial structures [1]. Plethysm as a symbolic analog to composition
has been well studied since Pólya’s composition theorem. Asymmetric series
of Labelle [14] is also an important relative to the X-generating functions
that we seek.

The combinatorial understanding of the composition in the particular
case of H and E is formally developed by Méndez [17], and we gave a
direct interpretation in the case of graphs, and other variants in [18]. In
particular, [18] contains a description of graphs as multisort, and ultimately
symmetric, species. The interpretation is as follows: a simple labelled graph
is a set of edges. Edges are sets of atomic structures. Each atom is coloured
a colour from the infinite set X = {x1, x2 . . . , }, and atoms of the same
colour are identified to form a vertex. The combinatorial composition of a
set of edges is reflected in X-generating function by a plethysm.
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In the notation of classic species, E is the species of sets, and E2 is the
species of a set of cardinality two. Then, the class of all labelled multigraphs
with loops allowed is given by the multisort species E[E2](X), and the as-
sociated cycle index series is H[h2]. A graph is viewed as a set of edges,
but in the original theory, repetitions are not handled directly via multisort
species. The innovation of the multiassembly construction of Méndez does
permit repetition of elements. A multiassembly of type λ, denoted Mλ, is a
multiset where the multiplicities of the elements are prescribed by the parts
of the partition λ. For example, a multiassembly of type λ = (1, 1, . . . , 1)
is a usual set without repetitions. Example 3.7 and Proposition 3.9 of [17]
describe how to get the X-generating function associated a composition of a
multiassembly and a some object. In particular, the X-generating function
of a multiassembly Mλ(X) is mλ(X), and the composition is realized by
plethysm.

Example 3.1. We view graphs as multiassemblies of edges, where edge mul-
tiplicities are given by λ. The edges themselves are multiassemblies of ver-
tices. For example, the species M(3,2)[M(1,1)(X)] is the set of graphs with one
edge of multiplicity two, and one edge of multiplicity three, under all pos-
sible positive integer labellings. There are two underlying graphs that could
be described this way, if we consider all possible labellings: a set of two dis-
connected edges E(G) = {{i, j}, {k, `}}; and the path graph on three vertices
with edge set E(G) = {{i, j}, {i, k}}. In each case, suppose the first edge
has weight 2, and the second weight 3 , and hence the monomial encodings
are respectively x2ix

2
Jx

3
kx

3
` and x5ix

2
jx

3
k. The sum over all labellings is thus

m5,3,2 +m3,3,2,2. One easily verifies that m5,3,2 +m3,3,2,2 = m(3,2)[m(1,1)].

The X-generating function GJ of GJ requires a sum over all possible in-
teger partitions where the parts are elements of J . Towards a more compact
notation, define the symmetric function fJ ,n as follows:

(3.1) fJ ,n =
∑

λ`n;λi∈J
mλ.

To unravel the definition, note that f{2,3},6 = m2,2,2 + m3,3, f{1},n = en,
and f{1,...,n},n = hn. We gather these observations together as a simple
proposition for reference.

Proposition 3.2. Fix J , a nonempty set of positive integers, and X =
x1, x2, . . . , an infinite, but countable, set of labels.

(1) The symmetric species of simple graphs GJ is isomorphic to

∪λ`n;λi∈JMλ[M(1,1)(X)];

(2) For any degree sequence d = (d1, . . . , dn) with sum |d| = d1+· · ·+dn,
the coefficient

[xd11 x
d2
2 . . . xdnn ]

∑
λ`|d|;λi∈J

mλ[e2]
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is precisely the number of graphs in GJ ,N,n with degree sequence d.
Equivalently, this is the coefficient of md when expanded in the multi-
nomial basis of symmetric functions.1

The analogous class of graphs permitting loops, denoted G◦J , is isomorphic
as species to ⋃

λ`n;λi∈J
Mλ[M(1,1)(X) +M(2)(X)],

and the coefficient

[xd11 x
d2
2 . . . xdnn ]

∑
λ`D;λi∈J

mλ[h2]

is precisely the number of graphs in G◦J ,N,n with degree sequence d.

3.1. Series expressions. To prove the D-finiteness results, we need the
X-generating functions in a different format. We define FJ =

∑
n fJ ,n and

hence F{1} = E and F{1,2,... } = H. Now, FJ =
∏

0<i(1+
∑

s∈J x
s
i ). We can

generalize Lemma 2.1 to express FJ in the power sum symmetric function
basis. The proof follows from very basic manipulations.

Proposition 3.3. Let J = {j1, . . . , j`} be a set of distinct positive integers.
Then,

FJ =
∑
0<n

fJ ,n = exp

(∑
0<n

anpn

)

where an is the following sum taken over all compositions α = (α1, α2, . . . ,
ak) of n such that each part αi is contained in J , and the number of parts,
k, is denoted `(α):

(3.2) an = −
∑
α

(−1)`(α)

`(α)
.

Proof. First we note that as the elements of J are all positive, an is well
defined since the number of such compositions is finite. Next we apply the

1With d normalized to be decreasing if necessary.
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same log-exp expansion, and some very basic coefficient extraction formulas:

log
∑
0<n

fJ ,n = log
∏
0<i

(1 +
∑
s∈J

xsi )

= −
∑
0<i

log
1

1−
∑

s∈J (−xsi )

=
∑
0<i

∑
0<k

(−1)k+1

k
(
∑
s∈J

xsi )
k

=
∑
0<i

∑
0<n

anx
n
i

=
∑
0<n

anpn.

�

There are a few simplifications to note. If J = {1}, then an = (−1)n/n,
since there is only one term in the summation in Equation (3.2). When
J = {1, 2, . . . }, an = 1/n as the sum is over all compositions, and we invoke
a Möbius inversion argument. Further, when J = {s1, . . . , s`} is finite, we
can express this as follows:
(3.3)∑
0<n

fJ ,n = exp

∑
0<k

(−1)k+1

k

∑
i1+i2+···+i`=k

(
k

i1 i2 . . . i`

)
ps1i1+s2i2+···+s`i`

 .

Theorem 3.4. Let J = {j1, . . . , j`} be a finite set of ` distinct positive
integers. Then GJ , the X-generating function for the symmetric species of
labelled simple graphs with edge weights from J satisfies:

GJ =

(∑
n

fJ ,n[e2]

)
= FJ [e2]

= exp

(∑
0<n

an
2

(p2n − p2n)

)
,

with an as defined in Proposition 3.3.

Proof. This follows from Propositions 3.2 and 3.3, and the fact that e2 =
p21 − p2. �

Returning to our example:

G{2,3} = exp

(∑
0<n

(−1)n+1

2n

n∑
i=0

(
n

i

)
p23n−i − p6n−2i

)
.
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4. D-finite symmetric series

Recall that a series S ∈ K[[x1, . . . , xn]] is D-finite in x1, . . . , xn when

the set of all partial derivatives and their iterates, ∂i1+···+inF/∂xi11 · · · ∂xinn ,
spans a finite-dimensional vector space over the field K(x1, . . . , xn). This
was generalized to an infinite number of variables by Gessel [9], who had
symmetric functions in mind. A series S ∈ K[[x1, x2, . . . ]] is D-finite in the
xi if the specialization to 0 of all but a finite (arbitrary) set of variables
results in a D-finite function (in the finite sense). In this case, many of the
properties of the finite multivariate case hold true. One notable exception is
closure under algebraic substitution, which requires additional hypotheses.

The definition is then applied to symmetric series by considering the al-
gebra of symmetric series as generated over Q by the set of power sum sym-
metric functions {p1, p2, . . . }. A symmetric series is called D-finite when it
is D-finite as a function of the pi’s. The applicability of this definition will
be apparent in a moment.

The two prototypical examples, H and E are easily seen to be D-finite, as
any such specialization of variables results in an exponential of a polynomial,
which is clearly D-finite. Similarly, from the expression in Proposition 3.3
we see that the same argument will hold for any FJ .

Theorem 4.1. For any set of positive integers J , the series FJ and GJ
are both D-finite symmetric series with respect to the p-basis.

Proof. For both of these symmetric series any specialization of the p vari-
ables so that only a finite number are nonzero leaves an exponential of a
polynomial, which is easily shown to be D-finite in the remaining variables.
We immediately conclude the D-finiteness of both FJ and GJ , given the
two previous results �

4.1. Extracting the generating functions. In the power notation for
integer partitions, λ = 1n1 . . . knk indicates that i occurs ni times in λ,
for i = 1, 2, . . . , k. The normalization constant

zλ := 1n1n1! · · · knknk!

plays the role of the square of a norm of pλ in the following important
formula:

(4.1) 〈pλ, pµ〉 = δλ,µzλ,

where δλ,µ is 1 if λ = µ and 0 otherwise.
The scalar product is useful for coefficient extraction because 〈mλ, hµ〉 =

δλ,µ. If we write S in the form
∑

λ cλmλ, then the coefficient of xλ11 . . . xλkk
in S is cλ = 〈S, hλ〉.

The closure under the Hadamard product of D-finite series [15] yields the
consequence:

Theorem 4.2 (Gessel [9]). Let S and T be elements of Q[z][[p1, p2, . . . ]],
D-finite in the pi’s and z, and further suppose that T involves only finitely
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many of the pi’s. Then 〈S,T〉 is D-finite as a function of z, provided it is
well-defined as a power series.

From this and Lemma 4.1, our main theorem follows almost immediately.

Theorem 4.3. Let J and D be sets of positive integers, and suppose ad-
ditionally that D is finite. Let GJ ,D(z) be the generating function for the
class GJ ,D of well-labelled graphs where edge weights are from J ∪ {0} and
the sum of weights of the edges incident to any given vertex is an element
of D. Then,

GJ ,D(z) =
∑
n

|GJ ,D,n| zn

is D-finite. Furthermore, there exist algorithms to compute the differential
equation satisfied by GJ ,D(z).

We remark that the present implementations algorithms to compute the
differential equation satisfied by GJ ,D(z) have significant space require-
ments, which limit their utility in practice.

Proof. The series are combinatorial generating functions, and so they exist.
We remark that

(4.2) GJ ,D(z) =

〈
GJ ,

1

1−
∑

d∈D hdz
d

〉
.

The first argument to the scalar product is D-finite by Lemma 4.1. Further-
more,

∑
d∈D hdz

d is a polynomial in the power sum basis and z when D is
finite. Hence the second argument is rational, and D-finite. The result fol-
lows by Theorem 4.2. We address the computability in the next section. �

Example 4.4. We continue the running example. The series can be ex-
panded:

G{3,2} = F{3,2}[e2] = (m2 +m3 +m2,2 +m3,2 +m2,2,2 +m3,3 + . . . ) [e2]

= m2,2 +m3,3 +m4,2,2 + 3m2,2,2,2 +m5,3,2 +m3,3,2,2

+m6,2,2,2 + 2m4,4,2,2 + 6m4,2,2,2,2 +m4,4,4 +m6,3,3

+ 15m2,2,2,2,2,2 + 3m3,3,3,3 + . . .

To extract the generating function of 2-regular graphs examine the coeffi-
cients of m(2,2,...,2):

G{3,2},{2}(z) =

〈
G{3,2},

∑
0<n

hn2z
n

〉
= z2 + 3z4 + 15z6 + 105z8 + . . . .

In this case, it is corresponds the number of matchings. The generating
function for the graphs where each vertex is either of degree 2 or 3 is given
by

G{3,2},{2,3}(z) =

〈
G{3,2},

∑
0<n

n∑
k=0

hk3h
n−k
2 zn

〉
= 2z2+7z4+36z6+429z8+. . . .
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An extraction for any degree sequence is possible. The D-finiteness result
can be generalized to handle infinite D provided

∑
n

∑
λ`n:λi∈D hλt

n is a
D-finite symmetric series. In general, to determine the generating function
of graphs with a fixed set of degree sequences D, it suffices to consider the
series

∑
λ∈D hλz

|λ|.
We could also mark something other than number of vertices. As we

noted, the symmetric series
∑
hnz

n is D-finite, and in fact, for any finite k,
the series

∑
hknz

n is D-finite. This would extract the generating function for
the subclass of all regular graphs on k vertices from a given graph class with
n marking the regularity. The resulting generating function is also D-finite.

4.2. Comments on effective computation. There are two computa-
tional tools at hand to compute GJ ,D(z). One could iteratively expand
fJ ,n[e2] in the monomial basis as we did in the previous example. It might
be slightly more efficient to expand the exponential expression. In practice,
we were able to get some small results with this strategy.

Alternatively, we can make use of the fact that Gessel’s result is effective:
given the system of differential equations satisfied by symmetric series F and
G, there are algorithms [4] to compute the differential equation satisfied by
the scalar product. (Of course, at least one of F and G must contain other
variables). It is straightforward to define the system satisfied by GJ , since
it is expressed as an exponential of a polynomial. Consequently in theory
we can compute the differential equation satisfied by GJ ,D(z). In practice,
using current algorithms, the computations are too resource intensive to
deliver results when the number of variables are greater than five. We were
able to confirm the correctness in small cases.

5. Other generalizations

By playing with the inner series in the plethysm, we can enumeration
other families of objects, such as hypergraphs, or cyclic coverings of sets.
The details are essentially given in [18]. As mentioned above, we could be
interested in other kinds of functions for the growth of d. We can extract
other subseries using similar methods. The resulting generating function
will be D-finite provided the series used to do the extraction is also D-finite.
A different future direction would be to try to adapt the approach of de
Panafieu and Ramos [5] for multigraphs to the weighted edge versions.
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