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SUFFICIENT CONDITIONS FOR CERTAIN STRUCTURAL

PROPERTIES OF GRAPHS BASED ON WIENER-TYPE

INDICES

HANYUAN DENG, MEIJUN KUANG, RENFANG WU, GUIHUA HUANG

Abstract. Let G = (V,E) be a simple connected graph with vertex
set V and edge set E. The Wiener-type invariants of G = (V,E) can
be expressed in terms of the quantities Wf =

∑
{u,v}⊆V f(dG(u, v)) for

various choices of the function f , where dG(u, v) is the distance between
the vertices u and v in G. In this paper, we establish sufficient conditions
based on Wiener-type indices under which every path of length r is
contained in a Hamiltonian cycle and under which a bipartite graph on
n + m, m > n, vertices contains a cycle of size 2n.

1. Introduction

A topological index is a numerical quantity related to a graph that is in-
variant under graph isomorphism. In the case when the molecular structure
of a chemical compound is represented by a graph, topological indices are
required to be related with some of the physicochemical, pharmacological,
toxicological, or other similar properties of the underlying compound. If this
is the case, then these properties can be modeled by means of topological
indices. One of the most widely known topological descriptors is the Wiener
index [19],

W (G) =
∑

{u,v}⊆V

dG(u, v) =
n−1∑
i=1

n∑
j=i+1

dG(vi, vj),

where G = (V,E) is the graph representing the molecule under consider-
ation, V = {v1, v2, · · · , vn} is its vertex set, and dG(u, v) is the distance
between vertices u and v in G. More details on vertex distances and the
Wiener index can be found in the reviews [5, 6, 21].

Several generalizations and modifications of the Wiener index have been
put forward. Many of these Wiener-type invariants can be expressed in
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terms of the quantities

Wf = Wf (G) =
∑

{u,v}⊆V

f(dG(u, v)) =
n−1∑
i=1

n∑
j=i+1

f(dG(vi, vj))

for various choices of the function f . The quantity Wf is called the Wiener-
type index with respect to f .

In particular, we observe the following: (i) if the function f is x, then
Wf = Wx coincides with the ordinary Wiener index, denoted by W (G); (ii)
if the function f is 1/x, then Wf = W1/x was named the Harary index in
[15], or the reciprocal Wiener index in [4], and is denoted by H(G); (iii) if the
function f is (x2 + x)/2, then Wf = Wx2+x/2 was named the hyper-Wiener

index in [17], and is denoted by WW (G); and (iv), if the function f is xλ

(where λ 6= 0 is a real number), then Wf = Wxλ was named the modified
Wiener index in [10], and is denoted by Wλ(G). There are many papers
that have studied the invariant Wλ; see [3, 11, 13, 14, 18] and the references
cited therein for details.

In this paper we consider only simple undirected graphs-graphs that do
not contain loops or multiple edges. A Hamiltonian cycle is a closed path
passing through every vertex of a graph. The length of a path or a cycle in a
graph is the number of its edges in the path or cycle. A graph containing a
Hamiltonian cycle is said to be Hamiltonian. In fact, finding a Hamiltonian
cycle is a very difficult task. It is one of the six well-known problems that
constituted the class of NP-Complete problems in the initial days of the
theory of computational complexity; see [8] for details. The Hamiltonicity
of graphs has been studied in terms of independent sets, dominating circuits,
degrees, neighborhood conditions of a graph, etc.; see [7, 12, 20, 22, 23].

In [9], Grötschel obtained a sufficient condition for the following property
of a graph: given any path of length r, there is a cycle of length at least
m ≥ r + 3 containing this path, which implies the well-known theorem of
Chvátal [2] on Hamiltonian graphs and the theorem of Pósa [16] on a graph
containing cycles a certain length. In this paper, we establish sufficient
conditions based on Wiener-type indices under which every path of length r
is contained in a Hamiltonian cycle, and conditions under which a bipartite
graph on n+m, m > n, vertices contains a cycle of size 2n.

2. Preliminaries

Before proceeding, we introduce some further notation. For a simple
connected graph G = (V,E), the degree of a vertex v in G, denoted by dG(v),
is the number of edges of G incident with v, and the distance between two
vertices u and v in G, denoted by dG(u, v), is the length of a shortest path
connecting u and v in G. The diameter of a graph G, denoted by D(G),
is the maximum distance in G. The graph Kn is the complete graph on n
vertices. Let G and H be two vertex-disjoint graphs. The join of G and H,
denoted by G ∨H, is the graph with the vertex set V (G) ∪ V (H) and the
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edge set E(G)∪E(H)∪{uv|u ∈ V (G) and v ∈ V (H)}. The union of G and
H, denoted by G ∪ H, is the graph with the vertex set V (G) ∪ V (H) and
the edge set E(G) ∪ E(H).

A bipartite graph with the vertex set V ∪W and the edge set E, denoted
by G = (V,W ;E), is one whose vertex set can be partitioned into two
subsets V and W such that each edge has one end in V and one end in
W ; such a partition (V,W ) is called a bipartition of the graph. A complete
bipartite graph is a simple bipartite graph with bipartition (V,W ) in which
each vertex of V is joined to each vertex of W ; if |V | = n and |W | = m,
such a graph is denoted by Kn,m.

For other notation and terminology not defined here, the readers are re-
ferred to [1].

In the following, we present two of the relevant results for a graph con-
taining a special cycle.

Lemma 2.1 (Theorem 8 in [9]). Let G = (V,E) be a graph of order n,
let (d1, d2, · · · , dn) be the degree sequence of G, where d1 ≤ d2 ≤ · · · ≤ dn,
and let r be a integer with 0 ≤ r ≤ n − 3. If for every integer k with
r < k < (n + r)/2, we have that dk−r ≤ k implies that dn−k ≥ n− k + r,
then for every path Q of length r there is a Hamiltonian cycle in G which
contains Q.

Lemma 2.2 (Corollary 11 in [9]). Let G = (V,W ;E) be a bipartite graph
with bipartition (V,W ) and degree sequence

(d(w1), d(w2), · · · , d(wm), d(v1), d(v2), · · · , d(vn)),

where V = {v1, v2, · · · , vn}, W = {w1, w2, · · · , wm}, d(w1) ≤ · · · ≤ d(wm),
d(v1) ≤ · · · ≤ d(vn), and n ≤ m. If d(wk) ≤ k ≤ n− 1implies that
d(vn−k)≥ m− k + 1, then G contains a cycle of length 2n.

3. Main Results

The following result gives a sufficient condition based on the Wiener-type
index under which every path of length r is contained in a Hamiltonian
cycle.

Theorem 3.1. Let G = (V,E) be a graph of order n, n ≥ 3, and 0 ≤ r <
n− 3. If

Wf (G) ≤ f(1)

2
(n2 − 3n+ 2r + 4) + f(2)(n− r − 2)

for a monotonically increasing function f defined on the interval [1, D(G)],
or if

Wf (G) ≥ f(1)

2
(n2 − 3n+ 2r + 4) + f(2)(n− r − 2)

for a monotonically decreasing function f defined on the interval [1, D(G)],
then for each path Q of length r there exists a Hamiltonian cycle in G which
contains Q.
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Proof. . Let V = {v1, v2, · · · , vn} be the vertex set of G and let
(d1, d2, · · · , dn) be the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn.
Assume that there is a path Q of length r in G, but that no Hamiltonian
cycle contains Q. By Lemma 2.1, there is a integer k, r < k < (n+ r)/2,
such that dk−r ≤ k and dn−k ≤ n− k + r − 1. Then

n∑
i=1

di ≤ k(k − r) + (n− k + r − 1)(n− 2k + r) + (n− 1)k

= 3k2 − 4kr − 2nk + k + n2 − n+ 2nr + r2 − r
= (k − r − 1)(3k − r − 2n+ 4) + n2 − 3n+ 2r + 4.

When n+ r is even, we have

3k − r − 2n+ 4 ≤ 3(n+ r)

2
− 3− r − 2n+ 4 =

r − n+ 2

2
< 0.

When n+ r is odd, we have

3k − r − 2n+ 4 ≤ 3(n+ r)

2
− 3

2
− r − 2n+ 4 =

r − n+ 5

2
≤ 0.

Thus,
∑n

i=1 di ≤ n2 − 3n+ 2r + 4.
If f is an monotonically increasing function defined on the interval

[1, D(G)], then

Wf (G) =

n−1∑
i=1

n∑
j=i+1

f(dG(vi, vj))

≥ 1

2

n∑
i=1

[f(1)di + f(2)(n− 1− di)]

=
1

2

n∑
i=1

[(n− 1)f(2) + (f(1)− f(2))di]

=
f(2)

2
n(n− 1)− f(2)− f(1)

2

n∑
i=1

di

≥ f(2)

2
n(n− 1)− f(2)− f(1)

2
(n2 − 3n+ 2r + 4)

=
f(1)

2
(n2 − 3n+ 2r + 4) + f(2)(n− r − 2).
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If f is a monotonically decreasing function defined on the interval
[1, D(G)], then

Wf (G) =
n−1∑
i=1

n∑
j=i+1

f(dG(vi, vj))

≤ 1

2

n∑
i=1

[f(1)di + f(2)(n− 1− di)]

=
1

2

n∑
i=1

[(n− 1)f(2) + (f(1)− f(2))di]

=
f(2)

2
n(n− 1) +

f(1)− f(2)

2

n∑
i=1

di

≤ f(2)

2
n(n− 1) +

f(1)− f(2)

2
(n2 − 3n+ 2r + 4)

=
f(1)

2
(n2 − 3n+ 2r + 4) + f(2)(n− r − 2).

Combining these facts and our assumption, we get that

Wf (G) =
f(1)

2
(n2 − 3n+ 2r + 4) + f(2)(n− r − 2),

and note that all equalities above are attained. Thus we have that:

(a) the diameter of G is no more than two;
(b) d1 = d2 = · · · = dk−r = k, dk−r+1 = · · · = dn−k = n− k+ r− 1, and

dn−k+1 = · · · = dn = n− 1;
(c) k − r − 1 = 0 or 3k − r − 2n+ 4 = 0.

If k = r + 1, then d1 = r + 1, d2 = · · · = dn−r−1 = n− 2, and dn−r = · · · =
dn = n−1, which implies that G ∼= (K1∪Kn−r−2)∨Kr+1. If 3k−r−2n+4 =
0, then we have r = n− 5 and k = n− 3, since r < k < (n+ r)/2 and both
r and k are integers, which implies that G ∼= K3 ∨Kn−3.

It is easy to check that both (K1∪Kn−r−2)∨Kr+1 and K3∨Kn−3 contain
any path Q of length r, and we are done. �

Since the functions x, 1/x, (x2 + x)/2 and xλ are monotonically increas-
ing or decreasing on the interval [1, D(G)], we can get the following sufficient
conditions in terms of the Wiener index W (G), the Harary index H(G), the
hyper-Wiener index WW (G) and the modified Wiener index Wλ(G), re-
spectively, under which every path of length r is contained in a Hamiltonian
cycle from Theorem 3.1.

Corollary 3.2. Let G = (V,E) be a graph of order n, n ≥ 3, and 0 ≤ r <
n − 3. If W (G) ≤ (n2 + n − 2r − 4)/2, then for each path Q of length r,
there is a Hamiltonian cycle in G which contains Q.
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Corollary 3.3. Let G = (V,E) be a graph of order n, n ≥ 3, and 0 ≤ r <
n−3. If H(G) ≥ (n2−2n+ r+2)/2, then for each path Q of length r, there
is a Hamiltonian cycle in G which contains Q.

Corollary 3.4. Let G = (V,E) be a graph of order n, n ≥ 3, and 0 ≤ r <
n− 3. If WW (G) ≤ (n2 + 3n− 4r− 8)/2, then for each path Q of length r,
there is a Hamiltonian cycle in G which contains Q.

Corollary 3.5. Let G = (V,E) be a graph of order n, n ≥ 3, and 0 ≤ r <
n− 3. If

Wλ(G) ≤ n2 − 3n+ 2r + 4

2
+ 2λ(n− r − 2)

for λ > 0, or if

Wλ(G) ≥ n2 − 3n+ 2r + 4

2
+ 2λ(n− r − 2)

for λ < 0, then for each path Q of length r, there is a Hamiltonian cycle in
G which contains Q.

In the following, we will establish sufficient conditions based on Wiener-
type indices under which a bipartite graph contains a cycle of size 2n.

Let G1 = (V,W ;E) be the simple bipartite graph with bipartition (V,W )
and degree sequences d(w1) = 1, d(w2) = · · · = d(wm) = n, d(v1) = · · · =
d(vn−1) = m − 1, and d(vn) = m. Furthermore, let G2 = (V,W ;E) be
the simple bipartite graph with bipartition (V,W ) and the degree sequences
d(w1) = · · · = d(wn−1) = n − 1, d(wn) = · · · = d(wm) = n, d(v1) =
m − n + 1, and d(v2) = · · · = d(vn) = m, where V = {v1, v2, · · · , vn} and
W = {w1, w2, · · · , wm}. Note that G1 and G2 contain a cycle of length 2n
if and only if n < m. Moreover, G1

∼= G2
∼= K∗n,n when n = m, where K∗n,n

is the bipartite graph obtained from the complete bipartite graph Kn,n by
deleting n− 1 edges incident with a common vertex.

Theorem 3.6. Let G = (V,W ;E) be a simple bipartite graph with biparti-
tion (V,W ), where |V | = n, |W | = m, and n ≤ m. If

Wf (G) ≤ f(1)(nm− n+ 1) +
f(2)

2
(m2 + n2 −m− n) + f(3)(n− 1)

for a monotonically increasing function f defined on the interval [1, D(G)],
or if

Wf (G) ≥ f(1)(nm− n+ 1) +
f(2)

2
(m2 + n2 −m− n) + f(3)(n− 1)

for a monotonically decreasing function f defined on the interval [1, D(G)],
then G contains a cycle of length 2n or G ∼= K∗n,n.

Proof. Let G = (V,W ;E) be a simple bipartite graph with bipartition
(V,W ) and degree sequences

(d(w1), d(w2), · · · , d(wm), d(v1), d(v2), · · · , d(vn)),
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where n ≤ m, V = {v1, v2, · · · , vn}, W = {w1, w2, · · · , wm}, d(w1) ≤ · · · ≤
d(wm) and d(v1) ≤ · · · ≤ d(vn).

Suppose that G contains no cycle of length 2n. By Lemma 2.2, there is a
integer k, 0 < k < n, such that d(wk) ≤ k and d(vn−k) ≤ m− k. Then

m∑
i=1

d(wi) +

n∑
j=1

d(vj) ≤ k2 + n(m− k) + (n− k)(m− k) + km

= 2k2 − 2nk + 2nm

= 2(k − 1)(k − n+ 1)− 2n+ 2nm+ 2

≤ 2nm− 2n+ 2.

If f is a monotonically increasing function defined on the interval
[1, D(G)], then:

Wf (G) =
m∑
i=1

n∑
j=1

f(dG(wi, vj) +
m−1∑
i=1

m∑
j=i+1

f(dG(wi, wj))

+
n−1∑
i=1

n∑
j=i+1

f(dG(vi, vj))

≥ 1

2

(
m∑
i=1

f(1)d(wi) + f(3)(n− d(wi))

)

+
1

2

 n∑
j=1

f(1)d(vj) + f(3)(m− d(vj))


+

1

2
m(m− 1)f(2) +

1

2
n(n− 1)f(2)

=
1

2
(f(1)− f(3))

 m∑
i=1

d(wi) +

n∑
j=1

d(vj)

+ f(3)mn

+
1

2
f(2)(m2 + n2 −m− n)

≥ 1

2
(f(1)− f(3))(2mn− 2n+ 2) + f(3)mn

+
1

2
f(2)(m2 + n2 −m− n)

= f(1)(nm− n+ 1) +
f(2)

2
(m2 + n2 −m− n) + f(3)(n− 1).
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If f is a monotonically decreasing function defined on the interval
[1, D(G)], then:

Wf (G) =

m∑
i=1

n∑
j=1

f(dG(wi, vj) +

m−1∑
i=1

m∑
j=i+1

f(dG(wi, wj))

+
n−1∑
i=1

n∑
j=i+1

f(dG(vi, vj))

≤ 1

2

(
m∑
i=1

f(1)d(wi) + f(3)(n− d(wi))

)

+
1

2

 n∑
j=1

f(1)d(vj) + f(3)(m− d(vj))


+

1

2
m(m− 1)f(2) +

1

2
n(n− 1)f(2)

=
1

2
(f(1)− f(3))

 m∑
i=1

d(wi) +
n∑
j=1

d(vj)

+ f(3)mn

+
1

2
f(2)(m2 + n2 −m− n)

≤ 1

2
(f(1)− f(3))[2mn− 2n+ 2] + f(3)mn

+
1

2
f(2)(m2 + n2 −m− n)

= f(1)(nm− n+ 1) +
f(2)

2
(m2 + n2 −m− n) + f(3)(n− 1).

Combining these facts with our assumption, we get

Wf (G) = f(1)(nm− n+ 1) +
f(2)

2
(m2 + n2 −m− n) + f(3)(n− 1),

while all equalities above are attained. Thus, we have that

(a) the diameter of G is no more than three;
(b) d(w1) · · · = d(wk) = k, d(wk+1) = · · · = d(wm) = n, d(v1) · · · =

d(wn−k) = m− k, and d(wn−k+1) = · · · = d(wn) = m;
(c) k = 1 or k = n− 1.

If k = 1, then d(w1) = 1, d(w2) = · · · = d(wm) = n, and d(v1) = · · · =
d(vn−1) = m − 1, d(vn) = m. If k = n − 1, then d(w1) = · · · = d(wn−1) =
n − 1, d(wn) = · · · = d(wm) = n, d(v1) = m − n + 1, and d(v2) = · · · =
d(vn) = m. Both cases imply that G ∼= G1 and G ∼= G2, respectively. If
n < m, then G1 and G2 contain a cycle of length 2n. If n = m, then
G ∼= G1

∼= G2
∼= K∗n,n. �
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From Theorem 3.6, we can get the following sufficient conditions in terms
of the Wiener index W (G), the Harary index H(G), the hyper-Wiener index
WW (G) and the modified Wiener index Wλ(G), respectively, under which
a simple bipartite graph G contains a cycle of length 2n.

Corollary 3.7. Let G = (V,W,E) be a simple bipartite graph with biparti-
tion (V,W ), where |V | = n, |W | = m, and n ≤ m. If

W (G) ≤ m2 + n2 + nm−m+ n− 2,

then G contains a cycle of length 2n or G ∼= K∗n,n.

Corollary 3.8. Let G = (V,W,E) be a simple bipartite graph with biparti-
tion (V,W ), where |V | = n, |W | = m and n ≤ m. If

H(G) ≥ 3m2 + 3n2 + 12nm− 3m− 11n+ 8

12
,

then G contains a cycle of length 2n or G ∼= K∗n,n.

Corollary 3.9. Let G = (V,W,E) be a simple bipartite graph with biparti-
tion (V,W ), where |V | = n, |W | = m, and n ≤ m. If

WW (G) ≤ 3m2 + 3n2 + 2mn− 3m+ 7n− 10

2
,

then G contains a cycle of length 2n or G ∼= K∗n,n.

Corollary 3.10. Let G = (V,W,E) be a simple bipartite graph with bipar-
tition (V,W ), where |V | = n, |W | = m, and n ≤ m. If

Wλ(G) ≤ nm− n+ 1 + 2λ−1(m2 + n2 −m− n) + 3λ(n− 1)

for λ > 0, or if

Wλ(G) ≥ nm− n+ 1 + 2λ−1(m2 + n2 −m− n) + 3λ(n− 1)

for λ < 0, then G contains a cycle of length 2n or G ∼= K∗n,n.
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