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BOUNDS FOR THE BOXICITY OF MYCIELSKI GRAPHS

AKIRA KAMIBEPPU

Abstract. A box in Euclidean k-space is the Cartesian product I1 ×
I2 × · · · × Ik, where Ij is a closed interval on the real line. The boxicity
of a graph G, denoted by box(G), is the minimum nonnegative integer
k such that G can be isomorphic to the intersection graph of a family
of boxes in Euclidean k-space.

Mycielski [11] introduced an interesting graph operation that extends
a graph G to a new graph M(G), called the Mycielski graph of G. In
this paper, we observe the behavior of the boxicity of Mycielski graphs.
The inequality box(M(G)) ≥ box(G) holds for a graph G, and hence
we are interested in whether the boxicity of the Mycielski graph of G
is more than that of G or not. Here we give bounds for the boxicity of
Mycielski graphs: for a graph G with l universal vertices, the inequalities
box(G) + dl/2e ≤ box(M(G)) ≤ θ(G) + dl/2e + 1 hold, where θ(G) is

the edge clique cover number of the complement G. Further observations
determine the boxicity of the Mycielski graphM(G) ifG has no universal

vertices or odd universal vertices and satisfies box(G) = θ(G).
We also present relations between the Mycielski graph M(G) and its

generalizations M3(G) and Mr(G) in the context of boxicity, which will
encourage us to calculate the boxicity of M(G) and M3(G).

1. Introduction

The notion of boxicity of graphs was introduced by Roberts [13]. It has ap-
plications in some research fields, like niche overlap in ecology (see [14, 15])
and fleet maintenance in operations research (see [12]). Roberts [13] proved
that the maximum boxicity of graphs with n vertices is bn/2c (also see
[7]), where bxc denotes the largest integer at most x. Cozzens [6] proved
that the task of computing boxicity of graphs is NP-hard. Some researchers
have attempted to calculate or bound boxicity of graphs with special struc-
ture. Roberts [13] showed that the boxicity of a complete k-partite graph
Kn1,n2,...,nk

is the number of ni which is at least 2. Scheinerman [16] proved
that the boxicity of outer planar graphs is at most 2. Thomassen [17] proved
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that the boxicity of planar graphs is at most 3. Cozzens and Roberts [7] in-
vestigated the boxicity of split graphs. As Chandran et al. [5] say, not much
is known about boxicity of most of the well-known graph classes. They
proved that the boxicity of a graph G is at most tw(G) + 2, where tw(G) is
the treewidth of G, and presented upper bounds for chordal graphs, circu-
lar arc graphs, AT-free graphs, co-comparability graphs, and permutation
graphs. Recently, Chandran et al. [1] found the following relation between
boxicity and chromatic number.

Theorem 1.1 ([1], Theorem 6.1). Let G be a graph with n vertices. If
box(G) = n/2− s for s ≥ 0, the inequality χ(G) ≥ n/(2s+ 2) holds, where
χ(G) is the chromatic number of G.

Theorem 1.1 implies that, if the boxicity of a graph with n vertices is very
close to the maximum boxicity bn/2c, the chromatic number of the graph
must be very large. The converse does not hold in general. The complete
graph Kn is an example of a graph whose boxicity is small, even though its
chromatic number is large. Also there are bipartite graphs with arbitrary
large boxicity (see Section 5.1 in [1] and also see [2]). However, a graph
operation increasing chromatic number may admit increasing boxicity. For
example, the join of two graphs, taking the disjoint union of two graphs and
adding all edges between them is desired one. The behavior of boxicity has
been studied in the context of various graph operations (see [3, 4, 18] for
example). This paper is another attempt in this direction that studies the
behavior of boxicity in the context of Mycielski’s graph operation.

One purpose of this paper is to consider whether the behavior of boxicity
is similar to that of chromatic number under Mycielski’s graph operation.
Mycielski [11] found an interesting graph operation that extends a graph G
to a new graph M(G), called the Mycielski graph of G or the Mycielskian
of G. It is well-known that the chromatic number of the Mycielski graph
of G is more than that of G, in fact, χ(M(G)) = χ(G) + 1 holds. We can
construct (triangle-free) graphs with arbitrarily large chromatic numbers
by using the graph operation. Here we present the definition of the graph
M(G). Let V (G)i be a copy of the vertex set V (G) of a graph G, where
i ∈ {1, 2}. For each vertex v ∈ V (G), the symbol vi denotes the vertex
in V (G)i corresponding to v. The vertex set of M(G) is defined to be
{z} ∪ V (G)1 ∪ V (G)2, the disjoint union of the set of a single new vertex z
and copies V (G)1 and V (G)2. The edge set of M(G) is defined to be the
union E1 ∪ E2 ∪ E3, where

E1 = {u1v1 |uv ∈ E(G)}, E2 = {u1v2, v1u2 |uv ∈ E(G)}, and

E3 = {zu2 |u ∈ V (G)}
and E(G) denotes the edge set of G (see Figure 1 for example). Note
that the inequality box(M(G)) ≥ box(G) holds for a graph G since M(G)
contains the subgraph induced by V (G)1, isomorphic to G. So, first we are
interested in whether the boxicity of the Mycielski graph M(G) is strictly
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greater than G, the same as the behavior of the chromatic number under the
graph operation, as mentioned at the beginning of this paragraph. Many
researchers have studied Mycielski graphs and have compared a graph G
with M(G) under various graph invariants (see [8, 10] for example).
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Figure 1. The Mycielski graph M(C4) of a cycle C4 and its

complement M(C4).

In Section 3, we improve the trivial lower bound for the boxicity of the
Mycielskian of a graph G in terms of the number of universal vertices of G.
This implies that the boxicity of the Mycielski graph M(G) is more than
that of G if the graph G has universal vertices. Also note that there is a
graph G without universal vertices such that the boxicity of the Mycielski
graph M(G) is more than that of G. While such examples of graphs appear,
there is also a graph G such that box(M(G)) = box(G). As a conclusion,
the behavior of boxicity is not similar to that of chromatic number under
Mycielski’s graph operation in general. This leads to our next goal: Classify
as many graphs as possible into box(M(G)) > box(G) or box(M(G)) =
box(G).

In Section 4, we discuss upper bounds for the boxicity of Mycielski graphs.
Chandran et al. [1] proved that the inequality box(G) ≤ bt(G)/2c+ 1 holds
for a graph G, where t(G) is the minimum cardinality of a vertex cover of G.
It is easy to see that t(M(G)) ≤ 2t(G)+1 for a graph G, and hence we have
box(M(G)) ≤ bt(M(G))/2c+ 1 ≤ t(G) + 1. Here we present another upper
bound for the boxicity of the Mycielskian of a graph G in terms of the edge
clique cover number θ(G) of the complement G. We also consider graphs
that satisfy the equality box(G) = θ(G). The family of graphs satisfying
box(G) = θ(G) contains complete multipartite graphs, for example. Other
examples of such graphs appear at the end of Section 4. As a result, our
observations determine the boxicity of their Mycielski graphs if the original
graphs have no universal vertices or odd universal vertices.

In Section 5, we consider relations between the Mycielski graph and its
generalization Mr(G), called the generalized Mycielski graph of G, in the
context of boxicity, where r ≥ 3. We present upper bounds for the boxicity
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of the generalized Mycielski graph Mr(G) in terms of M(G) for a bipar-
tite graph G or in terms of M3(G) for a graph G. These results provide
motivation for calculating the boxicity of M(G) and M3(G).

2. Preliminaries

In this paper, all graphs are finite, simple and undirected. We use V (G)
for the vertex set of a graph G. We use E(G) for the edge set of a graph G.
An edge of a graph with endpoints u and v is denoted by uv. A vertex v of G
is said to be universal if v is adjacent to all vertices in V (G) \ {v}. A graph
is said to be trivial if E(G) is empty. For a subset V of V (G), let G− V be
the subgraph induced by V (G) \ V . For a subset E of E(G), let G − E be
the subgraph on V (G) with E(G)\E as its edge set. A subset of V (G) that
induces a complete subgraph of G is called a clique of G. For a graph G, its
complement is denoted by G. The intersection graph of a nonempty family
F of sets is the graph whose vertex set is F and F1 is adjacent to F2 if and
only if F1 ∩ F2 6= ∅ for F1, F2 ∈ F . The intersection graph of a family of
closed intervals on the real line is called an interval graph. A graph G can
be represented as the intersection graph of a family F if there is a bijection
between V (G) and F such that two vertices of G are adjacent if and only if
the corresponding sets in F have nonempty intersection. A box in Euclidean
k-space is the Cartesian product I1 × I2 × · · · × Ik, where Ij is a closed
interval on the real line. The boxicity of a graph G, denoted by box(G),
is the minimum nonnegative integer k such that G can be represented as
(isomorphic to) the intersection graph of a family of boxes in Euclidean k-
space. The boxicity of a complete graph is defined to be 0. If G is an interval
graph, box(G) ≤ 1. If H is an induced subgraph of G, box(H) ≤ box(G)
holds by the definition.

A graph is a cointerval graph if its complement is an interval graph.
Lekkerkerker and Boland [9] presented the forbidden subgraph character-
ization of interval or cointerval graphs. Cointerval graphs do not contain
the complement of a cycle of length at least 4 as an induced subgraph, for
example. It is easy to see that the union of a cointerval graph and isolated
vertices is also a cointerval graph. A cointerval edge covering of a graph G
is a family C of cointerval spanning subgraphs of G such that each edge of G
is in some graph of C. For a set X, the cardinality of X is denoted by |X|.

The following theorem is useful to calculate of the boxicity of graphs.

Theorem 2.1 ([7], Theorem 3). Let G be a graph. Then, box(G) ≤ k if
and only if there is a cointerval edge covering C of G with | C | = k.

3. A lower bound for the boxicity of Mycielski graphs

For a complete graph Kn, it is easy to see that box(M(Kn)) ≥ 1 > 0 =
box(Kn) since M(Kn) is not complete by the definition of Mycielski graphs.
We determine the boxicity of M(Kn) in the next section (see Lemma 4.1).
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First we consider if the boxicity of the Mycielski graph of a graph G is more
than that of G in general.

Question 3.1. For a graph G, does the inequality box(M(G)) > box(G)
hold?

The following example shows that there exists a graph G such that the
equality box(M(G)) = box(G) holds. Here Cn denotes a cycle with n ver-
tices.

Example 3.2. The boxicity of the Mycielski graph of a cycle C4 is equal
to 2. To check this, we give a cointerval edge covering of the complement
M(C4) (see Figure 1).

Let H1 and H2 be the graphs in Figure 2. Both graphs are cointerval
spanning subgraphs of M(C4). Note that the disjoint union of a cointerval
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Figure 2. Cointerval spanning subgraphs H1 and H2 of
M(C4) and an interval representation of H1 − {v1, y1}.

graph and isolated vertices is also cointerval since these isolated vertices
become pairwise adjacent universal vertices in the complement. Hence, it
suffices to prove that H1 − {v1, y1} and H2 − {u1, x1} are cointerval, re-
spectively. A family of intervals on the real line with intersection graph
isomorphic to H1 − {v1, y1} can be found as in the bottom of Figure 2. Sim-
ilar arguments work for H2 − {u1, x1}. Also see that H1 and H2 cover all

edges of M(C4). The family {H1, H2} is a desired cointerval edge covering

of M(C4), and hence, box(M(C4)) ≤ 2 by Theorem 2.1. Also note that
box(M(C4)) ≥ box(C4) = 2.
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Question 3.3. Is there a graph G such that the inequality box(M(G)) >
box(G) holds?

The distance between two vertices u and v in a graphG is defined by length
of the shortest path from u to v inG and is denoted by dG(u, v). If there exist
no paths from u to v in G, define dG(u, v) =∞. Let H1 and H2 be subgraphs
of G. The distance between two subgraphs H1 and H2 in G, denoted by
dG(H1, H2), is defined to be the minimum distance min{dG(v1, v2) | v1 ∈
V (H1), v2 ∈ V (H2)}. The following lemma is a generalization of Corollary
3.6 in [7].

Lemma 3.4. Let G be a graph and H1, H2 induced subgraphs of the com-
plement G. If dG(H1, H2) ≥ 2, the following inequality holds:

box(G) ≥ box(H1) + box(H2).

Proof. If either H1 or H2 is trivial, say H1, then H1 is complete. Hence,
box(H1) = 0. Since H2 is an induced subgraph of G, we see that

box(G) ≥ box(H2) = box(H1) + box(H2)

holds. In what follows, we may assume that H1 and H2 are nontrivial.
The assumption dG(H1, H2) ≥ 2 means that dG(v1, v2) ≥ 2 for any vertex

v1 of H1 and v2 of H2. Hence, an edge of H1 and an edge of H2 form 2K2,
the disjoint union of two edges, as an induced subgraph of G. Moreover, we
claim the following.

Claim 1. No cointerval spanning subgraphs of G contain an edge of H1 and
an edge of H2.

Claim 2. We need at least box(Hi) cointerval spanning subgraphs of G to
cover all edges of Hi, where i ∈ {1, 2}.

Claim 1 follows from the forbidden subgraph characterization of coint-
erval graphs. In fact, cointerval graphs do not contain 2K2 as an induced
subgraph. Claim 2 follows from Theorem 2.1. A cointerval subgraph of
G with edges of H1 does not contain edges of H2. Thus, the inequality
box(G) ≥ box(H1) + box(H2) holds. �

We can derive a positive answer to Question 3.3 by using Lemma 3.4.
The following lemma is useful to make our answer more precise. Here, dxe
denotes the smallest integer at least x.

Lemma 3.5 ([7], Lemma 3). Let G be a graph. Let S1 = {a1, a2, . . . , an}
and S2 = {b1, b2, . . . , bn} be disjoint subsets of V (G) such that the only edges
between S1 and S2 in G are the edges aibi, where i ∈ {1, 2, . . . , n}. Then,
box(G) ≥ dn/2e.
Theorem 3.6. For a graph G with l universal vertices, the following in-
equality holds:

box(M(G)) ≥ box(G) +

⌈
l

2

⌉
.
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Proof. Let G be a graph and x1, x2, . . . , xl universal vertices of G. Let
H be the subgraph of G induced by V (G) \ {x1, x2, . . . , xl}. Note that
box(H) = box(G) holds. We consider the Mycielski graph M(G) and its

complement M(G). Let Xj = {(x1)j , (x2)j , . . . , (xl)j}, the set of vertices in
V (G)j corresponding to universal vertices of G. Let Dl be the subgraph of
M(G) induced by the union of X1 and X2. Note that X1 and X2 are disjoint
by their definition. It is not difficult to check that the only edges between
X1 and X2 in Dl are the edges (xi)1(xi)2, where i ∈ {1, 2, . . . , l}. In fact,
the vertex (xi)1 ∈ X1 is adjacent to all vertices in V (G)2 \ {(xi)2} in M(G)
and the vertex (xi)2 ∈ X2 is adjacent to all vertices in V (G)1 \ {(xi)1} in
M(G) since xi is a universal vertex of G. We see that box(Dl) ≥ dl/2e by
Lemma 3.5.

We prove that d
M(G)

(H,Dl) ≥ 2 holds. Let v be a vertex of H and x a

vertex of Dl. The vertex v is in V (G)1 \ X1 and the vertex x is in X1 or
X2. We may represent x as (xi)j , where j ∈ {1, 2}. Since xi is a universal

vertex of G, the vertex (xi)j is not adjacent to v in M(G). This implies

that d
M(G)

(v, x) ≥ 2 for a vertex v of H and a vertex x of Dl, that is,

d
M(G)

(H,Dl) ≥ 2. Thus, the inequality

box(M(G)) ≥ box(H) + box(Dl) ≥ box(G) +

⌈
l

2

⌉
holds by Lemma 3.4. �

Remark 3.7. We note that the proof of Theorem 3.6 works on the gen-
eralized Mycielski graph Mr(G) (see Section 5 for definition), that is, the
inequality box(Mr(G)) ≥ box(G) + dl/2e holds for a graph with l universal
vertices. Further observations on box(Mr(G)) appear in Section 5.

In the proof of Theorem 3.6, we prove that box(Dl) ≥ dl/2e by using
Lemma 3.5. In fact, note that box(Dl) = dl/2e. Any two vertices in X1

are not adjacent in M(G) since they are adjacent in M(G). Hence, X1 is

independent in Dl. Also note that X2 is a clique in M(G), that is, in Dl

by the definition of Mycielski graphs. See the argument behind the proof of
Theorem 5 in [7].

If we restrict our attention to the graph G with only one universal vertex
or only two universal vertices in the proof of Theorem 3.6, then Lemma 3.5
is superfluous. Note that box(D1) = box(D2) = 1 since D1 is the trivial
graph with two vertices and D2 is the path with four vertices.

Theorem 3.6 implies that box(M(G)) > box(G) holds for a graph G with
universal vertices. Also note that Mycielski’s graph operation can be used
to construct graphs with arbitrarily large boxicity (and chromatic number)
the same as the join of graphs.

At the end of this section, we note that there is a graph G without uni-
versal vertices such that the boxicity of the Mycielski graph M(G) is more
than that of G. We give a simple example here. Also see Section 6.
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Example 3.8. Let Pn be a path with n vertices, where n ≥ 2. We see that
box(M(Pn)) = 2. We can give a representation of M(Pn) by a family of
boxes in Euclidean 2-space. See Figure 3 below, where we write V (Pn)1 =
{1, 2, . . . , n} and V (Pn)2 = {1′, 2′, . . . , n′} and for a vertex v ∈ V (M(Pn)) =
{z}∪V (Pn)1∪V (Pn)2, Bv denotes a box in Euclidean 2-space corresponding
to the vertex v. Also note that M(Pn) contains an induced cycle C5.
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Figure 3. A representation of M(P2k) by a family of boxes
in Euclidean 2-space.

4. An upper bound for the boxicity of Mycielski graphs

In this section, we give an upper bound for the boxicity of Mycielski
graphs. Moreover we calculate the boxicity of Mycielski graphs of some of
complete multipartite graphs. First we determine the boxicity of Mycielski
graphs of complete graphs.

Lemma 4.1. For a complete graph Kn, the following equalities hold:

box(M(Kn)) =

{
dn/2e if n is odd,

dn/2e+ 1 if n is even.

Proof. Let H0 be the subgraph of M(Kn) induced by V (M(Kn))−{z}. We
have the inequality box(M(Kn)) ≥ box(H0) ≥ dn/2e by Lemma 3.5.

Let V (Kn) = {v1, v2, . . . , vn}. To see box(M(Kn)) ≤ dn/2e + 1, we give

cointerval subgraphs of M(Kn). Let G0 be the subgraph of M(Kn) induced
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by {z, (vn)2}∪V (Kn)1. We define Gi to be the subgraph of M(Kn) induced
by {(v2i−1)1, (v2i)1} ∪ V (Kn)2, where i ∈ {1, 2, . . . , dn/2e − 1}. Moreover,

let Gdn/2e be the subgraph of M(Kn) induced by {(vn−1)1, (vn)1}∪V (Kn)2.
It is easy to see that the family {G0, G1, . . . , Gdn/2e} is a cointerval edge

covering of M(Kn), and hence box(M(Kn)) ≤ dn/2e+ 1 holds.
If n is odd, the family {G0, G1, . . . , Gdn/2e−1} is a cointerval edge covering

of M(Kn), because the edge (vn)1(vn)2 is covered with the graph G0. Hence
we have the equality box(M(Kn)) = dn/2e.

If n is even, that is, n = 2k, we show that box(M(K2k)) > k. Suppose to

the contrary that M(K2k) can be covered with k cointerval (spanning) sub-

graphs H1, H2, . . . ,Hk of M(K2k). Let ej = (vj)1(vj)2 for j ∈ {1, 2, . . . , 2k}.
The graph Hi contains at most two edges in E = {e1, e2, . . . , e2k} since Hi

is cointerval. In fact, the graph Hi must contain two edges in E . Otherwise
there is a graph H in H = {H1, H2, . . . ,Hk} which contains only one edge
in E or which contains no edges in E . Hence the family H \ {H} of k − 1

cointerval subgraphs of M(K2k) must cover at least 2k − 1 edges in E , but
this is impossible. On the other hand, there is a cointerval graph H∗ in H
which contains an edge z(v)1, where the vertex v is in V (K2k). We may
assume that the graph H∗ contains two edges es and et in E . Hence we see

z z

zz
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Figure 4. The subgraph H∗ of M(K2k) containing edges es
and et.

that V (H∗) ⊃ {(vs)1, (vs)2, (vt)1, (vt)2, z}. We note that

(vs)1(vt)1, (vs)1(vt)2, (vt)1(vs)2, z(vs)2, z(vt)2 6∈ E(M(K2k))

by the definition of Mycielski’s construction. If v 6∈ {vs, vt}, it follows from

Lemma 3.5 that box(H∗) ≥ 2 since (v)1(vs)1, (v)1(vt)1 6∈ E(M(K2k)), a
contradiction. Hence we may assume that v = vs. We reach the four cases
on the graph H∗ indicated in Figure 4. These cases imply that box(H∗) ≥
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2, which contradicts our assumption that H∗ is cointerval. Thus we have
box(M(K2k)) > k. Hence we obtain the equality box(M(Kn)) = dn/2e+ 1
if n is even. �

Remark 4.2. We proved that the inequality box(M(Kn)) ≤ dn/2e+1 holds
in the second paragraph of the proof of Lemma 4.1. We can also derive this
inequality by using the minimum cardinality of a vertex cover of M(Kn),
that is, using the inequality box(M(Kn)) ≤ bt(M(Kn))/2c+ 1. A subset U
of the vertex set of a graph G is a vertex cover of G if for each e ∈ E(G),
there is a vertex u ∈ U such that u is in e. Note that t(M(Kn)) = n+ 1.

The edge clique cover number of a graph G, denoted by θ(G), is the
minimum cardinality of a family of cliques that covers all edges of G. The
following theorem gives us an upper bound for the boxicity of Mycielski
graphs.

Theorem 4.3. For a graph G with l universal vertices, the inequality

box(M(G)) ≤ θ(G) +

⌈
l

2

⌉
+ 1

holds. If l is zero or odd, we have the inequality

box(M(G)) ≤ θ(G) +

⌈
l

2

⌉
.

Proof. Let {A1, A2, . . . , Aθ(G)} be a family of cliques in G that covers all

edges of G. Let v1, v2, . . . , vl be all isolated vertices of G and write J =
{v1, v2, . . . , vl}. Note that V (G) = A1 ∪ A2 ∪ · · · ∪ Aθ(G) ∪ J . We define
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Figure 5. The subgraph Hi− (Ei∪Fi) and an interval rep-

resentation of Hi − (Ei ∪ Fi).
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Hi to be the subgraph of M(G) induced by (Ai)1 ∪ V (G)2 ∪ {z} and let
Ei = {xy |x, y ∈ V (G)2\(Ai)2} and Fi = {xy |x ∈ (Ai)1, y ∈ V (G)2\(Ai)2},
where i ∈ {1, 2, . . . , θ(G)}. We can check that Hi − (Ei ∪ Fi) is a cointer-
val graph (see Figure 5). Note that the subgraph of M(G) induced by
J1 ∪ J2 ∪ {z} is isomorphic to M(Kl). Hence the edge set of the subgraph

of M(G) isomorphic to M(Kl) can be covered with at most dl/2e+ 1 coin-
terval subgraphs as in the proof of Lemma 4.1. Let G0 be the subgraph of
M(G) induced by {z, (vl)2} ∪ J1 and Gi the subgraph of M(G) induced by
{(v2i−1)1, (v2i)1} ∪ J2 for i ∈ {1, 2, . . . , dl/2e − 1}. Moreover, let Gdl/2e be

the subgraph of M(G) induced by {(vl−1)1, (vl)1} ∪ J2. We can check that
θ(G) + dl/2e+ 1 cointerval subgraphs H1 − (E1 ∪ F1), . . . ,Hθ(G) − (Eθ(G) ∪
Fθ(G)), G0, G1, . . . , Gdl/2e cover all edges of M(G).

Let e be an edge of E(M(G)). If e ∩ {z} 6= ∅, we see that e ∩ V (G)1 6= ∅.
Hence there is an i ∈ {1, 2, . . . , θ(G)} such that e ∈ E(Hi − (Ei ∪ Fi)) or
e ∈ E(G0). If e∩{z} = ∅, we have e ⊂ V (G)1∪V (G)2. Hence, if e ⊂ V (G)2,
in particular, e∩ (Ai)2 6= ∅, we see that e ∈ E(Hi− (Ei ∪Fi)). If e ⊂ V (G)2
and e ∩ (Ai)2 = ∅ for any i, we see that e ⊂ J2, and hence e ∈ E(Gi) for
i 6= 0. If e ∩ V (G)1 6= ∅, we reach the following two cases:

(i) e ⊂ V (G)1 or (ii) e ∩ V (G)2 6= ∅.
In case (i), the edge e is in some (Ai)1 since the family {A1, A2, . . . , Aθ(G)}

of cliques covers all edges of G, and hence we have e ∈ E(Hi − (Ei ∪ Fi)).
Now we focus on case (ii). Let u be a vertex in V (G) and Cu the union

of cliques in {A1, A2, . . . , Aθ(G)} containing the vertex u. If u is an isolated

vertex in G, let Cu be the set {u}. Then we note u1 ∈ V (G)1 is never

adjacent to vertices in V (G)2 \ (Cu)2 on M(G) by the definition of Mycielski
graphs. Hence the following two subcases occur:

(ii-1) the edge e connects a vertex of (Ai)1 and a vertex of
(Ai)2 for some i or
(ii-2) the edge e connects a vertex (vi)1 and a vertex (vi)2,
where vi ∈ J .

Under subcase (ii-1), we notice that e ∈ E(Hi − (Ei ∪ Fi)). Under subcase
(ii-2), we see e ∈ E(Gdi/2e). These arguments complete the proof of our first
statement.

If l = 0, the graphs H1 − (E1 ∪ F1), . . . ,Hθ(G) − (Eθ(G) ∪ Fθ(G)) cover all

edges of M(G). If l is odd, H1 − (E1 ∪ F1), . . . ,Hθ(G) − (Eθ(G) ∪ Fθ(G)),

G0, G1, . . . , Gdl/2e−1 cover all edges of M(G), because the edge (vl)1(vl)2
is covered with the graph G0. Our second statement follows from similar
arguments as above. �

Theorem 3.6 and Theorem 4.3 pretty much narrow the boxicity of My-
cielskians of graphs that satisfy the equality box(G) = θ(G). They also
determine the boxicity of some Mycielski graphs.
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Corollary 4.4. For a graph G with l universal vertices that satisfies the
equality box(G) = θ(G), the inequalities

box(G) +

⌈
l

2

⌉
≤ box(M(G)) ≤ box(G) +

⌈
l

2

⌉
+ 1

hold. Moreover if l be zero or odd, the equality

box(M(G)) = box(G) +

⌈
l

2

⌉
holds. �

We can give examples of graphs that satisfy box(G) = θ(G). Recall
that the boxicity of a complete k-partite graph Kn1,n2,...,nk

is the number
of ni which is at least 2. If Kn1,n2,...,nk

has l universal vertices, we obtain

box(Kn1,n2,...,nk
) = k − l = θ(Kn1,n2,...,nk

). Hence we have

box(Kn1,n2,...,nk
) +

⌈
l

2

⌉
=

⌈
2k − l

2

⌉
.

Corollary 4.5. For a complete k-partite graph Kn1,n2,...,nk
with l universal

vertices, the inequalities⌈
2k − l

2

⌉
≤ box(M(Kn1,n2,...,nk

)) ≤ min

{
k,

⌈
2k − l

2

⌉
+ 1

}
hold. In particular, if l is zero or odd, the equality box(M(Kn1,n2,...,nk

)) =
d(2k − l)/2e holds. �

We present other examples of graphs that satisfy box(G) = θ(G). The
graph H whose complement is a chain of cliques is a desired one, where
neighboring cliques share exactly one vertex and each clique has at least
four vertices. Note that the graph H contains a complete multipartite graph
K2,2,...,2 as an induced subgraph and the number of its partite sets is equal

to that of maximal cliques of the complement H.
Moreover if we consider a graph operation that extends a graphG to a new

graph Suspn(G), called the n-suspension of G, we can get more examples
that we desire. The vertex set of Suspn(G) is the union of V (G) and the
set of new vertices {x1, x2, . . . , xn}. The edge set of Suspn(G) is the union
of E(G) and the set {xiv | v ∈ V (G), i ∈ {1, 2, . . . , n}}. Here we assume
that n is an integer at least 2. We see that box(Suspn(G)) = box(G) + 1

and θ(Suspn(G)) = θ(G) + 1 for a graph G by Theorem 2.1 and Lemma 3.4.
Hence if the graph G satisfies box(G) = θ(G), the equality box(Suspn(G)) =

θ(Suspn(G)) holds. We note that the family of graphs satisfying box(G) =
θ(G) is not narrow at all.

5. Relations between the boxicity of Mycielski graphs and
generalized Mycielski graphs

In this section, we consider relations between Mycielski graphs and their
generalizations in the context of boxicity.
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Let G be a graph and r an integer at least 2. Let V (G)i be a copy
of V (G), where i ∈ {1, 2, . . . , r}. For each vertex v ∈ V (G), the symbol
vi denotes the vertex in V (G)i corresponding to v. The generalized My-
cielski graph of G, denoted by Mr(G), is the graph whose vertex set is
{z} ∪ (∪ri=1V (G)i), the disjoint union of the set of an additional new ver-

tex z and copies V (G)1, . . . , V (G)r of V (G), and whose edge set is ∪r+1
i=1Ei,

where

E1 = {u1v1 |uv ∈ E(G)},
Ei = {ui−1vi, vi−1ui |uv ∈ E(G)} for i ∈ {2, 3, . . . , r}, and

Er+1 = {zur |u ∈ V (G)}.
Note that the graph M2(G) is identical to M(G). First, we present a relation
between box(Mr(G)) and box(M2(G)) for a bipartite graph G.

Theorem 5.1. The inequality box(Mr(G)) ≤ box(M2(G)) + 2 holds for a
bipartite graph G and r ≥ 2.

Proof. We partition V (G) into two partite sets V1 and V2. Fix a family {Bx}
of boxes in the optimal dimensional space which represents M2(G). Note
that Bu1∩Bu2 = ∅, Bv1∩Bv2 = ∅, and Bu2∩Bv2 = ∅ for distinct two vertices
u and v of G by the definition of M2(G). Moreover we note that uv ∈ E(G),
Bu1 ∩Bv1 6= ∅, Bu1 ∩Bv2 6= ∅, and Bu2 ∩Bv1 6= ∅ are equivalent each other.
First we define the family {B′vi} of boxes in (box(M2(G)) + 1)-dimensional
space to give a box-representation of the graph Mr(G)− {z} as follows: for
each vertex v ∈ V (G),

B′v1 = Bv1 × {0},

B′v2i =

{
Bv2 × [i− 1, i− 1/2] if v ∈ V1,
Bv2 × [−(i− 1/2),−(i− 1)] if v ∈ V2,

for i ∈ {1, 2, . . . , br/2c},

and

B′v2i−1
=

{
Bv1 × [−(i− 1),−(i− 3/2)] if v ∈ V1,
Bv1 × [i− 3/2, i− 1] if v ∈ V2,

for i ∈ {2, 3, . . . , dr/2e}.

Take a vertex v ∈ V (G) and k ∈ {1, 2, . . . , r}, then consider the adjacency of
the vertex vk of Mr(G)− {z} from the above family {B′vi} that we defined.
It is easy to see that the box B′vk does not have intersection with boxes
corresponding to vertices in {v1, v2, . . . , vr} \ {vk}. We also see that B′vk
does not have intersection with boxes that correspond to vertices in V (G)k \
{vk} for k ∈ {2, 3, . . . , r}. Clearly, the family {B′v1}v∈V (G) represents the
subgraph of Mr(G)− {z} induced by V (G)1, so we may assume k ≥ 2.

If the vertex v is adjacent to a vertex u in G, we can check that the
box B′vk has nonempty intersection only with boxes B′uk−1

and B′uk+1
for

2 ≤ k ≤ r − 1, and only with the box B′ur−1
for k = r in the family

{B′u1 , B′u2 , . . . , B′ur}. If the vertex v is not adjacent to a vertex u in G, no
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boxes in the family {B′u1 , B′u2 , . . . , B′ur} have nonempty intersection with
B′vk since Bu1 ∩Bv1 = ∅, Bu1 ∩Bv2 = ∅, and Bu2 ∩Bv1 = ∅ hold. Hence the
family {B′vi} represents the graph Mr(G)− {z}.

Now, we define the family {B′′x} of boxes in (box(M2(G))+2)-dimensional
space that represents Mr(G) as follows:

B′′vi = B′vi × {0} for i 6= r,

B′′vr = B′vr × [0, 1],

B′′z = B × {1},
where B is a box in (box(M2(G)) + 1)-dimensional space that contains all
boxes in {B′vr}v∈V (G). We can check easily that the family {B′′x} represents
Mr(G), which completes the proof of our theorem. �

We believe that the inequality box(Mr(G)) ≤ box(M2(G)) + c holds for
a graph G and some small constant c in general. The next theorem shows a
relation between box(Mr(G)) and box(M3(G)) for a graph G. These results
provide further motivation to investigate the boxicity of M2(G) and M3(G).

Theorem 5.2. The inequality box(Mr(G)) ≤ box(M3(G)) + 1 holds for a
graph G and r ≥ 3.

Proof. Let {Bx} be a family of boxes in the optimal dimensional space which
represents M3(G). We note that for distinct two vertices u and v of G,

Bui ∩Buj = ∅, Bvi ∩Bvj = ∅, where i, j ∈ {1, 2, 3} and i 6= j,

Bui ∩Bvi = ∅, where i ∈ {2, 3}, and

Bu1 ∩Bv3 = ∅, Bv1 ∩Bu3 = ∅
hold by the definition of M3(G). In addition we note that uv ∈ E(G),
Bu1∩Bv1 6= ∅, Bu1∩Bv2 6= ∅, Bu2∩Bv1 6= ∅, Bu2∩Bv3 6= ∅, and Bu3∩Bv2 6= ∅
are equivalent each other. By using similar techniques from the previous
theorem, we can present the family {B′x} of boxes in (box(M3(G)) + 1)-
dimensional space that represents the graph Mr(G) as follows: for each
vertex v ∈ V (G), define

B′vi = Bvi × {0} for i ∈ {1, 2},
B′v2i−1

= Bv3 × [i− 2, i− 3/2] for i ∈ {2, 3, . . . , dr/2e},
B′v2i = Bv2 × [i− 3/2, i− 1] for i ∈ {2, 3, . . . , br/2c},

and for the additional vertex z′ of Mr(G),

B′z′ =

{
B × {r/2− 1} if r is even,

Bz × {br/2c − 1/2} if r is odd,

where B is a box in (box(M3(G)))-dimensional space that contains all boxes
in {Bv2}v∈V (G) and z is the additional vertex of M3(G). Note that any
pair of distinct two boxes in {B′v1 , B′v2 , . . . , B′vr} does not have intersection
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for a vertex v of G, and also note that any pair of distinct two boxes in
{B′vk}v∈V (G) does not have intersection for k ∈ {2, 3, . . . , r}.

Fix a vertex v ∈ V (G) and k ∈ {1, 2, . . . , r}. We consider the adjacency
of the vertex vk of Mr(G). Clearly, the family {B′v1}v∈V (G) represents the
subgraph of Mr(G) induced by V (G)1, and hence we may assume k ≥ 2. If
the vertex v is adjacent to a vertex u in G, we can verify that the box B′vk has
nonempty intersection only with boxes B′uk−1

and B′uk+1
for 2 ≤ k ≤ r − 1,

and only with B′ur−1
for k = r in {B′u1 , B′u2 , . . . , B′ur}. If the vertex v is not

adjacent to a vertex u in G, no boxes in the family {B′u1 , B′u2 , . . . , B′ur} have
nonempty intersection with B′vk . In addition, the box B′vk has nonempty
intersection with B′z′ if and only if k = r for each v ∈ V (G). Hence our
arguments guarantee that the family {B′x} represents the graph Mr(G). �

6. Concluding Remarks: graphs with box(M(G)) > box(G)

We proved that the boxicity of the Mycielski graph of a graph G with
universal vertices is more than that of G. As examples of complete multi-
partite graphs without universal vertices, one may expect that the equality
box(M(G)) = box(G) holds for a graph G without universal vertices. How-
ever, we note that there is a graph G without universal vertices such that
box(M(G)) > box(G) holds. For examples, nontrivial interval graphs with-
out universal vertices satisfy this condition. The Mycielski graph of such an
interval graph is not interval because it contains a cycle with 5 vertices as an
induced subgraph. Another example of a graph without universal vertices
that satisfy box(M(G)) > box(G) is a cycle with at least 5 vertices. The
author verified in a manuscript that the boxicity of Mycielski graph of a
cycle with at least 5 vertices is equal to 3.

Acknowledgment

The author would like to thank the anonymous referee for his or her
careful reading and suggestions.

References

1. L. S. Chandran, A. Das, and C. D. Shah, Cubicity, boxicity, and vertex cover, Discrete
Math. 309 (2009), 2488–2496.

2. L. S. Chandran, M. C. Francis, and R. Mathew, Chordal bipartite graphs with high
boxicity, Graphs Combin. 27 (2011), 353–362.

3. L. S. Chandran, W. Imrich, R. Mathew, and D. Rajendraprasad, Boxicity and cubicity
of product graphs, European J. Combin. 48 (2015), 100–109.

4. L. S. Chandran, R. Mathew, and N. Sivadasan, Boxicity of line graphs, Discrete Math.
311 (2011), 2359–2367.

5. L. S. Chandran and N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B
97 (2007), 733–744.

6. M. B. Cozzens, Higher and multidimensional analogues of interval graphs, Ph.D. the-
sis, Rutgers University, New Brunswick, NJ, 1981.

7. M. B. Cozzens and F. S. Roberts, Computing the boxicity of a graph by covering its
complement by cointerval graphs, Discrete Appl. Math. 6 (1983), 217–228.



78 AKIRA KAMIBEPPU

8. M. Larsen, J. Propp, and D. Ullman, The fractional chromatic number of Mycielski’s
graphs, J. Graph Theory 19 (1995), 411–416.

9. C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of
intervals on the real line, Fund. Math. 51 (1962), 45–64.

10. W. Lin, J. Wu, P. C. B. Lam, and G. Gu, Several parameters of generalized Myciel-
skians, Discrete Appl. Math. 154 (2006), 1173–1182.

11. J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955), 161–162.
12. R. J. Opsut and F. S. Roberts, The Theory and Applications of Graphs, ch. On the fleet

maintenance, mobile radio frequency, task assignment, and traffic phasing problems,
pp. 479–492, Wiley, New York, 1981.

13. F. S. Roberts, Recent progress in combinatorics, ch. On the boxicity and cubicity of a
graph, pp. 301–310, Academic Press, New York, 1969.

14. , Discrete Mathematical Models, with Applications to Social, Biological, and
Environmental Problems, Prentice-Hall, New Jersey, 1976.

15. , Theory and Applications of Graphs, Lecture Notes in Mathematics, vol. 642,
ch. Food webs, competition graphs, and the boxicity of ecological phase space, pp. 447–
490, Springer-Verlag, 1978.

16. E. R. Scheinerman, Intersection classes and multiple intersection parameters, Ph.D.
thesis, Princeton University, 1984.

17. C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B
40 (1986), 9–20.

18. W. T. Trotter Jr., A characterization of Roberts’ inequality for boxicity, Discrete Math.
28 (1979), 303–313.

Interdisciplinary Graduate School of Science and Engineering, Shimane
University, Matsue, Shimane 690-8504, Japan.
E-mail address: kamibeppu@riko.shimane-u.ac.jp


